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Chapter 

Linear Regression with One 
Predictor Variable 

Regression analysis is a statistical methodology that utilizes the relation between two or 
more quantitative variables so that a response or outcome variable can be predicted from 
the other, or others. This methodology is widely used in business, the social and behavioral 
sciences, the biological sciences, and many other disciplines. A few examples of applications 
are: 

1. Sales of a product can be predicted by utilizing the relationship between sales and amount 
of advertising expenditures. 

2 The performance of an employee on a job can be predicted by utilizing the relationship 
between performance and a battery of aptitude tests. 

3. The size of the vocabulary of a child can be predicted by utilizing the relationship 
between size of vocabulary and age of the child and amount of education of the parents. 

4. The length of hospital stay of a surgical patient can be predicted by utilizing the rela-
tionship between the time in the hospital and the severity of the operation. 

In Part I we take up regression analysis when a single predictor variable is used for 
predicting the response or outcome variable of interest. In Parts II and III, we consider 
regression analysis when two or more variables are used for making predictions. In this 
chapter, we consider the basic ideas of regression analysis and discuss the estimation of the 
parameters of regression models containing a single predictor variable. 

1.1 Relations between Variables 
The concept of a relation between two variables, such as between family income and family 
expenditures for housing, is a familiar one. We distinguish between afunctional relation 
and a statistical relation, and consider each of these in tum. 

Functional Relation between Two Variables 
A functional relation between two variables is expressed by a mathematical formula. If X 

2 
denotes the independent variable and Y the dependent variable, a functional relation is 
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150 X 

Y = f(X) 

Given a particular value of X, the function f indicates the corresponding value of Y. 

Consider the relation between doUar sales (Y) of a product sold at a fixed price and number 
of units sold (X). If the selling price is $2 per unit, the relation is expressed by the equation: 

Y=2X 

This functional relation is shown in Figure 1.1. Number of units sold and dollar sales during 
three recent periods (while the unit price remained constant at $2) were as follows: 

Number of Dollar 
Period Units Sold Sales 

1 75 $150 
2 25 50 
3 130 260 

These observations are plotted also in Figure 1.1. Note that aU faU directly on the line of 
functional relationship. This is characteristic of aU functional relations. 

Statistical Relation between Two Variables 

Example 1 

A statistical relation, unlike a functional relation, is not a perfect one. In general, the 
observations for a statistical relation do not faU directly on-the curve of relationship. 

Perfonnance evaluations for 10 employees were obtained at midyear and at year-end. 
These data are plotted in Figure 1.2a. Year-end evaluations are taken as the dependent or 
response variable Y, and midyear evaluations as the independent, explanatory, or predictor 
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FIGURE 1.2 Statistical Relation between Midyear Perfonnance Evaluation and Year·End Evaluation. 
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Scatter Plot and Line of Statistical Relationship 

60 70 80 90 x 
Midyear Evaluation 

variable X. The plotting is done as before. For instance, the midyear and year-end perfor-
mance evaluations for the first employee are plotted at X = 90, Y = 94. 

Figure l.2a clearly suggests that there is a relation between midyear and year-end evalua-
tions, in the sense that the higher the midyear evaluation, the higher tends to be the year-end 
evaluation. However, the relation is not a perfect one. There is a scattering of points, sug-
gesting that some of the variation in year-end evaluations is not accounted for by midyear 
performance assessments. For instance, two employees had midyear evaluations of X = 80, 
yet they received somewhat different year-end evaluations. Because of the scattering of 
points in a statistical relation, Figure 1.2a is called a scatter diagram or scatter plot. In 
statistical terminology, each point in the scatter diagram represents a trial or a case. 

In Figure 1.2b, we have plotted a line of relationship that describes the statistical relation 
between midyear and year-end evaluations. It indicates the general tendency by which year-
end evaluations vary with the level of midyear performance evaluation. Note that most of 
the points do not fall directly on the line of statistical relationship. This scattering of points 
around the line represents variation in year-end evaluations that is not associated with 
midyear performance evaluation and that is usually considered to be of a random nature. 
Statistical relations can be highly useful, even though they do not have the exactitude of a 
functional relation. 

Figure 1.3 presents data on age and level of a steroid in plasma for 27 healthy females 
between 8 and 25 years old. The data strongly suggest that the statistical relationship is 
curvilinear (not linear). The curve of relationship has also been drawn in Figure 1.3. It 
implies that, as age increases, steroid level increases up to a point and then begins to level 
off. Note again the scattering of points around the curve of statistical relationship, typical 
of all statistical relations. 
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FIGURE 1.3 Curvilinear Statistical Relation between Age and Steroid Level in,Healthy Females Aged 8 to 25. 
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1.2 Regression Models and Their Uses 

Historical Origins 
Regression analysis was first developed by Sir Francis Galton in the latter part of the 
19th century. Galton had studied the relation between heights of parents and children and 
noted that the heights of children of both tall and short parents appeared to "revert" or 
"regress" to the mean of the group. He considered this tendency to be a regression to 
"mediocrity." Galton developed a mathematical description of this regression tendency, the 
precursor of today's regression models. 

The term regression persists to this day to describe statistical relations betwe!!n variables. 

Basic Concepts 

Example 

A regression model is a formal means of expressing the two essential ingredients of a 
statistical relation: 

1. A tendency of the response variable Y to vary with the predictor variable X in a systematic 
fashion. 

2. A scattering of points around the curve of statistical relationship. 

These two characteristics are embodied in a regression model by postulating that: 

1. There is a probability disfiibution of Y for each level of X. 
2. The means of these probability distributions vary in some systematic fashion with X. 

Consider again the performance evaluation example in FiglU"e 1.2. The year-end evaluation Y 
is treated in a regression model as a random variable. For each level of midyear performance 
evaluation, there is postulated a probability distribution of Y. Figure 1.4 shows such a 
probability distribution for X = 90, which is the midyear evaluation for the first employee. 



6 Part One Simple Linear Regression 

FIGURE 1.4 
Pictorial 
Representation 
of Regression 
Model. 
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The actual year-end evaluation of this employee, Y = 94, is then viewed as a random 
selection from this probability distribution. 

Figure 1.4 also shows probability distributions of Y for midyear evaluation levels X = 50 
and X = 70. Note that the means of the probability distributions have a systematic relation 
to the level of X. This systematic relationship is called the regression function of Y on X. 
The graph of the regression function is called the regression curve. Note that in Figure 1.4 
the regression function is slightly curvilinear. This would imply for our example that the in-
crease in the expected (mean) year-end evaluation with an increase in midyear performance 
evaluation is retarded at higher levels of midyear performance. 

Regression models may differ in the form of the regression function (linear, curvilinear), 
in the shape of the probability distributions of Y (symmetrical, skewed), and in other ways. 
Whatever the variation, the concept of a probability distribution of Y for any given X is the 
formal counterpart to the empirical scatter in a statistical relation. Similarly, the regression 
curve, which describes the relation between the means of the probability distributions 
of Y and the level of X, is the counterpart to the general tendency of Y to vary with X 
systematically in a statistical relation. 

Regression Models with More than One Predictor Variable. Regression models may 
contain more than one predictor variable. Three examples follow. 

1. In an efficiency study of 67 branch offices of a consumer finance chain, the response 
variable was direct operating cost for the year just ended. There were four predictor variables: 
average size of loan outstanding during the year, average number of loans outstanding, total 
number of new loan applications processed, and an index of office salaries. 

2. In a tractor purchase study, the response variable was volume (in horsepower) of 
tractor purchases in a sales territory of a farm equipment firm. There were nine predictor 
variables, including average age of tractors on farms in the territory, number of farms in the 
territory, and a quantity index of crop production in the territory. 

3. In a medical study of short children, the response variable was the peak plasma growth 
hormone level. There were 14 predictor variables, including age, gender, height, weight, 
and 10 skinfold measurements. 

The model features represented in Figure 1.4 must be extended into further dimensions 
when there is more than one predictor variable. With two predictor variables Xl and X2, 
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for instance, a probability distribution of Y for each (X" X 2) combination is assumed 
by the regression model. The systematic relation between the means of these probability 
distributions and the predictor variables Xl and X2 is then given by a regression surface. 

Construction of Regression Models 
Selection of Predictor Variables. Since reality must be reduced to manageable propor-
tions whenever we construct models, only a limited number of explanatory or predictor 
variables can-or should-be included in a regression model for any situation of interest. 
A central problem in many exploratory studies is therefore that of choosing, for a regres-
sion model, a set of predictor variables that is "good" in some sense for the purposes of 
the analysis. A major consideration in making this choice is the extent to which a chosen 
variable contributes to reducing the remaining variation in Yafter allowance is made for 
the contributions of other predictor variables that have tentatively been included in the 
regression model. Other considerations include the importance of the variable ks a causal 
agent in the process under analysis; the degree to which observations on the variable can 
be obtained more accurately, or quickly, or economically than on competing variables; and 
the degree to which the variable can be controlled. In Chapter 9, we will discuss procedures 
and problems in choosing the predictor variables to be included in the regression model. 

Functional Form of Regression Relation. The choice of the functional form of the 
regression relation is tied to the choice of the predictor variables. Sometimes, relevant theory 
may indicate the appropriate functional form. Learning theory, for instance, may indicate 
that the regression function relating unit production cost to the number of previous times the 
item has been produced should have a specified shape with particular asymptotic properties. 

More frequently, however, the functional form of the regression relation is not known in 
advance and must be decided upon empirically once the data have been collected. Linear 
or quadratic regression functions are often used as satisfactory first approximations to 
regression functions of unknown nature. Indeed, these simple types of regression functions 
may be used even when theory provides the relevant functional form, notably when the 
known form is highly complex but can be reasonably approximated by a linear or quadratic 
regression function. Figure l.5a illustrates a case where the complex regression function 

FIG URE 1.5 Uses of Linear Regression Functions to Approximate Complex Regression 
Functions-Bold Line Is the True Regression Function and Dotted Line Is the Regression 
Approximation. 

(a) Linear Approximation (b) Piecewise Linear Approximation 
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x x 



8 Part One Simple Linear Regression 

may be reasonably approximated by a linear regression function. Figure l.5b provides an 
example where two linear regression functions may be used "piecewise" to approximate a 
complex regression function. 

Scope of Model. In formulating a regression model, we usually need to restrict the cov-
erage of the model to some interval or region of values of the predictor variable(s). The 
scope is determined either by the design of the investigation or by the range of data at hand. 
For instance, a company studying the effect of price on sales volume investigated six price 
levels, ranging from $4.95 to $6.95. Here, the scope of the model is limited to price levels 
ranging from near $5 to near $7. The shape of the regression function substantially outside 
this range would be in serious doubt because the investigation provided no evidence as to 
the nature of the statistical relation below $4.95 or above $6.95. 

Uses of Regression Analysis 
Regression analysis serves three major purposes: (I) description, (2) control, and (3) predic-
tion. These purposes are illustrated by the three examples cited earlier. The tractor purchase 
study served a descriptive purpose. In the study of branch office operating costs, the main 
purpose was administrative control; by developing a usable statistical relation between cost 
and the predictor variables, management was able to set cost standards for each branch office 
in the company chain. In the medical study of short children, the purpose was prediction. 
Clinicians were able to use the statistical relation to predict growth hormone deficiencies 
in short children by using simple measurements of the children. 

The several purposes of regression analysis frequently overlap in practice. The branch 
office example is a case in point. Knowledge of the relation between operating cost and 
characteristics of the branch office not only enabled management to set cost standards for 
each office but management could also predict costs, and at the end of the fiscal year it 
could compare the actual branch cost against the expected cost. 

Regression and Causality 
The existence of a statistical relation between the response variable Y and the explanatory or 
predictor variable X does not imply in any way that Y depends causally on X. No matter how 
strong is the statistical relation between X and Y, no cause-and-effect pattern is necessarily 
implied by the regression model. For example, data on size of vocabulary (X) and writing 
speed (Y) for a sample of young children aged 5-10 will show a positive regression relation. 
This relation does not imply, however, that an increase in vocabulary causes a faster writing 
speed. Here, other explanatory variables, such as age of the child and amount of education, 
affect both the vocabulary (X) and the writing speed (Y). Older children have a larger 
vocabulary and a faster writing speed. 

Even when a strong statistical relationship reflects causal conditions, the causal condi-
tions may act in the opposite direction, from Y to X. Consider, for instance, the calibration 
of a thermometer. Here, readings of the thermometer are taken at different known tempera-
tures, and the regression relation is studied so that the accuracy of predictions made by using 
the thermometer readings can be assessed. For this purpose, the thermometer reading is the 
predictor variable X, and the actual temperature is the response variable Y to be predicted. 
However, the causal pattern here does not go from X to Y, but in the opposite direction: the 
actual temperature (Y) affects the thermometer reading (X). 
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These examples demonstrate the need for care in drawing conclusions about causal 
relations from regression analysis. Regression analysis by itself provides no information 
about causal patterns and must be supplemented by additional analyses to obtain insights 
about causal relations. 

Use of Computers 
Because regression analysis often entails lengthy and tedious calculations, computers are 
usually utilized to perform the necessary calculations. Almost every statistics package for 
computers contains a regression component. While packages differ in many details, their 
basic regression output tends to be quite similar. 

Mter an initial explanation of required regression calculations, we shall rely on computer 
calculations for all subsequent examples. We illustrate computer output by presenting output 
and graphics from BMDP (Ref. 1.1), MINITAB (Ref. 1.2), SAS (Ref. 1.3), SPSS (Ref. 1.4), 
SYSTAT (Ref. 1.5), JMP (Ref. 1.6), S-Plus (Ref. 1.7), and MATLAB (Ref. 1.8);,. 

1.3 Simple Linear Regression Model with Distribution 
of Error Terms Unspecified 

Formal Statement of Model 
In Part I we consider a basic regression model where there is only one predictor variable 
and the regression function is linear. The model can be stated as follows: 

Y; = f30 + f31X; + 10; (1.1) 
where: 

Y; is the value of the response variable in the ith trial 
f30 and f31 are parameters 
X; is a known constant, namely, the value of the predictor variable in the ith trial 
10; is a random error term with mean E{Cd = 0 and variance u 2 {Cd = u 2 ; 10; and Cj are 
uncorrelated so that their covariance is zero (i.e., u{c;, Cj} = 0 for all i, j; i =1= j) 
i =_1, ... , n 

Regression model (1.1) is said to be simple, linear in the parameters, and linear in the 
predictor variable. It is "simple" in that there is only one predictor variable, "linear in the 
parameters," because no parameter appears as an exponent or is multiplied or divided by 
another parameter, and "linear in the predictor variable," because this variable appears only 
in the first power. A model that is linear in the parameters and in the predictor variabie is 
also called ajirst-order model. 

Important Features of Model 
1. The response Y; in the ith trial is the sum of two components: (1) the constant term 

f30 + f31 Xi and (2) the random term..c;. Hence, Yi is a rando...m variable. 
2. Since E{c;} = 0, it follows from (A.13c) in Appendix A that: 

E{Y;} = E{f3o + f31 X ; + cd = f30 + fhX; + E{Cd = f30 + f31X; 

Note that f30 + f31X; plays the role ofthe constant a in (A. 13c). 
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Example 

Thus, the response Vi, when the level of X in the ith trial is Xi, comes from a probability 
distribution whose mean is: 

(1.2) 

We therefore know that the regression function for model (1.1) is: 

(1.3) 

since the regression function relates the means of the probability distributions of Y for given 
X to the level of X. 

3. The response Yi in the ith trial exceeds or falls short of the value of the regression 
function by the error term amount Ci. 

4. The error terms Ci are assumed to have constant variance 0-2• It therefore follows that 
the responses Yi have the same constant variance: 

(1.4) 

since, using (A.I6a), we have: 

0-2{,80 + ,81 Xi + cd = 0-2{c;} = 0-2 

Thus, regression model (1.1) assumes that the probability distributions of Y have the same 
variance 0- 2, regardless of the level of the predictor variable X. 

5. The error terms are assumed to be uncorrelated. Since the error terms Ci and Cj are 
uncorrelated, so are the responses Yi and Yj • 

6. In summary, regression model (1.1) implies that the responses Yi come from proba-
bility distributions whose means are E{Y;} = ,80 + ,81Xi and whose variances are 0-2, the 
same for all levels of X. Further, any two responses Yi and Yj are uncorrelated. 

A consultant for an electrical distributor is studying the relationship between the number 
of bids requested by construction contractors for basic lighting equipment during a week 
and the time required to prepare the bids. Suppose that regression model (1.1) is applicable 
and is as follows: 

Yi = 9.5 + 2.IXi + Ci 

where X is the number of bids prepared in a week and Y is the number of hours required to 
prepare the bids. Figure 1.6 contains a presentation of the regression function: 

E{Y} = 9.5 + 2.IX 

Suppose that in the ith week, Xi = 45 bids are prepared and the actual number of hours 
required is Yi = 108. In that case, the error term value is Ci = 4, for we have 

E{Y;} = 9.5 + 2.1(45) = 104 

and 

Yi = 108 = 104 + 4 
Figure 1.6 displays the probability distribution of Y when X = 45 and indicates from 
where in this distribution the observation Yi = 108 came. Note again that the error term Ci 

is simply the deviation of Yi from its mean value E{Y;}. 



FIGURE 1.6 
Illustration of 
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Regression 
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FIGURE 1.7 
Meaning of 
Parameters of 
Simple Linear 
Regression 
Model (l.l). 
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Figure 1.6 also shows the probability distribution of Y when X = 25. Note that this 
distribution exhibits the same variability as the probability distribution when X = 45, in 
conformance with the requirements of regression model (1.1). 

Meaning of Regression Parameters 

Example 

The parameters f30 and f3, in regression model (1.1) are called regression coefficients. f3, 
is the slope of the regression line. It indicates the change in the mean of the probability 
distribution of Y per unit increase in X. The parameter f30 is the Y intercept of the regression 
line. When the scope of the model includes X = 0, f30 gives the mean of the probability 
distribution of Y at X = O. When the scope of the model does not cover X = 0, f30 does 
not have any particular meaning as a term in the regression model. 

Figure 1.7 shows the regression function: 
E{Y} = 9.5 + 2.1X 

for the electrical distributor example. The slope f3, = 2.1 i-ndicates that the preparation of 
one additional bid in a week leads to an increase in the mean of the probability distribution 
of Y of 2. I hours. 

The intercept f30 = 9.5 indicates the value of the regression function at X = O. However, 
since the linear regression model was formulated to apply to weeks where the number of 
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bids prepared ranges from 20 to 80, f30 does not have any intrinsic meaning of its own 
here. If the scope of the model were to be extended to X levels near zero, a model with 
a curvilinear regression function and some value of f30 different from that for the linear 
regression function might well be required. 

Alternative Versions of Regression Model 
Sometimes it is convenient to write the simple linear regression model (1.1) in somewhat 
different, though equivalent, forms. Let Xo be a constant identically equal to 1. Then, we 
can write (1.1) as follows: 

Y; = f3oXo + f3, X; + 8i where Xo == 1 (1.5) 

This version of the model associates an X variable with each regression coefficient. 
An alternative modification is to use for the predictor variable the deviation Xi - X 

rather than Xi. To leave model (1.1) unchanged, we need to write: 

Ii = f30 + f3, (X; - X) + f3,X + 8; 

= (f3o + f3,X) + f3, (X; - X) + 8i 

= + f31(Xi - X) + 8; 

Thus, this alternative model version is: 

Yi = + f3,(Xi - X) + 8; 

where: 

= f30 + f3,X 
We use models (1.1), (1.5), and (1.6) interchangeably as convenience dictates. 

1.4 Data for Regression Analysis 

(1.6) 

(1.6a) 

Ordinarily, we do not know the values of the regression parameters f30 and f3, in regression 
model (1.1), and we need to estimate them from relevant data. Indeed, as we noted earlier, we 
frequently do not have adequate a priori knowledge of the appropriate predictor variables 
and of the functional form of the regression relation (e.g., linear or curvilinear), and we 
need to rely on an analysis of the data for developing a suitable regression model. 

Data for regression analysis may be obtained from nonexperimental or experimental 
studies. We consider each of these in tum. 

Observational Data 
Observational data are data obtained from nonexperimental studies. Such studies do not 
control the explanatory or predictor variable(s) of interest. For example, company officials 
wished to study the relation between age of employee (X) and number of days of illness 
last year (Y). The needed data for use in the regression analysis were obtained from per-
sonnel records. Such data are observational data since the explanatory variable, age, is not 
controlled. 

Regression analyses are frequently based on observational data, since often it is not 
feasible to conduct controlled experimentation. In the company personnel example just 
mentioned, for instance, it would not be possible to control age by assigning ages to persons. 
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A major limitation of observational data is that they often do not provide adequate infor-
mation about cause-and-effect relationships. For example, a positive relation between age of 
employee and number of days of illness in the company personnel example may not imply 
that number of days of illness is the direct result of age. It might be that younger employees 
of the company primarily work indoors while older employees usually work outdoors, and 
that work location is more directly responsible for the number of days of illness than age. 

Whenever a regression analysis is undertaken for purposes of description based on ob-
servational data, one should investigate whether explanatory variables other than those con-
sidered in the regression model might more directly explain cause-and-effect relationships. 

Experimental Data 
Frequently, it is possible to conduct a controlled experiment to provide data from which the 
regression parameters can be estimated. Consider, for instance, an insurance company that 
wishes to study the relation between productivity of its analysts in processing )(laims and 
length of training. Nine analysts are to be used in the study. Three of them will be selected 
at random and trained for two weeks, three for three weeks, and three for five weeks. 
The productivity ofthe analysts during the next 10 weeks will then be observed. The data 
so obtained will be experimental data because control is exercised over the explanatory 
variable, length of training. 

When control over the explanatory variable( s) is exercised through random assignments, 
as in the productivity study example, the resulting experimental data provide much stronger 
information about cause-and-effect relationships than do observational data. The reason is 
that randomization tends to balance out the effects of any other variables that might affect 
the response variable, such as the effect of aptitude of the employee on productivity. 

In the terminology of experimental design, the length of training assigned to an analyst in 
the productivity study example is called a treatment. The analysts to be included in the study 
are called the experimental units. Control over the explanatory variable(s) then consists of 
assigning a treatment to each of the experimental units by means of randomization. 

Completely Randomized Design 
The most basic type of statistical design for making randomized assignments of treatments to 
experimental units (or vice versa) is the completely randomized design. With this design, the 
assignments are made completely at random. This complete randomization provides that all 
combinations of experimental units assigned to the different treatments are equally likely, 
which implies that every experimental unit has an equal chance to receive anyone of the 
treatments. 

A completely randomized design is particularly useful when the experimental units are 
quite homogeneous. This design is veI); flexible; it accommodates any number of treatments 
and permits different for different treatments. Its chief disadvantage is that, 
when the experimental units are heterogeneous, this design is not as efficient as some other 
statistical designs. 

1.5 Overview of Steps in Regression Analysis 
The regression models considered in this and subsequent chapters can be utilized either 
for observational data or for experimental data from a completely randomized design. 
(Regression analysis can also utilize data from other types of experimental designs, but 
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FIGURE 1.8 
Typical 
Strategy for 
Regression 
Analysis. 

the regression models presented here will need to be modified.) Whether the data are 
observational or experimental, it is essential that the conditions of the regression model be 
appropriate for the data at hand for the model to be applicable. 

We begin our discussion of regression analysis by considering inferences about the re-
gression parameters for the simple linear regression model (1.1). For the rare occasion 
where prior knowledge or theory alone enables us to determine the appropriate regression 
model. inferences based on the regression model are the first step in the regression analysis. 
In the usual situation, however, where we do not have adequate knowledge to specify the 
appropriate regression model in advance, the first step is an exploratory study of the data, 
as shown in the flowchart in Figure 1.8. On the basis of this initial exploratory analysis, 
one or more preliminary regression models are developed. These regression models are 
then examined for their appropriateness for the data at hand and revised, or new models 
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are developed, until the investigator is satisfied with the suitability of a particular regres-
sion model. Only then are inferences made on the basis of this regression model, such as 
inferences about the regression parameters of the model or predictions of new observations. 

We begin, for pedagogic reasons, with inferences based on the regression model that is 
finally considered to be appropriate. One must have an understanding of regression models 
and how they can be utilized before the issues invol ved in the development of an appropriate 
regression model can be fully explained. 

1.6 Estimation of Regression Function 

Example 

The observational or experimental data to be used for estimating the parameters of the 
regression function consist of observations on the explanatory or predictor variable X and 
the corresponding observations on the response variable Y. For each trial, there is an X 
observation and a Y observation. We denote the (X, Y) observations for the t\rst trial as 
(X" YI), for the second trial as (X2, Y2), and in general for the ith trial as (Xi, Vi), where 
i = 1, ... ,n. 

In a small-scale study of persistence, an experimenter gave three subjects a very difficult 
task. Data on the age of the subject (X) and on the number of attempts to accomplish the 
task before giving up (Y) follow: 

Subject i: 

Age Xi: 
Number of attempts Yi: 

1 

20 
5 

2 

55 
12 

3 

30 
10 

In terms of the notation to be employed, there were n = 3 subjects in this study, the 
observations for the first subject were (X" YI ) = (20, 5), and similarly for the other 
subjects. 

Method of least -Squares 
To find "good" estimators of the regression parameters f30 and f31, we employ the method 
of least squares. For the observations (Xi> Vi) for each case, the method of least squares 
considers the deviation of Yi from its expected value: 

(1.7) 

In particular, the method of least squares requires that we consider the sum of the n squared 
deviations. This criterion is denoted by Q: 

n 

Q :L(Yi - f30 - (1.8) 
i=1 

According to the method of least squares, the estimators of f30 and f31 are those values 
bo and b" respectively, that minimize the criterion Q for the given sample observations 
(X" YI), (X2, Y2), ... , (X,,, Yn). 
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FIG URE 1.9 IUustration of Least Squares Criterion Q for Fit of a Regression Line-Persistence Study 
Example. 
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Figure 1.9a presents the scatter plot of the data for the persistence study example and the 
regression line that results when we use the mean of the responses (9.0) as the predictor 
and ignore X: 

Y = 9.0 + O(X) 
Note that this regression line uses estimates bo = 9.0 and bl = 0, and that Y denotes 
the ordinate of the estimated regression line. Clearly, this regression line is not a good 
fit, as evidenced by the large vertical deviations of two of the Y observations from the 
corresponding ordinates Y of the regression line. The deviation for the first subject, for 
which (X" YI ) = (20,5), is: 

YI - (bo + bIXI ) = 5 - [9.0 + 0(20)] = 5 - 9.0 = -4 

The sum of the squared deviations for the three cases is: 

Q = (5 - 9.0)2 + (12 - 9.0)2 + (10 - 9.0)2 = 26.0 

Figure 1.9b shows the same data with the regression line: 

Y = 2.81 + .177X 

The fit of this regression line is clearly much better. The vertical deviation for the first case 
now is: 

YI - (bo + bIXI) = 5 - [2.81 + .177(20)] = 5 - 6.35 = -1.35 

and the criterion Q is much reduced: 

Q = (5 - 6.35)2 + (12 - 12.55)2 + (10 - 8.12)2 = 5.7 

Thus, a better fit of the regression line to the data corresponds to a smaller sum Q. 
The objective of the method of least squares is to find estimates bo and bl for f30 and f31, 

respectively, for which Q is a minimum. In a certain sense, to be discussed shortly, these 
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estimates will provide a "good" fit of the linear regression function. The regression line in 
Figure 1.9b is, in fact, the least squares regression line. 

Least Squares Estimators. The estimators bo and bl that satisfy the least squares criterion 
can be found in two basic ways: 

1. Numerical search procedures can be used that evaluate in a systematic fashion the least 
squares criterion Q for different estimates bo and bl until the ones that minimize Q are 
found. This approach was illustrated in Figure 1.9 for the persistence study example. 

2. Analytical procedures can often be used to find the values of bo and bl that minimize 
Q. The analytical approach is feasible when the regression model is not mathematically 
complex. 

Using the analytical approach, it can be shown forregression model (1.1) that the values 
bo and bl that minimize Q for any particular set of sample data are given by the following 
., simultaneous equatIOns: 

2: Yi = nbo + b l 2: Xi 

2: Xi Yi = bo 2: Xi + b l 2: xi 
(1.9a) 

(1.9b) 

Equations (1.9a) and (1.9b) are called normal equations; bo and b l are called point esti-
mators of f30 and f31, respectively. 

The normal equations (1.9) can be solved simultaneously for bo and bl : 

b _ L:(Xi - X)(Yi - Y) 
1- L:(X; _ X)2 (l.lOa) 

bo = (2: Yi - b l 2: Xi) = Y - b l X (l.lOb) 

where X and Y are the means of the Xi and the Yi observations, respectively. Computer 
calculations generally are based on many digits to obtain accurate values for bo and bl • 

Comment 
The normal equations (1.9) can be derived by calculus. For given sample observations (Xi, Yi), the 
quantity Q in (1.8) is a function of f30 and f3,. The values of f30 and f3, that minimize Q can tie derived 
by differentiating (1.8) with respect to f30 and f3,. We obtain: 

We then set these partial derivatives equal to zero, using bo and b I to denote the particular values of 
f30 and f3, that minimize Q: 

-22:(y; - bo - bIXi) = 0 

-22: Xi(Yi - bo - b,Xi ) = 0 
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Simplifying, we obtain: 

Expanding, we have: 

" 
2:(Yi - bo - b,Xi) = 0 
;=1 

" 2: Xi(Yi - bo - b,Xi) = 0 
;=1 

2: Y; - nbo - b, 2: Xi = 0 

2: X ;Y; - bo 2: X; - b, 2: X; = 0 

from which the normal equations (1.9) are obtained by rearranging terms. 
A test of the second partial derivatives will show that a minimum is obtained with the least squares 

estimators bo and b l • • 

Properties of Least Squares Estimators. An important theorem, called the Gauss-
Markov theorem, states: 

Under the conditions of regression model (1.1), the least squares 
estimators bo and bl in (1.10) are unbiased and have minimum 
variance among all unbiased linear estimators. 

(1.11) 

This theorem, proven in the next chapter, states first that bo and bl are unbiased estimators. 
Hence: 

E{bo} = f30 E{br} = f31 

so that neither estimator tends to overestimate or underestimate systematically. 
Second, the theorem states that the estimators bo and bl are more precise (i.e., their 

sampling distributions are less variable) than any other estimators belonging to the class of 
unbiased estimators that are linear functions of the observations YI , ••• , Y". The estimators 
bo and bl are such linear functions of the Yi • Consider, for instance, bl • We have from (1.1Oa): 

b _ L:(Xi - X)(Yi - Y) 
1- L:(Xi _X)2 

It will be shown in Chapter 2 that this expression is equal to: 

where: 

Since the ki are known constants (because the Xi are known constants), b l is a linear 
combination of the Yi and hence is a linear estimator. 
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In the same fashion, it can be shown that bo is a linear estimator. Among all linear 
estimators that are unbiased then, bo and bl have the smallest variability in repeated samples 
in which the X levels remain unchanged. 

The Toluca Company manufactures refrigeration equipment as well as many replacement 
parts. In the past, one of the replacement parts has been produced periodically in lots of 
varying sizes. When a cost improvement program was undertaken, company officials wished 
to determine the optimum lot size for producing this part. The production of this part involves 
setting up the production process (which must be done no matter what is the lot size) and 
machining and assembly operations. One key input for the model to ascertain the optimum 
lot size was the relationship between lot size and labor hours required to produce the lot 
To determine this relationship, data on lot size and work hours for 25 recent production 
runs were utilized. The production conditions were stable during the six-month period in 
which the 25 runs were made and were expected to continue to be the same during the 
next three years, the planning period for which the cost improvement prograrrr.,was being 
conducted. 

Table 1.1 contains a portion of the data on lot size and work hours in columns 1 and 
2. Note that all lot sizes are multiples of 10, a result of company policy to facilitate the 
administration of the parts production. Figure 1.1Oa shows a SYSTAT scatter plot of the 
data. We see that the lot sizes ranged from 20 to 120 units and that none of the production 
runs was outlying in the sense of being either unusually small or large. The scatter plot also 
indicates that the relationship between lot size and work hours is reasonably linear. We also 
see that no observations on work hours are unusually small or large, with reference to the 
relationship between lot size and work hours. 

To calculate the least squares estimates bo and bl in (1.10), we require the deviations 
Xi - X and Yi - Y. These are given in columns 3 and 4 of Table 1.1. We also require 
the cross-product terms (Xi - X)(Yi - Y) and the squared deviations (Xi - X)2; these 
are shown in columns 5 and 6. The squared deviations (Yi - y)2 in column 7 are for 
later use. 

Data on Lot Size and Work Hours and Needed Calculations for Least Squares Estimates-Toluca 
Company Example. 

(1) (2) (3) (4) (5) (6) P) 
lot Work 

Run Size Hours 
Xj Yj Xj-X Y;-f (X j - X)(Y; - Y) (Xj - X)2 (Y; _ y)2 

1 80 399 10 .86.72 867.2 100 7,520.4 
2 30 121 -40 -191.28 7,651.2 1,600 36,588.0 
3 50 221 -20 - -91.28 1,825.6 400 8;332.0 

23 40 244 -30 -68.28 2,048.4 900 4,662.2 
24 80 342 10 29.72 297:2 100 883.3 
25· 70 323 0 10.72 0.0 0 114.9 

Total 1,750 7,807 0 0 70,690 19,800 307,203 
Mean 70.0 312.28 
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FIGURE 1.10 
SYSTAT 
Scatter Plot 
and Fitted 
Regression 
Line-Toluca 
Company 
Example. 

FIGURE 1.11 
Portion of 
MINITAB 
Regression 
Output-
Toluca 
Company 
Example. 
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We see from Table 1.1 that the basic quantities needed to calculate the least squares 
estimates are as follows: 

2::(Xi - X)(Yi - Y) = 70,690 

'" - 2 L)Xi - X) = 19,800 

X = 70.0 
Y = 312.28 

Using (1.10) we obtain: 

L:(Xi - X)(Yi - Y) 70,690 
b l = L:(X

i 
_ X)2 = 19,800 = 3.5702 

bo = Y - blX = 312.28 - 3.5702(70.0) = 62.37 

Thus, we estimate that the mean number of work hours increases by 3.57 hours for each 
additional unit produced in the lot. This estimate applies to the range of lot sizes in the 
data from which the estimates were derived, namely to lot sizes ranging from about 20 to 
about 120. 

Figure 1.11 contains a portion of the MINITAB regression output for the Toluca Company 
example. The estimates bo and b l are shown in the column labeled Coef, corresponding to 
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the lines Constant and X, respectively. The additional infonnation shown in Figure 1.11 
will be explained later. 

point Estimation of Mean Response 

Example 

Estimated Regression Function. Given sample estimators bo and b l of the parameters 
in the regression function (1.3): 

E{Y} = f30 + f3IX 

we estimate the regression function as follows: 

V = bo+blX (1.12) 

where V (read Y hat) is the value of the estimated regression function at the level X of the 
predictor variable. 

We call a value of the response variable a response and E {Y} the mean respttnse. Thus, 
the mean response stands for the mean of the probability distribution of Y corresponding 
to the level X of the predictor variable. V then is a point estimator of the mean response 
when the level of the predictor variable is X. It can be shown as an extension of the Gauss-
Markov theorem (1.11) that V is an unbiased estimator of E {Y}, with minimum variance 
in the class of unbiased linear estimators. 

For the cases in the study, we will call Vi: 
i = 1, . .. ,n (1.13) 

thejitted value for the ith case. Thus, the fitted value Vi is to be viewed in distinction to the 
observed value Yi • 

For the Toluca Company example, we found that the least squares estimates of the regression 
coefficients are: 

bo = 62.37 bl = 3.5702 

Hence, the estimated regression function is: 

V = 62.37 + 3.5702X 

This estimated regression function is plotted in Figure 1.1Ob. It appears to be.a good 
description of the statistical relationship between lot size and work hours. 

To estimate the mean response for any level X of the predictor variable, we simply 
substitute that value of X in the estimated regression function. Suppose that we are interested 
in the mean number of work hours required when the lot size is X = 65; our point estimate is: 

I 

= 62.37 + 3.5702(65) = 294.4 

Thus, we estimate that the mean number of work hours required for production runs of 
X = 65 units is 294.4 hours. We !nterpret this to mean tlIat if many lots of 65 units are 
produced under the conditions of the 25 runs on which the estimated regression function is 
based, the mean labor time for these lots is about 294 hours. Of course, the labor time for 
anyone lot of size 65 is likely to fall above or below the mean response because of inherent 
variability in the production system, as represented by the error tenn in the model. 
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TABLE 1.2 
Fitted Values, 
Residuals, and 
Squared 
Residuals-
Toluca 
Company 
Example. 

Residuals 

Simple Linear Regression 

(1) (2) (3) (4) (5) 
Estimated 

lot Work Mean Squared 
Run Size Hours Response Residual 

Xi Y; f; y;-f;=ei (Y; - f;)2 = if 
1 80 399 347.98 51.02 2,603.0 
2 30 121 169.47 -48.47 2,349.3 
3 50 221 240.88 -19.88 395.2 

23 40 244 205.17 38.83 1,507.8 
24 80 342 347.98 -5.98 35.8 
25 70 323 312.28 10.72 114.9 ---

Total 1,750 7,807 7,807 0 54,825 

Fitted values for the sample cases are obtained by substituting the appropriate X values 
into the estimated regression function. For the first sample case, we have X I = 80. Hence, 
the fitted value for the first case is: 

V I = 62.37 + 3.5702(80) = 347.98 

This compares with the observed work hours of YI = 399. Table 1.2 contains the observed 
and fitted values for a portion of the Toluca Company data in columns 2 and 3, respectively. 

Alternative Model (1.6). When the alternative regression model (1.6): 

Yi = + f31 (Xi - X) + 8i 

is to be utilized, the least squares estimator bl of f31 remains the same as before. The least 
squares estimator of = f30 + f3IX becomes, from (1.1Ob): 

= bo + blX = CY - blX) + blX = Y 
Hence, the estimated regression function for alternative model (1.6) is: 

V = Y + bl(X - X) 

(1.14) 

(1.15) 

In the Toluca Company example, Y = 312.28 and X = 70.0 (Table 1.1). Hence, the 
estimated regression function in alternative form is: 

V = 312.28 + 3.5702(X -70.0) 

For the first lot in our example, Xl = 80; hence, we estimate the mean response to be: 

VI = 312.28 + 3.5702(80 -70.0) = 347.98 

which, of course, is identical to our earlier result. 

The ith residual is the difference between the observed value Yi and the corresponding fitted 
value Vi. This residual is denoted by ei and is defined in general as follows: 

(1.16) 
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For regression model (1.1), the residual ei becomes: 

ei = Yi - (bo + blXi) = Yi - bo - blXi (1.16a) 

The calculation of the residuals for the Toluca Company example is shown for a portion 
of the data in Table 1.2. We see that the residual for the first case is: 

el = YI - VI = 399 - 347.98 = 51.02 

The residuals for the first two cases are illustrated graphically in Figure 1.12. Note in 
this figure that the magnitude of a residual is represented by the vertical deviation of the Yi 
observation from the corresponding point on the estimated regression function (i.e., from 
the corresponding fitted value Vi). 

We need to distinguish between the model error term value 8i = Yi - E{Yd and the 
residual ei = Yi - Vi. The former involves the vertical deviation of Yi from the unknown 
true regression line and hence is unknown. On the other hand, the residual is the vertical 
deviation of Yi from the fitted value i\ on the estimated regression line, and it is known. 

Residuals are highly useful for studying whether a given regression model is appropriate 
for the data at hand. We discuss this use in Chapter 3. 

Properties of Fitted Regression line 
The estimated regression line (1.12) fitted by the method of least squares has a number of 
properties worth noting. These properties of the least squares estimated regression function 
do not apply to all regression models, as we shall see in Chapter 4. 

1. The sum of the residuals is zero: 
n 

(1.17) 

Table 1.2, column 4, illustrates this property for the example. Rounding 
errors may, of course, be present in any particular case, resulting in a sum of the residuals 
that does not equal zero exactly. 

2. The sum of the squared residuals, L is a minimum. lbis was the requirement to 
be satisfied in deriving the least squares estimators of the regression parameters since the 
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criterion Q in (1.8) to be minimized equals L when the least squares estimators bo and 
bl are used for estimating f30 and f31. 

3. The sum of the observed values Y; equals the sum of the fitted values V;: 
1l 1l 

2:Y; = 2: V; (1.18) 
;=1 ;=1 

This property is illustrated in Table 1.2, columns 2 and 3, for the Toluca Company example. 
It follows that the mean of the fitted values V; is the same as the mean of the observed 
values Y;, namely, Y. 

4. The sum of the weighted residuals is zero when the residual in the ith trial is weighted 
by the level of the predictor variable in the ith trial: 

" (1.19) 

5. A consequence of properties (1.17) and (1.19) is that the sum ofthe weighted residuals 
is zero when the residual in the ith trial is weighted by the fitted value of the response variable 
for the ith trial: 

n 

(1.20) 
;=1 

6. The regression line always goes through the point eX, Y). 

Comment 
The six properties of the fitted regression line follow directly from the least squares normal equa-
tions (1.9). For example, property 1 in (1.17) is proven as follows: 

2: e; = 2:(Y;-bo-b,x;) = 2:Y;-nbo-bt 2: X; 
= 0 by the first normal equation (1.9a) 

Property 6, that the regression line always goes through the point eX, Y), can be demonstrated 
easily from the alternative form (1.15) of the estimated regression line. When X = X, we have: . 

• 
1.7 Estimation of Error Tenns Variance (J'2 

The variance a 2 of the error terms 8; in regression model (1.1) needs to be estimated to 
obtain an indication of the variability of the probability distributions of Y. In addition, as 
we shall see in the next chapter, a variety of inferences concerning the regression function 
and the prediction of Y require an estimate of a 2 • 

Point Estimator of 0-2 

To lay the basis for developing an estimator of a 2 for regression model (1.1), we first 
consider the simpler problem of sampling from a single population. 

Single Population. We know that the variance a 2 of a single population is estimated by 
the sample variance s2. In obtaining the sample variance s2, we consider the deviation of 
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an observation Yi from the estimated mean Y, square it, and then sum an such squared 
deviations: 

n 

Such a sum is caned a sum of squares. The sum of squares is then divided by the degrees 
of freedom associated with it. This number is n - 1 here, because one degree of freedom is 
lost by using Y as an estimate of the unknown population mean f.1,. The resulting estimator 
is the usual sample variance: 

- 2 
2 (Yi - Y) s =='-----'-----

n-l 

which is an unbiased estimator of the variance a 2 of an infinite population. The sample 
variance is often called a mean square, because a sum of squares has been divided by the 
appropriate number of degrees of freedom. }., 

Regression Model. The logic of developing an estimator of a 2 for the regression model is 
the same as for sampling from a single population. Recall in this connection from (1.4) that 
the variance of each observation Yi for regression model (1.1) is a 2 , the same as that of each 
error term 8i. We again need to calculate a sum of squared deviations, but must recognize 
that the Yi now come from different probability distributions with different means that 
depend upon the level Xi. Thus, the deviation of an observation Yi must be calculated 
around its own estimated mean Vi. Hence, the deviations are the residuals: 

Yi - Vi =ei 
and the appropriate sum of squares, denoted by SSE, is: 

n n 

(1.21) 
i=l i=l 

where SSE stands for error sum of squares or residual sum of squares. 
The sum of squares SSE has n - 2 degrees of freedom associated with it. Two degrees 

of freedom are lost because both f30 and f31 had to be estimated in obtaining the estimated 
means'· Vi. Hence, the appropriate mean square, denoted by MSE or s2, is: 

2 
s2 = MSE = _S,_SE_ = =L=-(_1':_i -_Y_i)_ 

n-2 n-2 n-2 
"(1.22) 

where MSE stands for error mean square or residual mean square. . 
It can be shown that MSE is an unbiased estimator of a 2 for regression model (1.1): 

E{MSE} = a 2 (1.23) 

An estimator of the standard deviation a is simply s = ,JMSE, the positive square root of 
MSE. 

We will calculate SSE for the Toluca Company (1.21). The residuals were 
obtained earlier in Table 1.2, column 4. This table also shows the squared residuals in 
column 5. From these results, we obtain: 

SSE = 54,825 
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Since 25 - 2 = 23 degrees of freedom are associated with SSE, we find: 

s2 = MSE = 54,825 = 2,384 
23 

Finally, a point estimate of a, the standard deviation of the probability distribution of Y for 
any X, is s = ')2,384 = 48.8 hours. 

Consider again the case where the lot size is X = 65 units. We found earlier that the 
mean of the probability distribution of Y for this lot size is estimated to be 294.4 hours. 
Now, we have the additional information that the standard deviation of this distribution is 
estimated to be 48.8 hours. This estimate is shown in the MINITAB output in Figure 1.11, 
labeled as s. We see that the variation in work hours from lot to lot for lots of 65 units is 
quite substantial (49 hours) compared to the mean of the distribution (294 hours). 

1.8 Nonnal Error Regression Model 

Model 

No matter what may be the form of the distribution of the error terms 8; (and hence of the 
Vi), the least squares method provides unbiased point estimators of f30 and f3, that have 
minimum variance among all unbiased linear estimators. To set up interval estimates and 
make tests, however, we need to make an assumption about the form of the distribution of 
the 8;. The standard assumption is that the error terms 8; are normally distributed, and we 
will adopt it here. A normal error term greatly simplifies the theory of regression analysis 
and, as we shall explain shortly, is justifiable in many real-world situations where regression 
analysis is applied. 

The normal error regression model is as follows: 

Y; = f30 + f3,X; + 8; 

where: 

Y; is the observed response in the ith trial 
X; is a known constant, the level of the predictor variable in the ith trial 
f30 and f3, are parameters 
8; are independent N(O, a 2) 

i = 1, ... ,n 

Comments 
1. The symbol N (0, a 2) stands for normally distributed, with mean 0 and variance a 2• 

(1.24) 

2. The normal error model (1.24) is the same as regression model (1.1) with unspecified error 
distribution, except that model (1.24) assumes that the errors 8; are normally distributed. 

3. Because regression model (1.24) assumes thaI the errors are normally distributed, the assump-
tion of uncorrelatedness of the 8; in regression model (1.1) becomes one of independence in the 
normal error model. Hence, the outcome in anyone trial has no effect on the error rerm for any other 
trial-as to whether it is positive or negative, small or large. 
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4. Regression model (1.24) implies that the Yj are independent normal random variables, with 
mean E{Y;} = f30 + f3,Xf and variance a 2• Figure 1.6 pictures this normal error model. Each of the 
probability distributions of Y in Figure 1.6 is normally distributed, with constant variability, and the 
regression function is linear. 

5. The normality assumption for the error terms is justifiable in many situations because the error 
terms frequently represent the effects of factors omitted from the model that affect the response to 
some extent and that vary at random without reference to the variable X. For instance, in the Toluca 
Company example, the effects of such factors as time lapse since the last production run, particular 
machines used, season of the year, and personnel employed could vary more or less at random from 
run to run, independent of lot size. Also, there might be random measurement errors in the recording 
of Y, the hours required. Insofar as these random effects have a degree of mutual independence, the 
composite error term cf representing all these factors would tend to comply with the central limit 
theorem and the error term distribution would approach normality as the number of factor effects 
becomes large. 

A second reason why the normality assumption of the error terms is frequently justifiable is thaI 
the estimation and testing procedures to be discussed in the next chapter are based on the t distribution 
and are usually only sensitive to large departures from normality. Thus, unless the departures from 
normality are serious, particularly with respect to skewness, the actual confidence coefficients and 
risks of errors will be close to the levels for exact normality. • 

Estimation of Parameters by Method of Maximum likelihood 

FIGURE 1.13 
Densities for 
Sample 
Observations 
for Two 
Possible Values 
of It: Y1 = 250, 
Y2 = 265, 
Y3 =259. 

When the functional form of the probability distribution of the error terms is specified, 
estimators of the parameters f3o, f3" and a2 can be obtained by the method of maximum 
likelihood. Essentially, the method of maximum likelihood chooses as estimates those values 
of the parameters that are most consistent with the sample data. We explain the method of 
maximum likelihood first for the simple case when a single population with one parameter 
is sampled. Then we explain this method for regression models. 

Single Population. Consider a normal population whose standard deviation is known 
to be a = 10 and whose mean is unknown. A random sample of n = 3 observations is 
selected from the population and yields the results Y, = 250, Y2 = 265, Y3 = 259. We 
now wish to ascertain which value of fJ, is most consistent with the sample data. Consider 
fJ, = 230. Figure l.13a shows the normal distribution with fJ, = 230 and a = 10; also shown 
there are the locations of the three sample observations. Note that the sample obseryations 

J.L = 230 J.L = 259 

y y 

(a) (b) 
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would be in the right tail of the distribution if fJ, were equal to 230. Since these are unlikely 
occurrences, fJ, = 230 is not consistent with the sample data. 

Figure 1.13b shows the population and the locations of the sample data if fJ, were equal 
to 259. Now the observations would be in the center of the distribution and much more 
likely. Hence, fJ, = 259 is more consistent with the sample data than fJ, = 230. 

The method of maximum likelihood uses the density of the probability distribution at 
Yi (i.e., the height of the curve at Yi) as a measure of consistency for the observation Yi . 
Consider observation Y I in our example. If Y I is in the tail, as in Figure 1.13a, the height of 
the curve will be small. If Y I is nearer to the center of the distribution, as in Figure 1.13b, 
the height will be larger. Using the density function for a normal probability distribution 
in (A.34) in Appendix A, we find the densities for Y" denoted by I" for the two cases of 
fJ, in Figure 1.13 as follows: .... 

fJ, = 230: 1 [1 (250 - 230)2] II =,J2ii exp - - = .005399 
2Jr(IO) 2 10 

fJ, = 259: 1 [1 (256 - 259)2] /I =,J2ii exp - -2 = .026609 
2n(lO) 10 

The densities for all three sample observations for the two cases of fJ, are as follows: 

p, = 230 

.005399 

.000087 

.000595 

p, = 259 

.026609 

.033322 

.039894 

The method of maximum likelihood uses the product of the densities (i.e., here, the 
product of the three heights) as the measure of consistency of the parameter value with 
the sample data. The product is called the likelihood value of the parameter value fJ, and 
is denoted by L (fJ,). If the value of fJ, is consistent with the sample data, the densities will 
be relatively large and so will be the product (Le., the likelihood value). If the value of fJ, 
is not consistent with the data, the densities will be small and the product L(fJ,) will be 
small. 

For our simple example, the likelihood values are as follows for the two cases of fJ,: 

L(fJ, = 230) = .005399(.000087)(.000595) = .279x 10-9 

L(fJ, = 259) = .026609(.033322)(.039894) = .0000354 

Since the likelihood value L(fJ, = 230) is a very small number, it is shown in scientific 
notation, which indicates that there are nine zeros after the decimal place before 279. Note 
that L(fJ, = 230) is much smaller than L(fJ, = 259), indicating that fJ, = 259 is much more 
consistent with the sample data than fJ, = 230. 

The method of maximum likelihood chooses as the maximum likelihood estimate that 
value of fJ, for which the likelihood value is largest. Just as for the method of least squares, 
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there are two methods of finding maximum likelihood estimates: by a systematic numerical 
search and by use of an analytical solution. For some problems, analytical solutions for the 
maximum likelihood estimators are available. For others, a computerized numerical search 
must be conducted. 

For our example, an analytical solution is available. It can be shown that for a normal 
population the maximum likelihood estimator of fJ, is the sample mean Y. In our example, 
Y = 258 and the maximum likelihood estimate of fJ, therefore is 258. The likelihood value 
of fJ, = 258 is L(fJ, = 258) = .0000359, which is slightly larger than the likelihood value 
of .0000354 for fJ, = 259 that we had calculated earlier. 

The product of the densities viewed as a function of the unknown parameters is called 
the likelihood function. For our example, where a = 10, the likelihoorlfunction is: 

[ 
1 ]3 [ I (250-fJ,)2] /[ 1 (265-fJ,)2] L(fJ,) = J2Ji(IO) exp -"2 10 exp -"2 10 ko 

[ 
1 (259-fJ,)2] xexp --
2 10 

Figure 1.14 shows a computer plot of the likelihood function for our example. It is based 
on the calculation of likelihood values L(fJ,) for many values of fJ,. Note that the likelihood 
values at fJ, = 230 and fJ, = 259 correspond to the ones we determined earlier. Also note 
that the likelihood function reaches a maximum at fJ, = 258. 

The fact that the likelihood function in Figure 1.14 is relatively peaked in the neigh-
borhood of the maximum likelihood estimate Y =258 is of particular interest. Note, for 
instance, that for fJ, = 250 or fJ, = 266, the likelihood value is already only a little more 
than one-half as large as the likelihood value at fJ, = 258. This indicates that the max-
imum likelihood estimate here is relatively precise because values of fJ, not near the maxi-
mum likelihood estimate Y = 258 are much less consistent with the sample data. When the 
likelihood function is relatively flat in a fairly wide region around the maximum likelihood 

0.00004 
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estimate, many values of the parameter are almost as consistent with the sample data as the 
maximum likelihood estimate, and the maximum likelihood estimate would therefore be 
relatively imprecise. 

Regression Model. The concepts just presented for maximum likelihood estimation of 
a population mean carry over directly to the estimation of the parameters of normal error 
regression model (1.24). For this model, each Yi observation is normally distributed with 
mean {30 + f3, Xi and standard deviation a. To illustrate the method of maximum likelihood 
estimation here, consider the earlier persistence study example on page 15. For simplicity, 
let us suppose that we know a = 2.5. We wish to determine the likelihood value for the 
parameter values f30 = 0 and f3, = .5. For subject 1, X, = 20 and hence the mean of the 
probability distribution would be f30 + (3,X, = 0 + .5(20) = 10.0. Figure l.15a shows 
the normal distribution with mean 10.0 and standard deviation 2.5. Note that the observed 
value Y, = 5 is in the left tail of the distribution and that the density there is relatively small. 
For the second subject, X2 = 55 and hence (30 + f3, X2 = 27.5. The normal distribution with 
mean 27.5 is shown in Figure I.I5b. Note that the obsetyed value Y2 = l2 is most unlikely 
for this case and that the density there is extremely small. Finally, note that the observed 
value Y3 = 10 is also in the left tail of its distribution if f30 = 0 and f3, = .5, as shown in 
Figure I.I5c, and that the density there is also relatively small. 

FIGURE 1.15 Densities for Sample Observations if Po = 0 and P1 = 5-Persistence Study Example. 
(a) (b) (c) 

Xl = 20, Yl = 5 X2 = 55, Y2 = 12 X3 = 30, Y3'= 10 
f30 + f3l Xl = .5(20) = 10 f30 + f3,X2 = .5(55) = 27.5 f30 + f3l X3 = .5(30) = 15 

Y r 27.5' Y Y 
Y2 

(d) Combined Presentation 

o 
Age 



Chapter 1 Linear Regression with One Predictor Variable 31 

Figure 1.15d combines all of this information, showing the regression function E {Y} = 
0+ .5X, the three sample cases, and the three normal distributions. Note how poorly the 
regression line fits the three sample cases, as was also indicated by the three small density 
values. Thus, it appears that f30 = 0 and f31 = .5 are not consistent with the data. 

We calculate the densities (i.e., heights of the curve) in the usual way. For Y I = 5, 
X I = 20, the normal density is as follows when f30 = 0 and f31 = .5: 

1 [1 (5 - 10.0)2] II = frC exp - -= .021596 
V 2n (2.5) 2 2.5 l 

The other densities are fz = .7175 X 10-9 and h = .021596, and the likelihood value of 
f30 = 0 and f31 = .5 therefore is: 

)\:, 

L(f3o = 0, f31 = .5) = .021596(.7175 x 10-9)(.021596) = .3346 x 1Ok-.12 

In general, the density of an observation Y; for the normal error regression model (1.24) 
is as follows, utilizing the fact that E{Y;} = f30 + f3IXi and a 2{y;} = a 2: 

1 [1 (Y; - f30 - f31 Xi ) 2] f; = --exp --
-J2iia 2 a 

(1.25) 

The likelihood function for n observations Y" Y2 , ••• , Yn is the product ofthe individual 
densities in (1.25). Since the variance a 2 of the error terms is usually unknown, the likelihood 
function is a function of three parameters, f3o, f31, and a 2: 

2 rrn 1 [1 2] L(f3o, f31> a ) = i=1 (2na 2)1/2 exp - 2a2 (Yi - f30 - f3I X i) 

(1.26) 

The values of f3o, f31, and a 2 that maximize this likelihood function are the maximum 
likelihood estimators and are denoted by So, S I, and 8 2 , respectively. These estimators can 
be found analytically, and they are as follows:' 

Parameter 

f30 
fh _ 

Maximum likelihood Estimator 

I = bo same as (1.10b) 
= b, same as (l.lOa) 

,,(y, _ }>-)2 
8 2 = I I 

n 

(1.27) 

Thus, the maximum likelihood estimators of f30 and f31 are the same estimators as those 
provided by the method of least squares. The maximum likelihood estimator 8 2 is biased, 
and ordinarily the unbiased estimator MSE as given in (1.22) is used. Note that the unbi-
ased estimator MSE or s2 differs but slightly from the maximum likelihood estimator 8 2, 
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Example 

especially if n is not small: 

S2 = MSE = _n_a-2 

n-2 
(1.28) 

For the persistence study example, we know now that the maximum likelihood estimates of 
f30 andf31 are bo =2.81 and b l = .177, the same as the least squares estimates in Figure 1.9b. 

Comments 
1. Since the maximum likelihood estimators and are the same as the least squares estimators 

ho and h" they have the properties of all least squares estimators: 
a. They are unbiased. 
h. They have minimum variance among all unbiased linear estimators. 
In addition, the maximum likelihood estimators ho and h, for the normal error regression model 
(1.24) have other desirable properties: 
c. They are consistent, as defined in (A 52). 
d. They are sufficient, as defined in (A53). 
e. They are minimum variance unbiased; that is, they have minimum variance in the class of all 

unbiased estimators (linear or otherwise). 
Thus, for the normal error model, the estimators ho and h, have many desirable properties. 

2. We find the values of /30, f3" and a 2 that maximize the likelihood function L in (1.26) by taking 
partial derivatives of L with respect to /30, f3" and a 2 , equating each of the partials to zero, and 
solving the system of equations thus obtained. We can work with loge L, rather than L, because 
both L and loge L are maximized for the same values of /30, f3" and a 2 : 

n n. 2 1 2:: 2 log L = --lou 2][ - -lou a - - (Y - f30 - f3,X) e 2 oe 2 oe 20'2 I I 
(1.29) 

Partial differentiation of the logarithm of the likelihood function is much easier; it yields: 

We now set these partial derivatives equal to zero, replacing /30, f3" and a 2 by the estimators 
and (}2. We obtain, after some simplification: 

(1.30a) 

2:: X;(Y; - - = 0 (1.30b) 

'\" 2 
L..,(Y; - f30 - f3!X;) = {}2 (1.30c) 

n 



Chapter 1 Linear Regression with One Predictor Variable 33 

Formulas (1.30a) and (1.30b) are identical to the earlier least squares normal equations (1.9), and 
formula (1.30c) is the biased estimator of a 2 given earlier in (1.27). • 

1.1. BMDP New System 2.0. Statistical Solutions, Inc. 
1.2. MINITAB Release 13. Minitab Inc. 
1.3. SASjSTPU Release 8.2. SAS Institute, Inc. 
1.4. SPSS 11.5 for Windows. SPSS Inc. 
1.5. SYSTAT 10.2. SYSTPU Software, Inc. 
1.6. JMP Version 5. SAS Institute, Inc. 
1.7. S-Plus 6 for Windows. Insightful Corporation. 
1.8. MA1LAB 6.5. The MathWorks, Inc. 

1.1. Refer to the sales volume example on page 3. Suppose that the number of units sold is measured 
accurately, bur clerical errors are frequently made in determining the dollar sales. Would the 
relation between the number of units sold and dollar sales still be a functional one? Discuss. 

1.2. The members of a health spa pay annual membership dues of $300 plus a charge of $2 for each 
visit to the spa. Let Y denote the dollar cost for the year for a member and X the number of 
visits by the member during the year. Express the relation between X and Y mathematically. 
Is it a functional relation or a statistical relation? 

1.3. Experience with a certain type of plastic indicates that a relation exists between the hardness 
(measured in Brinell units) of items molded from the plastic (Y) and the elapsed time since ter-
mination of the molding process (X). It is proposed to study this relation by means of regression 
analysis. A participant in the discussion objects, pointing out that the hardening of the plastic 
"is the result of a natural chemical process that doesn't leave anything to chance, so the relation 
must be mathematical and regression analysis is not appropriate." Evaluate this objection. 

1.4. In Table 1.1, the lot size X is the same in production runs 1 and 24 but the work hours Y differ. 
What feature of regression model (1.1) is illustrated by this? 

1.5. When asked to state the simple linear regression model, a student wrote it as follows: E {Y;} = 
f30 + fhX; + CI' Do you agree? 

1.6. Consider the normal regression model (1.24). Suppose that the parameter valud are 
f30 = 200, f31 = 5.0, and a = 4. 
a Plot this normal error regression model in the fashion of Figure 1.6. Show the distributions 

of Y for X = 10, 20, and 40. 
b. Explain the meaning of the parameters f30 and f31. Assume that the scope of the model 

includes X = O. 
1.7. In a simulation exercise, regression model (1.1) applies with f30 = 100, f31 = 20, and a 2 = 25. 

An observation on Y will be made for X = 5. 
a. Can you state the exact probability that Y will fall between 195 and 205? Explain. 
b. If the normal error regression model (1.24) is applicable, can you now state the exact prob- Ii. 

ability that Y will fall between 195 and 205? If so, state it. 
1.8. In Figure 1.6, suppose another Y observation is obtained at X = 45. Would E{Y} for this new 

observation still be 104? Would the Y value for this new case again be 108? 
1.9. A student in accounting enthusiastically declared: "Regression is a very powerful tool. We can 

isolate fixed and variable costs by fitting a linear regression model, even when we have no data 
for small lots." Discuss. 
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1.10. An analyst in a large corporation studied the relation between current annual salary (Y) and 
age (X) for the 46 computer programmers presently employed in the company. The analyst 
concluded that the relation is curvilinear, reaching a maximum at 47 years. Does this imply 
that the salary for a programmer increases until age 47 and then decreases? Explain. 

1.l1. The regression function relating production output by an employee after taking a training 
program (Y) to the production output before the training program (X) is E{Y} = 20 + .9SX, 
where X ranges from 40 to 100. An observer concludes that the training program does not raise 
production output on the average because f3, is not greater than 1.0. Comment. 

1.12. In a study of the relationship for senior citizens between physical activity and frequency of 
colds, participants were asked to monitor their weekly time spent in exercise over a five-year 
period and the frequency of colds. The study demonstrated that a negative statistical relation 
exists between time spent in exercise and frequency of colds. The investigator conclooed that 
increasing the time spent in exercise is an effuctive strategy for reducing the frequency of colds 
for senior citizens. 
a Were the data obtained in the study observational or experimental data? 
b. Comment on the validity of the conclusions reached by the iI.lVestigator. 
c. Identify two or three other explanatory variables that might affect both the time spent in 

exercise and the frequency of colds for senior citizens simultaneously. 
d. How might the study be changed so that a valid conclusion about causal relationship between 

amount of exercise and frequency of colds can be reached? 
1.13. Computer programmers employed by a software developer were asked to participate in a month-

long training seminar. During the seminar, each employee was asked to record the number of 
hours spent in class preparation each week. After completing the seminar. the productivity level 
of each participant was measured. A positive linear statistical relationship between participants' 
productivity levels and time spent in class preparation was found. The seminar leader concluded 
that increases in employee productivity are caused by increased class preparation time. 
a Were the data used by the seminar leader observational or experimental data? 
b. Comment on the validity of the conclusion reached by the seminar leader. 
c. Identify two or three alternative variables that might cause both the employee productivity 

scores and the employee class participation times to increase (decrease) simultaneously. 
d. How might the study be changed so that a valid conclusion about causal relationship between 

class preparation time and employee productivity can be reached? 
1.14. Refer to Problem 1.3. Four different elapsed times since termination of the molding process 

(treatments) are to be studied to see how they affect the hardness of a plastic. Sixteen batches 
(experimental units) are available for the study. Each treatment is to be assigned to four exper-
imental units selected at random. Use a table of random digits or a random number generator 
to make an appropriate randomization of assignments. 

!.IS. The effects of five dose levels are to be studied in a completely randomized design, and 20 
experimental units are available. Each dose level is to be assigned to four experimental units 
selected at random. Use a table of random digits or a random number generator to make an 
appropriate randomization of assignments. 

1.16. Evaluate the following statement: "For the least squares method to be fully valid, it is required 
that the distribution of Y be normal." 

1.17. A person states that ho and h, in the fitted regression function (1.13) can be estimated by the 
method of least squares. Comment. 

1.18. According to (1.17), Lei = 0 when regression model (1.1) is fitted to a set of n cases by the 
method of least squares. Is it also true that L E:i = O? Comment. 
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1.19. Grade point average. The director of admissions of a small college selected 120 students at 
random from the new freshman class in a study to determine whether a student's grade point 
average (OPA) at the end of the freshman year (Y) can be predicted from the ACT test score (X). 
The results of the study follow. Assume that first-order regression model (1.1) is appropriate. 

;: 
21 

3.897 

2 

14 
3.885 

3 

28 
3.778 

118 

28 
3.914 

119 

16 
1.860 

120 

28 
2.948 

a. Obtain the least squares estimates of f30 and f3[, and state the estimated regression function. 
b. Plot the estimated regression function and the data."Does the estimated regression function 

appear to fit the data well? 
c. Obtain a point estimate of the mean freshman OPA for students with ACT test score X = 30. 
d. What is the point estimate of the change in the mean response when the entrance test 

increases by one point? 
* 1.20. Copier maintenance. The Tri-City Office Equipment Corporation sells an imported copier on 

a franchise basis and performs preventive maintenance and repair service on this copier. The 
data below have been collected from 45 recent calls on users to perform routine preventive 
maintenance service; for each call, X is the number of copiers serviced and Y is the total 
number of minutes spent by the service person. Assume that first-order regression model (1.1) 
is appropriate. 

;: 1 2 3 

Xi: 2 4 3 
Yi: 20 60 46 

a. Obtain the estimated regression function. 

43 

2 
27 

44 

4 
61 

45 

5 
77 

b. Plot the estimated regression function and the data. How well does the estimated regression 
function fit the data? 

c. Interpret bo in your estimated regression function. Does bo provide any relevant information 
here? Explain. 

d. Obtiun a poim estimate of the mean service time when X = 5 copiers are serviced. 
*1.21. Airfreight breakage. A substance used in biological and medical research is shipped by air-

freight to users in cartons of 1,000 ampules. The data below, involving 10 shipments, were 
collected on the number of times the carton was transferred from one aircraft to another over 
the shipment route (X) and the number of ampules found to be broken upon arrival (Y). Assume 
that first-order regression model (1.1) is appropriate. 

;: 
1 

16 

2 

o 
9 

3 
2 

17 

4 

o 
12 

5 
3 

22 

6 

1 
13 

7 

o 
8 

8 

15 

9 
2 

19 

10 

o 
11 

a. Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does a linear regression function appear to give a good fit here? 

b. Obtain a point estimate of the expected number of broken ampules when X = 1 transfer is 
made. 
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c. Estimate the increase in the expected number of ampules broken when there are 2 transfers 
as compared to 1 transfer. 

d. Verify that your fitted regression line goes through the point (X, Y). 
1.22. Plastic hardness. Refer to Problems 1.3 and 1.14. Sixteen batches of the plastic were made, 

and from each batch one test item was molded. Each test item was randomly assigned to one of 
the four predetermined time levels, and the hardness was measured after the assigned elapsed 
time. The results are shown below; X is the elapsed time in hours? and Y is hardness in Brinell 
units. Assume that first-order regression model (1.1) is appropria'te. 

;: 
16 

199 

2 

16 
205 

3 

16 
196 

14 

40 
248 

15 

40 
253 

16 

40 
746 

a. Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does a linear regression function appear to give a good fit here? 

b. Obtain a point estimate of the mean hardness when X = 40 hours. 
c. Obtain a point estimate of the change in mean hardness when X increases by 1 hour. 

1.23. Refer to Grade point average Problem 1.19. 

a Obtain the residuals ej. Do they sum to zero in accord with (1.17)? 
b. Estimate (J"2 and (J". In what units is (J" expressed? 

*1.24. Refer to Copier maintenance Problem 1.20. 

a Obtain the residuals ej and the sum of the squared residuals L e'f. What is the relation 
between the sum of the squared residuals here and the quantity Q in (1.8)? 

b. Obtain point estimates of (J"2 and (J". In what units is (J" expressed? 

*1.25. Refer to Airfreight breakage Problem 1.21. 

a. Obtain the residual for the first case. What is its relation to 8,? 
b. Compute Lei and MSE. What is estimated by MSE? 

1.26. Refer to Plastic hardness Problem 1.22. 

a Obtain the residuals ej. Do they sum to zero in accord with (1.17)? 
b. Estimate (J"2 and (J". In what units is (J" expressed? 

* 1.27. Muscle mass. A person's muscle mass is expected to decrease with age. To explore this rela-
tionship in women, a nutritionist randomly selected 15 women from each lO-year age group, 
beginning with age 40 and ending with age 79. The results follow; X is age, and Y is a measure 
of muscle mass. Assume that first-order regression model (1.1) is appropriate. 

;: 
43 

106 

2 

41 
106 

3 

47 
97 

58 

76 
56 

59 
72 
70 

60 

76 
74 

a. Obtain the estimated regression function. Plot the estimated regression function and the data. 
Does a linear regression function appear to give a good fit here? Does your plot support the 
anticipation that muscle mass decreases with age? 

b. Obtain the following: (1) a point estimate of the difference in the mean muscle mass for 
women differing in age by one year, (2) a point estimate of the mean muscle mass for women 
aged X = 60 years, (3) the value of the residual for the eighth case, (4) a point estimate of (J"2. 
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1.28. Crime rate. A criminologist studying the relationship between level of education-and crime 
rate in medium-sized U.S. counties collected the following data for a random sample of 84 coun-
ties; X is the percentage of individuals in the county having at least a high-school diploma, and 
Y is the crime rate (crimes reported per 100,000 residents) last year. Assume that first-order 
regression model (1.1) is appropriate. 

i: 
74 

8,487 

2 
82 

8,179 

3 

81 
8,362 

82 

88 
8,040 

83 

83 
6,981 

84 

76 
7,582 

a Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does the linear regression function appear to give a good fit here? Discuss. 

b. Obtain point estimates of the following: (1) the difference in the mean crime rate for two 
counties whose high-school graduation rates differ by one percentage point, (2) the mean 
crime rate last year in counties with high school graduation percentage X = 80, (3) BIO, 

(4)a2 • 

1.29. Refer to regression model (1.1). Assume that X = 0 is within the scope of the model. What is 
the implication for the regression function if f30 = 0 so that the model is Yi = f31 Xi + Bi? How 
would the regression function plot on a graph? 

1.30. Refer to regression model (1.1). What is the implication for the regression function if f31 = 0 
so that the model is Yi = f30 + Bj? How would the regression function plot on a graph? 

1.31. Refer to Plastic hardness Problem 1.22. Suppose one test item was molded from a single 
batch of plastic and the hardness of this one item was measured at 16 different points in time. 
Would the error term in the regression model for this case still reflect the same effects as for 
the experiment initially described? Would you expect the error terms for the different points in 
time to be uncorrelated? Discuss. 

1.32. Derive the expression for bi in (UOa) from the normal equations in (1.9). 
1.33. (Calculus needed.) Refecro the regression model Yj = f30 + Bi in Exercise 1.30. Derive the 

least squares estimator of f30 for this model. 
1.34. Prove that the least squares estimator of f30 obtained in Exercise 1.33 is unbiased. 
1.35. Prove the result in (1.18)-that the sum of the Yobservations is the same as the sum of the 

fitted values. 
1.36. Prove the result in (1.20) - that the sum of the residuals weighted by the fitted values is zero. 
1.37. Refer to Table l.l for the Toluca Company example. When asked to present a point estimate 

of the expected work hours for lot sizes of 30 pieces, a persbn gave the estimate 202 because 
this is the mean number of work hours in the three-runs of size 30 in the study. A critic states 
that this person's approach "throws away" most of the data in the study because cases with lot 
sizes other than 30 are ignored. Comment. 

1.38. In Airfreight breakage Problem 1.21, the least squares estimates are bo = 10.20 and1J I = 4.00, 
and L e; = 17.60. Evaluate the least squares criterion Q in (1.8) for the estimates (1) bo = 9, 
b l = 3; (2) bo = 11, b l = 5. Is the criterion Q larger for these estimates than for the least squares 
estimates? 

1.39. Two observations on Y were obtained at each of three X levels, namely, at X = 5, X = 10, and 
X = 15. 
a. Show that the least squares regression line fitted to the three points (5, f I ), (10, f 2), and 

(15, f3), where f I, f2, and f3 denote the means of the Yobservations at the three X levels, 
is identical to the least squares regression line fitted to the original six cases. 
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Projects 

b. In this study, could the error term variance a 2 be estimated without fitting a regression line? 
Explain. 

lAO. In fitting regression model (1.1), it was found that observation Yi fell directly on the fitted 
regression line (Le., Yi = i\). If this case were deleted, would the least squares regression line 
fitted to the remaining n - 1 cases be changed? [Hint: What is the contribution of case i to the 
least squares criterion Q in (1.8)?] 

1041. (Calculus needed.) Refer to the regression model Yi = /3,Xi+ei, i = 1, ... , n, in Exercise 1.29. 

1.42. 

a. Find the least squares estimator of /3, . 
b. Assume that the error terms ei are independent N (0, ( 2) and that a 2 is known. State the 

likelihood function for the n sample observations on Y and obtain the maximum likelihood 
estimator of /3,. Is it the same as the least squares estimator? 

c. Show that the maximum likelihood estimator of /3, is unbiased. 

Typographical errors. Shown below are the number of galleys for a manuscript (X) and the 
dollar cost of correcting typographical errors (Y) in a random sample of recent orders handled by 
a firm specializing in technical manuscripts. Assume that the regression model Y; = /3, Xi + ei 
is appropriate, with normally distributed independent error terms whose variance is a 2 = 16. 

;: 

Xi: 
Yi : 

7 
128 

2 

12 
213 

3 

4 
75 

4 
14 

250 

5 

25 
446 

a. State the likelihood function for the six Y observations, for a 2 = 16. 

6 

30 
540 

b. Evaluate the likelihood function for /3, = 17, 18, and 19. For which of these /31 values is 
the likelihood function largest? 

c. The maximum likelihood estimator is hi = LXi Yi / L Xi. Find the maximum likelihood 
estimate. Are your results in part (b) consistent with this estimate? 

d. Using a computer graphics or statistics package, evaluate the likelihood function for values 
of /3, between /3, = 17 and /3, = 19 and plot the function. Does the point at which the 
. likelihood function is maximized correspond to the maximum likelihood estimate found in 
part (c)? 

1.43. Refer to the CDI data set in Appendix C.2. The number of active physicians in a CDI (Y) is 
expected to be related to total population, number of hospital beds, and total personal income. 
Assume that first-order regression model (1.1) is appropriate for each of the three predictor 
variables. 

a. Regress the number of active physicians in turn on each of the three predictor variables. 
State the estimated regression functions. 

b. Plot the three estimated regression functions and data on separate graphs. Does a linear 
regression relation appear to provide a good fit for each of the three predictor variables? 

c. Calculate MSE for each of the three predictor variables. Which predictor variable leads to 
the smallest variability around the fitted regression line? 

1.44. Refer to the CDI data set in Appendix C.2. 

a. For each geographic region, regress per capita income in a CDr (Y) against the per-
centage of individuals in a county having at least a bachelor's degree (X). Assume that 
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first-order regression model (1.1) is appropriate for each region. State the estimated regres-
sion functions. 

b. Are the estimated regression functions similar for the four regions? Discuss. 
c. Calculate MSE for each region. Is the variability· around the fitted regression line approxi-

mately the same for the four regions? Discuss. 
1.45. Refer to the SENIC data set in Appendix c.l. The average length of stay in a hospital (Y) is 

anticipated to be related to infection risk, available facilities and services, and routine chest 
X-ray ratio. Assume that first-order regression model (1.1) is appropriate for each of the three 
predictor variables. ({ 

a. Regress average length of stay on each of the three predictor variables. State the estimated 
regression functions. 

b. Plot the three estimated regression functions and data on separate graphs. Does a linear 
relation appear to provide a good fit for each of the three predictor variables? 

c. Calculate MSE for each of the three predictor variables. Which predictor variat!le leads to 
the smallest variability around the fitted regression line? 

1.46. Refer to the SENIC data set in Appendix c.1. 
a. For each geographic region, regress average length of stay in hospital (Y) against infection 

risk (X). Assume that first-order regression model (1.1) is appropriate for each region. State 
the estimated regression functions. 

b. Are the estimated regression functions similar for the four regions? Discuss. 
c. Calculate MSE for each region. Is the variability around the fitted regression line approxi-

mately the same for the four regions? Discuss. 
1.47. Refer to Typographical errors Problem 1.42. Assume that first-order regression model (1.1) 

is appropriate, with normally distributed independent error terms whose variance is a 2 = 16. 
a. State the likelihood function for the six observations, for a 2 = 16. 
b. Obtain the maximum likelihood estimates of fJo and f31, using (1.27). 
c. Using a computer graphics"or statistics package, obtain a three-dimensional plot of the 

likelihood function for ·values of f30 between f30 = -10 and f30 = 10 and for values of 
f31 between f31 = 17 and f31 = 19. Does the likelihood appear to be maximized by the 
maximum likelihood estimates found in part (b)? 
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Inferences in Regression 
and Correlation Analysis 

In this chapter, we first take up inferences concerning. the regression parameters f30 and 
f31, considering both interval estimation of these parameters and tests about them. We then 
discuss interval estimation of the mean E {Y} of the probability distribution of Y, for given 
X, prediction intervals for a new observation Y, confidence bands for the regression line, 
the analysis of variance approach to regression analysis, the general linear test approach, 
and descriptive meaSures of association. Finally, we take up the correlation coefficient, a 
meaSure of association between X and Y when both X and Y are random variables. 

Throughout this chapter (excluding Section 2.11), and in the remainder of Part 1 unless 
otherwise stated, we assume that the normal error regression model (1.24) is applicable. 
This model is: 

where: 

f30 and f3, are parameters 
Xi are known constants 
8; are independent N (0, (J2) 

Y; = f30 + f3,X; + 8; (2.1) 

2.1 Inferences Concerning fh 

40 

Frequently, we are interested in drawing inferences about f3" the slope of the regression 
line in model (2.1). For instance, a market research analyst studying the relation between 
sales (Y) and advertising expenditures (X) may wish to obtain an interval estimate of f3, 
because it will provide information as to how many additional sales dollars, on the average, 
are generated by an additional dollar of advertising expenditure. 

At times, tests concerning f31 are of interest, particularly one of the form: 

Ho: f3, = 0 

Ha: f31 =1= 0 



FIGURE 2.1 
Regression 
Model (2.1) 
wbenPl = O. 
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y 

E{Y} = f30 

x 

The reaSon for interest in testing whether or not f31 = 0 is that, when f31 = 0, there is no 
linear association between Y and X. Figure 2.1 illustrates the Case when f31 = ctNote that 
the regression line is horizontal and that the means of the probability distributions of Y are 
therefore all equal, namely: 

E{Y} = f30 + (O)X = f30 
For normal error regression model (2.1), the condition f31 = 0 implies even more than 

no linear association between Y and X. Since for this model all probability distributions of 
Y are normal with constant variance, and since the means are equal when f31 = 0, it follows 
that the probability distributions of Y are identical when f31 = O. This is shown in Figure 2.1. 
Thus, f31 = 0 for the normal error regression model (2.1) implies not only that there is no 
linear association between Y and X but also that there is no relation of any type between 
Y and X, since the probability distributions of Y are then identical at all levels of X. 

Before discussing inferences f31 'further, we need to consider the sampling 
distribution of bl , the point estimator of f31' 

Sampling Distribution of b1 
The point estimator b l WaS given in (1.1Oa) as follows: 

L:(Xi - X)(Yi - Y) 
b l = L:(Xi _ X)2 .. (2.2) 

The sampling distribution of b l refers to the different values of b l that would be obtained 
with repeated sampling when the levels of the predictor variable X are held constant from 
sample to sample. 

For normal error regression model (2.1), the sampling distribution 
of b l is normal, with mean and variance: 

= f31 
a 2 

a
2
{bd = L:(Xi _ X)2 

(2.3) 

(2.3a) 

(2.3b) 

To show this, we need to recognize that b l is a linear combination of the observations Yi • 
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hI as Linear Combination of the Yi • It can be shown that hI, as defined in (2.2), Can be 
expressed as follows: 

(2.4) 

where: 

Xi-X 
ki = L(Xi _ X)2 (2.4a) 

Observe that the ki are a function of the Xi and therefore are fixed quantities since the Xi 
are fixed. Hence, hI is a linear combination of the Y; where the coefficiefits are solely a 
function of the fixed Xj. 

The coefficients ki have a number of interesting properties that will be used later: 

Comments 
1. To show that hI is a linear combination of the Yj with coefficients k/, we first prove: 

This follows since: 

But L(Xi - xW = Y L(Xj - X) = 0 since L(Xj - X) = 0, Hence, (2.8) holds. 
We now express hI using (2.8) and (2.4a): 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

2. The proofs of the properties of the k i are direct. For example, property (2.5) follows because: 

k- - X--X- -0 2:: 2:: [ Xi - X] 1· 2:: - 0 
1- L(Xj _X)2 - L(Xj _X)2 (, ) - L(Xj _X)2 -

Similarly, property (2.7) follows because: 

• 
Normality. We return now to the sampling distribution of hI for the nonnal error regres-
sion model (2.1). The nonnality of the sampling distribution of hI follows at once from the 
fact that hI is a linear combination of the Yj • The Yj are independently, nonnally distributed 
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according to model (2.1), and (A.40) in Appendix A states that a linear combination of 
independent normal random variables is normally distributed. 

Mean. The unbiasedness of the point estimator bl> stated earlier in the Gauss-Markov 
theorem (1.11), is easy to show: 

E{bd = E{l.:k;Y;} = l.:kiE{Yd = l.:k;(f3o + f3I X;) 

= f30 l.:k; + f31l.:'k;X; 

By (2.5) and (2.6), we then obtain E {b l } = f31. 

Variance. The variance of bI can be derived readily. We need only remember that the 
Y; are independent random variables, each with variance a 2 , and that the k; are constants. 
Hence, we obtain by (A.31): }.., 

a 2{bd = a 2{l.:k;Yi} = 
= = a 2 

2 1 =a 
L(X; - X)2 

The last step follows from (2.7). 

Estimated Variance. We can estimate the variance of the sampling distribution of b l : 

a 2 

a
2
{bd = L(X; - xy 

by replacing the parameter a 2 with MSE, the unbiased estimator of a 2: 

s2{b _ MSE 
d - L(X; _X)2 (2.9) 

point estimator s2 {b l } is an unbiased estimator of a 2 {b I }. Taking the positive square 
root, we obtain s{bd, the point estimator of a{bd. 

Comment 
We stated in theorem (1.11) that hI has minimum variance among all unbiased Hnear estimators of 
the form: 

= l.:CiYi 

where the Ci are arbitrary constants. We now prove this. Since I is required to be unbiased, the 
following must hold: 

Now E{Yd = f30 + f3 1Xi by (1.2), so the above condition becomes: 
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For the unbiasedness condition to hold, the C; must follow the restrictions: 

Now the variance of,8, is, by (A.31): 

Let us define Ci = k; + d;, where the k; are the least squares constants in (2.4a) and the d; are arbitrary 
constants. We can then write: 

We know that a 2 L k'f = a 2 (h.) from our proof above. Further, L kid; = 0 because of the restrictions 
on the k; and Ci above: 

Hence, we have: 

Lkid; = Lk;(C; -k;) 

= :LC;ki - :L k; 

= :Lc; - L(X;I_X)2 

LCiXi-XLCi 
L(X; _X)2 

Note that the smallest value of L dl is zero. Hence, the variance of ,81 is at a minimum when 
2:.df = O. But this can only occur if all d; = 0, which implies C; == k;. Thus, the least squares 
estimator h, has minimum variance among all unbiased linear estimators. • 

Sampling Distribution of (b1 - {Jl)/s{b1 } 
Since b, is normally distributed, we know that the standardized statistic (b, - ,8,)/a{bd 
is a standard normal variable. Ordinarily, of course, we need to estimate a{bd by s{bd, 
and hence are interested in the distribution of the statistic (b , - ,81)/s{bd. When a statistic 
is standardized but the denominator is an estimated standard deviation rather than the true 
standard deviation, it is called a studentized statistic. An important theorem in statistics 
states the following about the studentized statistic (b, - ,8,)/ s {b,}: 

b, - ,81 is distributed as t (n - 2) for regression model (2.1) 
s{br} 

(2.10) 

Intuitively, this result should not be unexpected. We know that if the observations Yi 

come from the same normal popUlation, (Y - fJ,) / s {Y} follows the t distribution with n - 1 
degrees of freedom. The estimator b

" 
like Y, is a linear combination of the observations Y;. 

The reason for the difference in the degrees of freedom is that two parameters (,80 and ,8,) 
need to be estimated for the regression model; hence, two degrees of freedom are lost here. 
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Comment 
We can show that the studentized statistic (b l - th)/s(bd is distributed as t with n - 2 degrees of 
freedom by relying on the following theorem: 

For regression model (2.1), SSE/a2 is distributed as X2 with n - 2 
degrees offreedom and is independerit of bo and b l • 

First, let us rewrite (bl - ,81)/s(bd as follows: 

bl - ,81 ...:.. s(bd 
a(bd . a(bd 

(2.11) 

The numerator is a standard normal variable z. The nature of the denominator can be seen by first 
considering: 

MSE SSE 
s2(bd L:(X; _X)2 MSE n-2 --= 

a 2 =--=--
a 2(b l } a 2 a 2 

L:(X; _X)2 

SSE x2(n - 2) 
a 2(n -2) n-2 

where the symbol stands for "is distributed as." The last step follows from (2.11). Hence, we have: 

b l - ,81 Z 

s(b l } y!x2(n-2) 
. n-2 

But by theorem (2.11), z and X2 are independent since z is a function of b l and bl is independent of 
SSE/a2 X2. Hence, by (A.44), it follows that: 

bl -,81 --
s(bd 

This result places us in a position to readily make inferences concerning ,81. 

Confidence Interval for {Jl 
• 

Since -(b l - ,81)/s{bd follows a t distribution, we can make the following probability 
statement: 

P{t(a/2;n - 2) ::s (b l - ,81)/s{bd ::s t(l - a/2;n - 2)} = 1 - a (2.12) 

Here, t (a /2; n - 2) denotes the (a /2) 100 percentile of the t distribution with n - 2 degrees 
of freedom. Because of the symmetry of the t distribution around its mean 0, it follows that: 

t(a/2; n -Q) = -t(1 - a/2; n - 2) 

Rearranging the inequalities in (2.12) and using (2.13), we obtain: 

(2.13) 

P{b l - t(l - a/2; n - 2)s{bd ::s ,81 .::::: b, + t(1 - a/2;n - 2)s{bd} = 1 - a 
(2.14) 

Since (2.14) holds for all possible values of ,8J, the 1 - a confidence limits for ,81 are: 

b l ± t(l - a/2; n - 2)s{bd (2.15) 
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Example 

TABLE 2.1 
Results for 
Toluca 
Company 
Example 
Obtained in 
Cbapterl. 

FIGURE 2.2 
Portion of 
MINITAB 
Regression 
Output-
Toluca 
Company 
Example. 

Simple Linear Regression 

Consider the Toluca Company example of Chapter 1. Management wishes an estimate of 
f3, with 95 percent confidence coefficient. We summarize in Table 2.1 the needed results 
obtained earlier. First, we need to obtain s{bd: 

2 MSE 2,384 
s {bd = L:(X; _ X)2 = 19,800 = .12040 

s{bd = .3470 

This estimated standard deviation is shown in the MINITAB output in Figure 2.2 in the 
column labeled Stdev corresponding to the row labeled X. Figure 2.2 repeats the MINITAB 
output presented earlier in Chapter 1 and contains some additional results that we will utilize 
shortly. A" 

For a 95 percent confidence coefficient, we require t(.975; 23). From Table B.2'in Ap-
pendixB, wefindt(.975;23) = 2.069. The 95 percent confidence interval, by (2.15), then is: 

3.5702 - 2.069(.3470) .:s f3, .:s 3.5702 + 2.069(.3470) 

2.85 .:s f31 .:s 4.29 

Thus, with confidence coefficient .95, we estimate that the mean number of work hours 
increases by somewhere between 2.85 and 4.29 hours for each additional unit in the lot. 

Comment 
In Chapter 1, we noted that the scope of a regression model is restricted ordinarily to some range of 
values of the predictor variable. This is particularly important to keep in mind in using estimates of 
the slope th. In our Toluca Company example, a linear regression model appeared appropriate for 
lot sizes between 20 and 120, the range of the predictor variable in the recent past. It may not be 

n=25 
bo = 62.37 
y= 62.37 + 3.5702X 

L:(X; - X)2 = 19,800 
2:XY; - y)2 = 307,203 

The regression equation is 
Y = 62.4 + 3.57 X 

Predictor Coef 
Constant 62.37 

Stdev 
26.18 

X 3.5702 0.3470 

s = 48.82 R-sq = 82.2% 

Analysis of Variance 

SOURCE DF SS 
Regression 1 252378 
Error 23 54825 
Total 24 307203 

x = 70.00 
b1 = 3.5702 

SSE = 54,825 
MSE=2,384 

t-ratio 
2.38 

10.29 

p 
0.026 
0.000 

R-sq(adj) = 81.4% 

MS F 
252378 105.88 

2384 

P 
0.000 
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reasonable to use the estimate of the slope to infer the effect of lot size on number of work hours far 
outside this range since the regression relation may not be linear there. • 

Tests Concerning {Jl 

Example 1 

Example 2 

Since (b, - ,8,)/s{bd is distributed as t with n - 2 degrees of freedom, tests concerning 
,81 can be set up in ordinary fashion using the t distribution. 

Two-Sided Test A cost analyst in the Toluca Company is interested in testing, using 
regression model (2.1), whether or not there is a linear association between work hours and 
lot size, i.e., whether or not,81 = O. The two alternatives then are: 

Ho:,8, = 0 
Ha: ,8, =1= 0 

(2.16) 

The analyst wishes to control the risk of a Type I error at a = .05. The conclusion Ha could 
be reached at once by referring to the 95 percent confidence interval for ,8, constructtd 
earlier, since this interval does not include O. 

An explicit test of the alternatives (2.16) is based on the test statistic: 

* b, t =--
s{bd 

(2.17) 

The decision rule with this test statistic for controlling the level of significance at a is: 

If It*1 :::; t(1 - a/2;n - 2), conclude Ho 
If It*1 > t(l- a/2;n - 2), Ha 

(2.18) 

For the Toluca Company example, where a = .05, b, = 3.5702, ands{bd = .3470, we 
require t(.975; 23) = 2.069. Thus, the decision rule for testing alternatives (2.16) is: 

If It*1 :::; 2.069, conclude Ho 
If It*1 > 2.069, conclude Ha 

Since It*1 = 13.5702/.34701 = 10.29 > 2.069, we conclude Ha, that,8, =1= 0 or that 
there is a linear association between work hours and lot size. The value of the test statistic, 
t* = 10.29, is shown in the MINITAB output in Figure 2.2 in the column labeled t-ratio 
and the row labeled X. 

The two-sided P-value for the sample outcome is obtained by first finding the one-
sided P-value, P{t(23) > t* = 1O.29}. We see from Table B.2 that this probability is 
less than .0005. Many statistical calculators and computer packages will provide the actual 
probability; it is almost 0, denoted by 0+. Thus, the two-sided P-value is 2(0+) = 0+. 
Since the two-sided P-value is less than the specified level of significance a = .05, we 
could conclude Ha directly. The MINITAB output in Figure 2.2 shows the P-value in the 
column labeled p, corresponding to the row labeled X. It is shown as 0.000. 

Comment 
When the test of whether or not fh = 0 leads to the conclusion that fh 1= 0, the association between 
Y and X is sometimes described to be a linear srotistical association. • 

One-Sided Test Suppose the analyst had wished to test whether or not ,8, is positive, 
controlling the level of significance at a = .05. The alternatives then would be: 

HO:,81 :::; 0 
Ha:,8, > 0 
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and the decision rule based on test statistic (2.17) would be: 

If t* .:s t(1 - a;n - 2), conclude Ho 
If t* > t (1 - a; n - 2), conclude Ha 

Fora = .05, we require t (.95; 23) = 1.714.Sincet* = 10.29 > 1.714, we would conclude 
Ha, that f3, is positive. 

This same conclusion could be reached directly from the one-sided P-value, which was 
noted in Example 1 to be 0+. Since this P-value is less than .05, we would conclude Ha. 

Comments 
1. The P-value is sometimes caned the observed level of significance. 
2. Many scientific publications commonly report the P-value together with the value of the test 

statistic. In this way, one can conduct a test at any desired level of significance a by comparing the 
P-value with the specified level a. 

3. Users of statistical calculators and computer packages need to be careful to ascertain whether 
one-sided or two-sided P-values are reported. Many commonly used labels, such as PROB or P, do 
not reveal whether the P-value is one- or two-sided. 

4. Occasionally, it is desired to test whether or not f31 equals some specified nonzero value f3w, 
which may be a historical norm, the value for a comparable process, or an engineering specification. 
The alternatives now are: 

and the appropriate test statistic is: 

Ho: f31 = f3w 
Ha: f31 1= f3lo 

* b i - f3w t = ---=--=-,c:= 
s(bd 

(2.19) 

(2.20) 

The decision rule to be employed here still is (2.18), but it is now based on t* defined in (2.20). 
Note that test statistic (2.20) simplifies to test statistic (2.17) when the test involves Ho: f3I = 

f3lo = O. • 

2.2 Inferences Concerning f30 
As noted in Chapter 1, there are only infrequent occasions when we wish to make inferences 
concerning f3o, the intercept of the regression line. These occur when the scope of the model 
includes X = O. 

Sampling Distribution of bo 
The point estimator bo was given in (1.lOb) as follows: 

(2.21) 

The sampling distribution of bo refers to the different values of bo that would be obtained 
with repeated sampling when the levels of the predictor variable X are held constant from 
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sample to sample. 

For regression model (2.1), the sampling distribution of 'bo 
is normal, with mean and variance: 

E{bo} = f30 

a 2 b } _ a2 ! X [ -2] 
{ 0 - n + E(X; - X)2 

(2.22) 

(2.22a) 

(2.22b) 

The normality of the sampling distribution of bo follows because bo, like bl , is a linear 
combination of the observations Yi • The results for the mean and variance of the sampling 
distribution of bo can be obtained in similar fashion as those for bl • 

An estimator of a 2 {bo} is obtained by replacing a 2 by its point estimator MSE: 

s2{bo} = MSE [! + E( j(2 2] 
n Xi - X) 

(2.23) 

The positive square root, s{bo}, is an estimator of a {bolo 

Sampling Distribution of (bo - {Jo)/s{bo} 
Analogous to theorem (2.10) for b" a theorem for bo states: 

bo - f30 is distributed as ten - 2) for regression model (2.1) 
s{bo} 

(2.24) 

Hence, confidence intervals for f30 and tests concerning f30 can be set up in ordinary fashion, 
using the t distribution. 

Confidence Interval for {Jo 

Example 

The 1 - a confidence limits for f30 are obtained in the same manner as those for f31 derived 
earlier. They are: 

bo ± t(1 - a12; n - 2)s{bo} (2.25) 

As noted earlier, the scope of the model for the Toluca Company example does not extend to 
lot sizes. of X = O. Hence, the regression parameter f30 may not have intrinsic meaning here. 
If, nevertheless, a 90 percent confidence interval for f30 were desired, we would proceed by 
finding t(.95; 23) and s{bo}. From Table B.2, we find t(.95; 23) = 1.714. Using the earlier 
results summarized in Table 2.1, we obtain by (2.23): 

[ 
1 j(2] [ 1 (70 00)2] 

s2{bo} = MSE ;; + E(X
i 

_ X)2 = 2,384 25 + 19:800 = 685.34 

or: 
s{bo} = 26.18 

The MINITAB output in Figure 2.2 shows this estimated standard deviation in the column 
labeled Stdev and the row labeled Constant. 

The 90 percent confidence interval for f30 is: 

62.37 - 1.714(26.18) ::s f30 :s 62.37 + 1.714(26.18) 
17.5 ::s f30 ::s 107.2 
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We caution again that this confidence interval does not necessarily provide meaningful 
information. For instance, it does not necessarily provide information about the "setup" 
cost (the cost incurred in setting up the production process for the part) since we are not 
certain whether a linear regression model is appropriate when the scope of the model is 
extended to X = O. 

2.3 Some Considerations on Making Inferences Concerning 
f30 and f31 

Effects of Departures from Normality ." 
If the probability distributions of Y are not exactly normal but do not depart seriously, 
the sampling distributions of bo and bI will be approximately normal, and the use of the 
t distribution will provide approximately the specified confidence coefficient or level of 
significance. Even if the distriputions of Y are far from nprmal, the estimators bo and bi 

generally have the property of asymptotic normality-their distributions approach normality 
under very general conditions as the sample size increases. Thus, with sufficiently large 
samples, the confidence intervals and decision rules given earlier still apply even if the 
probability distributions of Y depart far from normality. For large samples, the t value is, 
of course, replaced by the z value for the standard normal distribution. 

Interpretation of Confidence Coefficient and Risks of Errors 
Since regression model (2.1) assumes that the Xi are known constants, the, confidence 
coefficient and risks of errors are interpreted with respect to taking repeated samples in 
which the X observations are kept at the same levels as in the observed sample. For instance, 
we constructed a confidence interval for f3, with confidence coefficient .95 in the Toluca 
Company example. This coefficient is interpreted to mean that if many independent samples 
are taken where the levels of X (the lot sizes) are the same as in the data set and a 95 percent 
confidence interval is constructed for each sample, 95 percent of the intervals will contain 
the true value of f3,. 

Spacing of the X levels 
Inspection of formulas (2.3b) and (2.22b) for the variances of b i and bo, respectively, 
indicates that for given nand a 2 these variances are affected by the spacing of the X 
levels in the observed data. For example, the greater is the spread in the X levels, the larger 
is the quantity L (Xi - X)2 and the smaller is the variance of b,. We discuss in Chapter 4 
how the X observations should be spaced in experiments where spacing can be controlled. 

Power of Tests 
The power of tests on f30 and f3, can be obtained from Appendix Table B.5. Consider, for 
example, the general test concerning f3, in (2.19): 

Ho: f3I = f310 
Ha: f3, =1= f310 
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for which test statistic (2.20) is employed: 

* bi - tho t = --"-----'-
s{bd 

and the decision rule for level of significance a is given in (2.18): 

If It* 1 ::s t (1 - a 12; n - 2), conclude Ho 
If It*1 > t(1 - a12; n - 2), conclude Ha 

The power of this test is the probability that the decision rule will lead to conclusion Ha 
when Ha in fact holds. Specifically, the power is given by: 

Power = P{lt*1 > t(l- al2;n - 2) 18} ). (2.26) 

where 8 is the noncentrality measure-i.e., a measure of how far the true value of f3, is from 
f31O: 

8 = 1f3, - f3101 
a{bd 

(2.27) 

TableB.5 presents the power of the two-sided t testJora = .05 and a = .01, for various 
degrees of freedom df. To illustrate the use of this table, let us return to the Toluca Company 
example where we tested: 

Ho: f31 = f310 = 0 
Ha: f3, =1= f310 = 0 

Suppose we wish to know the power of the test when f31 = 1.5. To ascertain this, we need 
to know a 2 , the variance of the error terms. Assume, based on prior information or pilot 
data, that a reasonable planning value for the unknown variance is a 2 = 2,500, so a 2{bd 
for our example would be: 

a2 b } = a
2 

= 2,500 = .1263 
{, L:(Xi - X)2 19,800 

or a {b,} = .3553. Then 8 = 11.5 - 01-;- .3553 = 4.22. We enter Table B.5 for a = .05 (the 
level of significance used in the test) and 23 degrees of freedom and interpolate linearly 
between 8 = 4.00 and 8 = 5.00. We obtain: 

I 

4.22 -4.00 
.97 + - 0 00 (1.00 - .97) = .9766 5.0 -4. 

Thus, if f31 = 1.5, the probability would be about .98 that we would be led to conclude 
Ha (f3I =1= 0). In other words, if f3, = i .5, we would be almost certain to conclude that there 
is a linear relation between work hours and lot size. 

The power of tests concerning f30 can be obtained from Table B.5 in completely analogous 
fashion. For one-sided tests, Table B.5 should be entered so that one-half the level of 
significance shown there is the level of significance of the one-sided test. 
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2.4 Interval Estimation of E{Yd 
A common objective in regression analysis is to estimate the mean for one or more prob-
ability distributions of Y. Consider, for example, a study of the relation between level of 
piecework pay (X) and worker productivity (Y). The mean productivity at high and medium 
levels of piecework pay may be of particular interest for purposes of analyzing the bene-
fits obtained from an increase in the pay. As another example, the Toluca Company was 
interested in the mean response (mean number of work hours) for a range of lot sizes for 
purposes of finding the optimum lot size. 

Let Xh denote the level of X for which we wish to estimate the mean Xh may 
be a value which occurred in the sample, or it may be some other value of the predictor 
variable within the scope of the model. The mean response when X = Xh is denoted by 
E{Yh}. Formula (1.12) gives us the point estimator Yh of E{Yh}: 

Yh = bo +blXh 

We consider now the sampling distribution of Yh . 

Sampling Distribution of Yh 

(2.28) 

The sampling distribution of Yh , like the earlier sampling distributions discussed, refers to 
the different values of Yh that would be obtained if repeated samples were selected, each 
holding the levels of the predictor variable X constant, and calculating Yh for each sample. 

For normal error regression model (2.1), the sampling distribution of 
Yh is normal, with mean and variance: 

E{Yh} = E{Yh} 

2 2 [1 (Xh - X)2 ] 
a {Yh } = a ;; + L:(X

i 
_ X)2 

(2.29) 

(2.29a) 

(2.29b) 

Normality. The normality of the sampling distribution of Yh follows directly from the 
fact that i\, like bo and bl , is a linear combination of the observations Yi • 

Mean. Note from (2.29a) that Yh is an unbiased estimator of E{Yh }. To prove this, we 
proceed as follows: 

E{Yh} = E{bo + blXd = E{bo} + XhE{bd =!3o + !3I Xh 

by (2.3a) and (2.22a). 

Variance. Note from (2.29b) that the variability of the sampling distribution of Yh is 
affected by how far Xh is from X, through the term (Xh - X)2. The further from X is 
Xh, the greater is the quantity (Xh - X)2 and the larger is the variance of Yh. An intuitive 
explanation of this effect is found in Figure 2.3. Shown there are two sample regression 
lines, based on two samples for the same set of X values. The two regression lines are 
assumed to go through the same (X, Y) point to isolate the effect of interest, namely, the 
effect of variation in the estimated slope bI from sample to sample. Note that at X I, near 
X, the fitted values 1\ for the two sample regression lines are close to each other. At X2 , 

which is far from X, the situation is different. Here, the fitted values Y2 differ substantially. 



FIGURE 2.3 
Effect on Y,. of 
Variation in hI 
from Sample to 
Sample in Two 
Samples with 
Same Means Y 
andX. 
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y 

Xl 

Estimated Regression 
from Sample 1 

Estimated Regression 
from Sample 2 

X 

Thus, variation in the slope hI from sample to sample has a much more pronounced effect 
on i\ for X levels far from the mean X than for X levels near X. Hence, the variation in the 
i\ values from sample to sample will be greater when X h is far from the mean than when 
Xh is near the mean. 

When MSE is substituted for a 2 in (2.29b), we obtain s2{Vh}, the estimated variance 
of Vh : 

(2.30) 

TIle estimated standard deviation of Vh is then s {Vh}, the positive square root of s2 {Vh}. 

Comments 
1. When X" = 0, the variance of Y" in (2.29b) reduces to the variance of bo in (2.22b). Similarly, 

S2(y,,} in (2.30) reduces to s2(bo} in (2.23). The reason is that Yh = bo when Xh = 0 since Yh = 
bo +b,Xh • 

2. To derive a 2(y,,}, we first show thatb i and Yare uncorrelated and, hence, for regression model 
(2.1), independent: 

a(Y,b,} =0 (2.31) 

where a(Y, bd denotes the covariance between Y and b l • We begin with the definitions: 

where ki is as defined in (2.4a). We now use (A.32), with ai = lin and Ci = ki; remember that the 
Yi are independent random variables: 

- " ( 1) 2 a
2 

" a(Y, b.} = L.. ;; kia (Yd = --;;- L..ki 

But we know from (2.5) that L ki = O. Hence, the covariance is O. 
Now we are ready to find the variance of Y". We shall use the estimatodn the alternative form (1.15): 

2 2 - -a (Y,,}=a (Y+b,(X,,-X)} 
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Since Y and bi are independent and X" and X are constants, we obtain: 
(T2(l\} = (T2(y} + (X" - X)2(T2(bd 

Now (T2(bd is given in (2.3b), and: 

Hence: 

2 (T2 - 2 (T2 
(T (Y,J = - + (X" - X) '" 2 n -X) 

which, upon a slight rearrangement of terms, yields (2.29b). • 
Sampling Distribution of (Yh - E{Yh})/S{Yh} 

Since we have encountered the t distribution in each type of inference for regression 
model (2.1) up to this point, it should not be surprising that: 

Y" - E{Y,,} . is distributed as t (n - 2) for regression model (2.1) 
s{Y,,} 

(2.32) 

Hence, all inferences concerning E {Y,,} are carried out in the usual fashion with the t 
distribution. We illustrate the construction of confidence intervals, since in practice these 
are used more frequently than tests. 

Confidence Interval for E{Yh} 

Example 1 

A confidence interval for E {Yh } is constructed in the standard fashion, making use of the t 
distribution as indicated by theorem (2.32). The I - ex confidence limits are: 

(2.33) 

Returning to the Toluca Company example, let us find a 90 percent confidence interval for 
E {Yh } when the lot size is Xh = 65 units. Using the earlier results in Table 2.1, we find the 
point estimate Yh: 

Yh = 62.37 + 3.5702(65) = 294.4 

Next, we need to find the estimated standard deviation s{Yh }. We obtain, using (2.30): 

s2{y } = 2 384 (65 -70.00)2] = 98.37 
h , 25 19,800 

s{Yh } = 9.918 

For a 90 percent confidence coefficient, we require t(.95; 23) = 1.714. Hence, our confi-
dence interval with confidence coefficient .90 is by (2.33): 

294.4 - 1.714(9.918) .:s E{Yh } .:s 294.4 + 1.714(9.918) 

277.4.:s E{Yh } .:s 311.4 

We conclude with confidence coefficient .90 that the mean number of work hours required 
when lots of 65 units are produced is somewhere between 277.4 and 311.4 hours. We see 
that our estimate of the mean number of work hours is moderately precise. 
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Suppose the Toluca Company wishes to estimate E {Yh} for lots with Xh = 100 units with 
a 90 percent confidence interval. We require: 

Yh = 62.37 + 3.5702(100) = 419.4 

s2{Yh} = 2,384 [;5 + = 203.72 

s{Yh } = 14.27 
t(.95;23) = 1.714 

Hence, the 90 percent confidence interval is: 

419.4 - 1.714(14.27) .:s E {Yh } .:s 419.4 + 1.714(14.27) 
394.9 .:s E{Yh } .:s 443.9 

Note that this confidence interval is somewhat wider than that for Example 1, since the 
Xh level here (Xh = 100) is substantially fartber from the mean X = 70.0 than the Xh 
level for Example 1 (Xh = 65). 

Comments 
I. Since the Xi are known constants in regression model (2.1), the interpretation of confidence 

intervals and risks of errors in inferences on the mean response is in terms of taking repeated 
samples in which the X observations are at the same levels as in the actual study. We noted this 
same point in connection with inferences on f30 and f31 • 

2. We see from formula (2.29b) that, for given sample results, the variance of Y" is smallest when 
X" = X. Thus, in an experiment to estimate the mean response at a particular level X" of the 
predictor variable, the precision of the estimate will be greatest if (everything else remaining equal) 
the observations on X are spaced so that X = X". 

3. The usual relationship between confidence intervals and tests applies in inferences concerning the 
mean response. Thus, the two-sided confidence limits (2.33) can be utilized for two-sided tests 
concerning the mean response at X". Alternatively, a.regular decision rule can be set up. 

4. The confidence limits (2.33) for a mean response E(Y,J are not sensitive to moderate departures 
from the assumption that the error terms are normally distributed. Indeed, the limits are not sensitive 
to substantial departures from normality if the sample size is large. This robustness in estimating 
the mean response is related to the robustness of the confidence limits for f30 and f31' noted earlier. 

5. Confidence limits (2.33) apply when a single mean response is to be estimated from the study. We 
discuss in Chapter 4 how to proceed when several mean responses are to be estimated from the 
same data • 

2.5 Prediction of New Observation 
We consider now the prediction of a new observation Y corresponding to a given level X of 
the predictor variable. Three illustrations where prediction of--a new observation is needed 
follow. 

1. In the Toluca Company example, the next lot to be produced consists of 100 units and 
management wishes to predict the number of work hours for this particular lot. 
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2. An economist has estimated the regression relation between company sales and number 
of persons 16 or more years old from data for the past 10 years. Using a reliable de-
mographic projection of the number of persons 16 or more years old for next year, the 
economist wishes to predict next year's company sales. 

3. An admissions officer at a university has estimated the regression relation between 
the high school grade point average (GPA) of admitted students and the first-year college 
GPA. The nfficer wishes to predict the first-year college GPA for an applicant whose 
high school GPA is 3.5 as part of the information on which an admissions decision will 
be based. 

The new observation on Y to be predicted is viewed as the result of a new trial, inde-
pendent of the trials on which the regression analysis is based. We denote the of X 
for the new trial as Xh and the new observation on Y as Yh(new), Of course, -we assume 
that the underlying regression model applicable for the basic sample data continues to be 
appropriate for the new observation. 

The distinction between estimation of the mean response E{Yh }, discussed in the pre-
ceding section, and prediction of a new response Yh(new), discussed now, is basic. In the 
former case, we estimate the mean of the distribution of Y. In the present case, we predict 
an individual outcome drawn from the distribution of Y. Of course, the great majority of 
individual outcomes deviate from the mean response, and this must be taken into account 
by the procedure for predicting Yh(new), 

Prediction Interval for Yh(new) when Parameters Known 
To illustrate the nature of a prediction interval for a new observation Yh(new) in as simple a 
fashion as possible, we shall first assume that all regression parameters are known. Later 
we drop this assumption and make appropriate modifications. 

Suppose that in the college admissions example the relevant parameters of the regression 
model are known to be: 

f30 = .10 f3, = .95 
E{Y} = .10 + .95X 

a = .12 
The admissions officer is considering an applicant whose high school GPA is Xh = 3.5. 
The mean college GPA for students whose high school average is 3.5 is: 

E{Yh } = .10 + .95(3.5) = 3.425 

Figure 2.4 shows the probability distribution of Y for X" = 3.5. Its mean is E{Yh } = 3.425, 
and its standard deviation is a = .12. Further, the distribution is normal in accord with 
regression model (2.1). 

Suppose we were to predict that the college GPA of the applicant whose high school 
GPA is Xh = 3.5 will be between: 

E{Yh } ± 3a 

3.425 ± 3(.12) 

so that the prediction interval would be: 

3.065 .:::: Yh(new) .:::: 3.785 
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Since 99.7 percent of the area in a nonnal probability distribution falls within three standard 
deviations from the mean, the probability is .997 that this prediction interval will give a 
correct prediction for the applicant with high school GPA of 3.5. While the prediction limits 
here are rather wide, so that the prediction is not too precise, the prediction interval does 
indicate to the admissions officer that the applicant is expected to attain at least a 3.0 GPA 
in the first year of college. 

The basic idea of a prediction interval is thus to choose a range in the distribution of Y 
wherein most of the observations will fall, and then to declare that the next observation will 
fall in this range. The usefulness of the prediction interval depends, as always, on the width 
of the interval and the needs for precision by the user. 

In general, when the regression parameters of nonnal error regression model (2.1) are 
known, the 1 - a prediction limits for Yh(new) are: 

E{Yh } ± z(1 - aj2)a (2.34) 

In centering the limits around E{Yh }, we obtain the narrowest interval consistent with the 
specified probability of a correct prediction. 

Prediction Interval for Yh(new) when Parameters Unknown 
When the regression parameters are unknown, they must.be estimated. The mean of the 
distribution of Y is estimated by .rh , as usual, and the variance of the distribution of Y 
is estimated by MSE. We cannot, howeveJi, simply use the prediction limits (2.34) with 
the parameters replaced by the corresponding point estimators. The reason is illustrated 
intuitively in Figure 2.5. Shown there are two probability distributions of Y, corresponding to 
the upper and lower limits of a confidence interval for E {Yh }. In other words, the distribution 
of Y could be located as far left as the one shown, as far right as the other one shown, or 
anywhere in between. Since we do not know the mean E{Yh } and only estimate it by a 
confidence interval, we cannot be certain of the location of the distribution of Y. 

Figure 2.5 also shows the prediction limits for each of the two probability distribu-
tions of Y presented there. Since we cannot be certain of the location of the distribution 
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of Y, prediction limits for Y"(new) clearly must take account of two elements, as shown in 
Figure 2.5: 

1. Variation in possible location of the distribution of Y . 
2. Variation within the probability distribution of Y. 

Prediction limits for a new observation Yh(new) at a given level Xh are obtained by means 
of the following theorem: 

Yh(new) - I'h is distributed as ten - 2) for normal error regression model (2.1) (2.35) 
s{pred} 

Note that the studentized statistic (2.35) uses the point estimator I'h in the numerator rather 
than the true mean E {Yh } because the true mean is unknown and cannot be used in making a 
prediction. The estimated standard deviation of the prediction, s {pred}, in the denominator 
of the studentized statistic will be defined shortly. 

From theorem (2.35), it follows in the usual fashion that the 1 - a prediction limits for 
a new observation Yh(new) are (for instance, compare (2.35) to (2.10) and relate I'h to hi and 
Y"(new) to fh): 

I'h ± t(1 - a12; n - 2)s{pred} (2.36) 

Note that the numerator of the studentized statistic (2.35) represents how far the new 
observation Yh(new) will deviate from the estimated mean I'h based on the original n cases in 
the study. This difference may be viewed as the prediction error, with I'h serving as the best 
point estimate of the value of the new observation Yh(new), TIle variance of this prediction 
error can be readily obtained by utilizing the independence of the new observation Y h(new) and 
the original n sample cases on which I'" is based. We denote the variance of the prediction 
error by a 2{pred}, and we obtain by (A.31b): 

2 2 2 2 a {pred} = a {Yh(new) - Y h } = a {Yh(new)} + a {Yh} = a + a {Yh} (2.37) 

Note that a 2{pred} has two components: 

1. The variance of the distribution of Y at X = Xh, namely a 2 • 

2. The variance of the sampling distribution of fh' namely a 2{I'h }. 
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An unbiased estimator of a 2{pred} is: 

(2.38) 

which can be expressed as follows, using (2.30): 

[ 
I (Xh - X)2 ] 

s2{pred} = MSE 1 + - + L 2 
n (Xi - X) 

(2.38a) 

The Toluca Company studied the relationship between lot size and work hours primarily 
to obtain infonnation on the mean work hours required for different lot sizes for use in 
determining the optimum lot size. The company was also interested, however, to see whether 
the regression relationship is useful for predicting the required work hours for individual 
lots. Suppose that the next lot to be produced consists of X h = 100 units and that a 90 percent 
prediction interva1 is desired. We require t(.95; 23) = 1.714. From earlier work, we have: 

i\ = 419.4 MSE= 2,384 

Using (2.38), we obtain: 

s2{pred} = 2,384 + 203.72 = 2,587.72 

s{pred} = 50.87 

Hence, the 90 percent prediction interval for Yh(new) is by (2.36): 

419.4 - 1.714(50.87) .:s Yh(new) .:s 419.4 + 1.714(50.87) 

332.2 .:s Yh(new) .:s 506.6 

With confidence coefficient .90, we predict that the number of work hours for the next 
production run of 100 units will be somewhere between 332 and 507 hours. 

This prediction interval is rather wide and may not be too useful for planning worker 
requirements for the next lot. The interval can still be useful for control purposes, though. 
For instance, suppose that the actual work hours on the next lot of 100 units were 550 hours. 
Since the actual work hours fall outside the prediction limits, management would have an 
indication that a change in the production process may have occurred and would be alerted 
to the possible need for remedial action. . 

Note that the primary reason for the wide prediction interval is the large lot-to-Iot vari-
ability in work hours for any gi"\!en lot size; MSE = 2,384 accounts for 92 percent of 
the estimated prediction variance s2{pred} = 2,587.72. It may be that the large lot-to-Iot 
variability reflects other factors that affect the required number of work hours besides lot 
size, such as the amount of experience of employees assigned to the lot production. If so, a 
multiple regression model incorporating these other factors might lead to much more pre-
cise predictions. Alternatively, a designed experiment could be conducted to determine the 
main factors leading to the large lot-to-Iot variation. A quality improvement program would 
then use these findings to achieve more unifonn performance, for example, by additional 
training of employees if inadequate training accounted for much of the variability. 
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Comments 
I. The 90 percent prediction interval for Yh(new) obtained in the Toluca Company example is wider 

than the 90 percent confidence interval for E(Yh } obtained in Example 2 on page 55. The reason is 
that when predicting the work hours required for a new lot, we encounter both the variability in Y" 
from sample to sample as well as the lot-to-Iot variation within the probability distribution of Y. 

2. Formula (2.38a) indicates that the prediction interval is wider the further X" is from X. The 
reason for this is that the estimate of the mean Y,,, as noted earlier, is less precise as X" is located 
farther away from X. 

3. The prediction limits (2.36), unlike the confidence limits (2.33) for a mean response E(Y,J, 
are sensitive to departures from normality of the error terms distribution. In Chapter 3, we discuss 
diagnostic procedures for examining the nature of the probability distribution of the error terms, and 
we describe remedial measures if the departure from normality is serious. 1 

_fl 

4. The confidence coefficient for the prediction limits (2.36) refers to the taking of repeated 
samples based on the same set of X values, and calculating prediction limits for Y"(new) for each 
sample. 

5. Prediction limits (2.36) apply for a single prediction based on the sample data. Next, we discuss 
how to predict the mean of several new observations at a given x,,, and in Chapter 4 we take up how 
to make several predictions at different X" levels. 

6. Prediction intervals resemble confidence intervals. However, they differ conceptually. A confi-
dence interval represents an inference on a parameter and is an interval that is intended to cover the 
value of the parameter. A prediction interval, on the other hand, is a statement about the value t9be 
taken by a random variable, the new observation Yh(new). • 

Prediction of Mean of m New Observations for Given Xh 
Occasionally, one would like to predict the mean of m new observations on Y for a given 
level of the predictor variable. Suppose the Toluca Company has been asked to bid on a 
contract that calls for m = 3 production runs of Xh = 100 units during the next few months. 
Management would like to predict the mean work hours per lot for these three runs and 
then convert this into a prediction of the total work hours required to fill the contract. 

We denote the mean of the new Y observations to be predicted as Y h(new). It can be shown 
that the appropriate 1 - a prediction limits are, assuming that the new Y observations are 
independent: 

where: 

or equivalently: 

Yh ± t(1 - aj2; n - 2)s{predmean} 

2 MSE 2 s {predmean} = -- + s {Yh} 
m 

[ 
1 1 (Xh - X)2 ] 

s2 {predmean} = MSE - + - + L 2 
m n (Xi -X) 

Note from (2.39a) that the variance s2{predmean} has two components: 

(2.39) 

(2.39a) 

(2.39b) 

1. The variance of the mean of m observations from the probability distribution of Y at 
x= Xh • 

2. The variance of the sampling distribution of Yh • 
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In the Toluca Company example, let us find the 90 percent prediction interval for the mean 
number of work hours Y h(new) in three new production runs, each for Xh = 100 units. From 
previous work, we have: 

Yh = 419.4 
MSE= 2,384 

S2{Yh} = 203.72 

t(.95;23) = 1.714 

Hence, we obtain: 
2,384 

s2{predmean} = -3- + 203.72 = 998.4 

s{predmean} = 31.60 

The prediction interval for the mean work hours per lot then is: 

419.4 - 1.714(31.60) :s i\(new) :s 419.4 + 1.714(31.60) 

365.2 :s i\(new) :s 473.6 
Note that these prediction limits are narrower than those for predicting the work hours 

for a single lot of 100 units because they involve a prediction of the mean work hours for 
three lots. 

We obtain the prediction interval for the total number of work hours for the three lots by 
multiplying the prediction limits for i\(new) by 3: 

1,095.6 = 3(365.2):s Total work hours:s 3(473.6) = 1,420.8 

Thus, it can be predicted with 90 percent confidence that between 1,096 and 1,421 work 
hours will be needed to fill the contract for three lots of 100 units each. 

Comment 
The 90 percent prediction interval for Y,,(new), obtained for the Toluca Company example above, is 
narrower than that obtained for Y"(new) on page 59, as expected. Furthermore, both of the prediction in-
tervals are wider than the 90 percent confidence intervalfor E (Y,J obtained in Example 2 on page 55-
also as expected. • 

2.6 Confidence-Band for Regression Line 
At times we would like to obtain a confidence band for the entire regression line E{Y} = 
f30 + f3,X. This band enables us to see the regionjn which the entire regression line lies. It 
is particularly useful for determining the appropriateness of a fitted regression function, as 
we explain in Chapter 3. 

The Working-Hotelling 1 - ex confidence band for the regression line for regression . , 
model (2.1) has the folloWlllg boundary values at any level Xh : 

(2.40) 
where: 

w2 = 2F(1 - ex; 2, n - 2) (2.40a) 
and Yh and S{Yh} are defined in (2.28) and (2.30), respectively. Note that the formula 
for the boundary values is of exactly the same form as formula (2.33) for the confidence 
limits for the mean response at Xh, except that the t mUltiple has been replaced by the W 
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Example 

multiple. Consequently, the boundary points of the confidence band for the regression line 
are wider apart the further Xh is from the mean X of the X observations. The W multiple 
will be larger than the t multiple in (2.33) because the confidence band must encompass 
the entire regression line, whereas the confidence limits for E{Yh } at Xh apply only at the 
single level X h. 

We wish to determine how precisely we have been able to estimate the regression function 
for the Toluca Company example by obtaining the 90 percent confidence band for the 
regression line. We illustrate the calculations of the boundary values of the confidence band 
when Xh = 100. We found earlier for this case: 

s{i\} = 14.27 

We now require: 

W2 = 2F(1 - a; 2, n - 2) = 2F(.90; 2, 23) = 2(2.549) = 5.098 

W = 2.258 

Hence, the boundary values of the confidence band for the regression line at Xh = 100 are 
419.4 ± 2.258(14.27), and the confidence band there is: 

387.2::s f30 + f3,Xh ::s 451.6 for Xh = 100 

In similar fashion, we can calculate the boundary values for other values of Xh by 
obtaining Yh and S{Yh} for each Xh level from (2.28) and (2.30) and then finding the 
boundary values by means of (2.40). Figure 2.6 contains a plot of the confidence band for 
the regression line. Note that at Xh = 100, the boundary values are 387.2 and 451.6, as we 
calculated earlier. 

We see from Figure 2.6 that the regression line for the Toluca Company example has 
been estimated fairly precisely. The slope of the regression line is clearly positive, and the 
levels of the regression line at different levels of X are estimated fairly precisely except for 
small and large lot sizes. 
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Comments 
1. The boundary values of the confidence band for the regression line in (2.40) define a hyperbola, 

as may be seen by replacing Yh and s{Y,J by their definitions in (2.28) and (2.30), respectively: 

[
1 (X-XY ]1/2 

bo + blX ± W.JMSE - + L 2 n (Xi - X) 
(2.41) 

2. The boundary values of the confidence band for the regression line at any value Xh often are 
not substantially wider than the confidence limits for the mean response at that single X h level. In 
the Toluca Company example, the t multiple for estimating the mean response at Xh = 100 with a 
90 percent confidence interval was t(.95; 23) = 1.714. This compares with the W multiple for the 
90 percent confidence band for the entire regression line of W = 2.258. With the somewhat wider 
limits for the entire regression line, one is able to draw conclusions about any and all mean responses 
for the entire regression line and not just about the mean response at a given X level. Some uses of 
this broader base for inference will be explained in the next two chapters. l. 

3. The confidence band (2.40) applies to the entire regression line over all real-numbered values 
of X from -(X) to 00. The confidence coefficient indicates the proportion of time that the estimating 
procedure will yield a band that covers the entire line, in a long series of samples in which the X 
observations are kept at the same level as in the actual study. 

In applications, the confidence band is ignored for that part of the regression line which is not 
of interest in the problem at hand. In the Toluca Company example, for instance, negative lot sizes 
would be ignored. The confidence coefficient for a limited segment of the band of interest is somewhat 
higher than 1 - a, so 1 - a serves then as a lower bound to the confidence coefficient. 

4. Some alternative procedures for developing confidence bands for the regression line have been 
developed. The simplicity of the Working-Hotelling confidence band (2.40) arises from the fact that 
it is a direct extension of the confidence limits for a single mean response in (2.33). • 

2.7 Analysis of Variance Approach to Regression Analysis 
We now have developed the basic regression model and demonstrated its major uses. At 
this point, we consider the regression analysis from the perspective of analysis of variance. 
This new perspective will not enable us to do anything new, but the analysis of variance 
approach will come into its own when we take up mUltiple regression models and other 
types of linear statistical models. 

Partitioning of Total Sum of Squares 
Basic Notions. The analysis of variance approach is based on the partitioning of sums 
of squares and degrees of freedom associated with the t:esponse variable Y. To explain the 
motivation of this approach, consWer again the Toluca Company example. Figure 2.7a shows 
the observations Yi for the first two production runs presented in Table 1.1. Disregarding 
the lot sizes, we see that there is variation in the number of work hours Yi , as in all statistical 
data. This variation is conventionally measured in tenus of the-deviations of the Yi around 
their mean Y: 

Yi-Y (2.42) 
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FIG U RE 2.7 Illustration of Partitioning of lOtal Deviations Y i - Y - lOluca Company Example (not drawn to 
scale; only observations Y 1 and Y 2 are shown). 
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These deviations are shown by the vertical lines in Figure 2.7a. The measure of total 
variation, denoted by SSTO, is the sum of the squared deviations (2.42): 

SSTO = 2:(Yi - y)2 (2.43) 

Here SSTO stands for total sum of squares. If all Yi observations are the same, SSTO = O. 
The greater the variation among the Yj observations, the larger is SSTO. Thus, SSTO for 
our example is a measure of the uncertainty pertaining to the work hours required for a lot, 
when the lot size is not taken into account. 

When we utilize the predictor variable X, the variation reflecting the uncertainty con-
cerning the variable Y is that of the Yi observations around the fitted regression line: 

(2.44) 

These deviations are shown by the vertical lines in Figure 2.7b. The measure of variation 
in the Yi observations that is present when the predictor variable X is taken into account is 
the sum of the squared deviations (2.44), which is the familiar SSE of (1.21): 

'" A 2 SSE = L..,.(Yi - Y j ) (2.45) 

Again, SSE denotes error sum of squares. If all Y; observations fall on the fitted regression 
line, SSE = O. The greater the variation of the Yi observations around the fitted regression 
line, the larger is SSE. 

For the Toluca Company example, we know from earlier work (Table 2.1) that: 

SSTO = 307,203 SSE = 54,825 

What accounts for the substantial difference between these two sums of squares? The 
difference, as we show shortly, is another sum of squares: 

(2.46) 
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where SSR stands for regression sum of squares. Note that SSR is a sum of squared deviations, 
the deviations being: 

(2.47) 

These deviations are shown by the vertical lines in Figure 2.7c. Each deviation is simply the 
difference between the fitted value on the regression line and the mean of the fitted values 
Y. (Recall from (1.18) that the mean of the fitted values Yi is Y.) lfthe regression line is 
horizontal so that Yi - Y == 0, then SSR = O. Otherwise, SSR is positive. 

SSR may be considered a measure of that part of the variability of the Yi which is 
associated with the regression line. The larger SSR is in relation to SSTO, the greater is the 
effect of the regression relation in accounting for the total variation in the Yi observations. 

For the Toluca Company example, we have: 

SSR = SSTO - SSE = 307,203 - 54,825 = 252,378 

which indicates that most of the total variability in work hours is accounted for by the 
relation between lot size and work hours. 

Formal Development of Partitioning. The total deviation Yi - Y, used in the measure of 
the total variation of the observations Yi without taking the predictor variable into account, 
can be decomposed into two components: 

(2.48) 
Total Deviation Deviation 

deviation of fitted around 
regression fitted 

value regression 
around mean line 

The two components are: 

1. The deviation of the fitted value Yi around the mean Y. 
2. The deviation of the observation Yi around the fitted regression line. 

Figure 2.7 shows this decomposition for observation Y, by the broken lines. 
It is a remarkable property that the sums of these squared deviations have the same 

relationship: 

'" -2 "'A -2", A2 L.)Yi - Y) = L..,.(Yi - Y) + L..,.(Yi - Yi) (2.49) 

or, using the notation in (2.43), (2.45), and (2.46): 
f 

SSTO = SSR + SSE (2.50) 

To prove this basic result in the analysis of variance, we proceed as follows: 

2::(Yi - y)2 = 2::[(Yi - Y) + (Yi - yi)]2 

= 2::[(Yi - y)2 + (Yi - yi)2 + 2(Yi - Y)(Y; - Yi)] 

= 2::(y; - y)2 + 2::(Yi - yi)2 + 22::(Yi - Y)(Yi - Yi) 
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The last tenn on the right equals zero, as we can see by expanding it: 

22)Yi - Y)(Yi - Yi) = 2:L Yi(Yi - Yi) - 2Y :L(Yi - Yi) 

The first summation on the right equals zero by (1.20), and the second equals zero by (1.17). 
Hence, (2.49) follows. 

Comment 
The formulas for ssro, SSR, and SSE given in (2.43), (2.45), and (2.46) are best for computational 
accuracy. Alternative formulas that are algebraically equivalent are available. One that is useful for 
deriving analytical results is: 

2,", - 2 SSR = hI L..(Xi - X) (2.51) 

• 
Breakdown of Degrees of Freedom 

Corresponding to the partitioning of the total sum of squares SSTO, there is a partitioning 
of the associated degrees of freedom (abbreviated df). We have n - 1 degrees of freedom 
associated with SSTO. One degree of freedom is lost because the deviations Yi -'- Y are 
subject to one constraint: they must sum to zero. Equivalently, one degree of freedom is 
lost because the sample mean Y is used to estimate the population mean. 

SSE, as noted earlier, has n - 2 degrees of freedom associated with it. Two degrees of 
freedom are lost because the two parameters f30 and f3I are estimated in obtaining the fitted 
values Yi • 

SSR has one degree of freedom associated with it. Although there are n deviations Yi - Y, 
all fitted values Yi are calculated from the same estimated regression line. Two degrees of 
freedom are associated with a regression line, corresponding to the intercept and the slope 
of the line. One of the two degrees of freedom is lost because the deviations t - Y are 
subject to a constraint: they must sum to zero. 

Note that the degrees of freedom are additive: 

n - 1 = 1 + (n - 2) 

For the Toluca Company example, these degrees of freedom are: 

24 = 1 +23 

Mean Squares 
A sum of squares divided by its associated degrees of freedom is called a mean square 
(abbreviated MS). For instance, an ordinary sample variance is a mean square since a sum 
of squares, 2:)Yi - y)2, is divided by its associated degrees of freedom, n - 1. We are 
interested here in the regression mean square, denoted by MSR: 

SSR 
MSR=-=SSR 

1 
and in the error mean square, MSE, defined earlier in (1.22): 

SSE 
MSE=--

n-2 

(2.52) 

(2.53) 
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For the Toluca Company example, we have SSR = 252,378 and SSE = 54,825. Hence: 
252378 

MSR = i = 252,378 

Also, we obtained earlier: 
54,825 

MSE= -- =2384 
23 ' 

Comment 
The two mean squares MSR and MSE do not add to 

ssm = 307,203 = 12,800 
(n - I) 24 

Thus, mean squares are not additive. • 
Analysis of Variance Table 

TABLE 2.2 
ANOVA Table 
for Simple 
Linear 
Regression. 

Basic Table. The breakdowns of the total sum of squares and associated degrees of 
freedom are displayed in the form of an analysis of variance table (ANOVA table) in 
Table 2.2. Mean squares of interest also are shown. In addition, the ANOVA table contains 
a column of expected mean squares that will be utilized shortly. The ANOVA table for the 
Toluca Company example is shown in Figure 2.2. The columns for degrees of freedom and 
sums of squares are reversed in the MINITAB output. 

Modified Table. Sometimes an ANOVA table showing one additional element of decom-
position is utilized. This modified table is based on the fact that the total sum of squares 
can be decomposed into two parts, as follows: 

'" - 2 '" 2 -2 SSTO = L...-(Yi - Y) = L...- Y; - nY 

In the modified ANOVA table, the total uncorrected sum of squares, denoted by SSTOU, 
is defined as: 

SSTOU = 2:: Y? (2.54) 

and the correction for the mean sum of squares, denoted by SS(correction for mean), is 
defined as: 

SS(correction for mean) = ny2 (2.55) 

Table 2.3 shows the general format of this modified ANOVA table. While both typ.es of 
ANOVA tables are widely used, we shall usually utilize the basic type of table. 

Source of 
Variation SS df \M5 E{MS} 

Regression SSR = L:(}/j - Y)2 • 1 
'SSR' MSR , ..... , .=y 'a:2 +' R2Vc'(X" X'"')2 ., '1-'1 L;j' /"-,, . 

Error SSE = L:(Yj - }/j)2 n-'2 
.n.-i2 

Total ssm = L:( y)2 17-1 
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TABLE 2.3 Source of Modified Variation 55 df M5 ANOVA Thble 
for Simple Regression SSR = 2:(}/i - y)2 1 MSR=; SSR 
Linear . .... 1 

Regression. Error SSE = 2:(Yi - }/i)2 n-:- 2 MSE= . SSE .. 
... n-2 

Total SSTO = 2:(Y;- y)2 n-l 

Correction for mean SS( correction 1 
for mean) =. ny2 

Total, uncorrected SSTOU= 2: Yl n ....,/ 

Expected Mean Squares 
In order to make inferences based on the analysis of variance approach, we need tq know 
the expected value of each of the mean squares. The expected value of a mean square is the 
mean of its sampling distribution and tells us what is being estimated by the mean square. 
Statistical theory provides the following results: 

E{MSE} = a 2 

E {MSR} = a 2 + l)X i - X)2 

(2.56) 

(2.57) 

The expected mean squares in (2.56) and (2.57) are shown in the analysis of variance table 
in Table 2.2. Note that result (2.56) is in accord with our earlier statement that MSE is an 
unbiased estimator of a 2 . 

1\vo important implications of the expected mean squares in (2.56) and (2.57) are the 
following: 

1. The mean of the sampling distribution of MSE is a 2 whether or not X and Y are linearly 
related, i.e., whether or not f3, = o. 

2. The mean of the sampling distribution of MSR is also a 2 when f3, = O. Hence, when 
f3, = 0, the sampling distributions of MSR and MSE are located identically and MSR and 
MSE will tend to be of the same order of magnitude. 

On the other hand, when f3, =1= 0, the mean of the sampling distribution of MSR is 
greater than a 2 since the term N 2:(Xi - X)2 in (2.57) then must be positive. Thus, 
when f31 =1= 0, the mean of the sampling distribution of MSR is located to the right of that 
of MSE and, hence, MSR will tend to be larger than MSE. 

This suggests that a comparison of MSR and MSE is useful for testing whether or not 
f3, = O. If MSR and MSE are of the same order of magnitude, this would suggest that f31 = O. 
On the other hand, if MSR is substantially greater than MSE, this would suggest that f3, =1= O. 
This indeed is the basic idea underlying the analysis of variance test to be discussed next 

Comment 
The derivation of (2.56) follows from theorem (2.11), which states that SSE/a 2 x2 (n - 2) 
for regression model (2.1). Hence, it follows from property (A.42) of the chi-square distribution 
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that: 

or that: 

E{S:;} =n-2 

E{ SSE} = E(MSE} = a 2 

n-2 
To find the expected value of MSR, we begin with (2.51): 

2,", -2 SSR = b, L..(Xi - X) 

Now by (A.1Sa), we have: 

a 2{b.} = E{bi} - (E{bd)2 

We know from (2.3a) that E(b.) = f3, and from (2.3b) that: 

a 2 

a
2
(b,} = L(X

i 
- )(.)2 

Hence, substituting into (2.58), we obtain: 

2 a 2 
2 

E{b'}=L -2+ f3 , (Xi - X) 

It now follows that: 

Finally, E{MSR} is: 

f Test of {J 1 = 0 versus {JI ::f:. 0 

(2.58) 

• 
The analysis of variance approach provides us with a battery of highly useful tests for 
regression models (and other linear statistical models). For the simple linear regression 
case considered here, the analysis of variance provides us with a test for: 

Ho: f3, = 0 
Ha: f3, =1= 0 

(2.59) 

Test Statistic. The test statistic for the analysis of variance approach is denoted by F*. 
As just mentioned, it compares MSR and MSE in the following fashion: 

F* = MSR (2.60) 
MSE 

The earlier motivation, based on the expected mean squares in Table 2.2, suggests that large 
values of F* support Ha and values of F* near 1 support Ho. In other words, the appropriate 
test is an upper-tail one.' 

Sampling Distribution of F*. In order to be able to construct a statistical decision rule 
and examine its properties, we need to know the sampling distribution of F*. We begin by 
considering the sampling distribution of F* when Ho (f3, = 0) holds. Cochran's theorem 



70 Part Or.1e Simple Linear Regression 

will be most helpful in this connection. For our purposes, this theorem can be stated as 
follows: 

If all n observations Yi come from the same normal distribution with 
mean fJ, and variance a 2 , and SSTO is decomposed into k sums of 
squares SS,., each with degrees of freedom df,., then the SS,./ a 2 terms 
are independent X2 variables with df,. degrees of freedom if: 

k 

2:4fr=n-l 
1"=1 

j?' 

(2.61) 

Note from Table 2.2 that we have decomposed SSTO into the two sums of squares SSR 
and SSE and that their degrees of freedom are additive. Hence: 

If f3, = 0 so that all Yi have the same mean fJ, = f30 and the same 
variance a 2, SSE/a2 and SSR/a 2 are independent X2 variables. 

Now consider test statistic F*, which we can write as follows: 

SSR SSE 
a 2 a 2 MSR F*=--...;---=--
1 n -2 MSE 

But by Cochran's theorem, we have when Ho holds: 

when Ho holds 

where the X 2 variables are independent. Thus, when Ho holds, F* is the ratio of two 
independent X2 variables, each divided by its degrees of freedom. But this is the definition 
of an F random variable in (A.47). 

We have thus established that if Ho holds, F* follows the F distribution, specifically the 
F(I, n - 2) distribution. 

When Ha holds, it can be shown that F* follows the noncentral F distribution, a complex 
distribution that we need not consider further at this time. 

Comment 
Even if f31 1= 0, SSR and SSE are independent and SSE/a2 X2 • However, the condition that both 
SSR/a2 and SSE/a2 are X2 random variables requires f31 = O. • 

Construction of Decision Rule. Since the test is upper-tail and F* is distributed as 
F(I, n - 2) when Ho holds, the decision rule is as follows when the risk of a Type I error 
is to be controlled at a: 

If F* :s F(1 - a; 1, n - 2), conclude Ho 
If F* > F(1 - a; 1, n - 2), conclude Ha 

(2.62) 

where F(l - a; 1, n - 2) is the (1 - a)lOO percentile of the appropriate F distribution. 
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For the Toluca Company example, we shall repeat the earlier test on f3" this time using the 
F test. The alternative conclusions are: 

Ho: f3, = 0 

Ha: f3, =1= 0 

As before, leta = .05. Sincen = 25, we require F(.95; 1,23) = 4.28. Thedecisionruleis: 

If F* .:s 4.28, conclude Ho 
If F* > 4.28, conclude Ha 

We have from earlier that MSR = 252,378 and MSE = 2;384. Hence, F* is: 

F* = 252,378 = 105.9 
2,384 

Since F* = 105.9 > 4.28, we conclude Ha, that f3, =1= 0, or that a linear 
association between work hours and lot size. This is the same result as when the t test was 
employed, as it must be according to our discussion below. 

The MINITAB output in Figure 2.2 on page 46 shows the F* statistic in the column 
labeled F. Next to it is shown the P-value, P{F(I, 23) > 105.9}, namely, 0+, indicating 
that the data are not consistent with f3, = o. 
Equivalence of F Test and t Test. For a given a level, the F test of f3, = 0 versus f3, =1= 0 
is equivalent algebraically to the two-tailed t test. To see this, recall from (2.51) that: 

Thus, we can write: 

2'" - 2 SSR = bl L..(X; - X) 

F* = __ SS_R_-_: _1_ 
SSE + (n -2) 

biLex; - X)2 
MSE 

b2 (b)2 
F* = = = (t*)2 (2.63) 

The last step follows because the t* statistic for testing whether or not f3, = 0 is by' (2.17): 

* b, t =--
s{bd 

In the Toluca Company example, we just calculated that F* = 105.9. From earlier work, 
we have t* = 10.29 (see Figure 2.2). We thus see that (10.29)2 = 105.9. 

Corresponding to the relation between t* and F*, we have the following relation between 
the required percentiles of the t and F distributions for the tests: [t(1 - a12; n - 2)]2 = 
F(1 - a; 1, n - 2). In our tests on f3" these percentiles were [t(.975; 23)f = (2.069)2 = 
4.28 = F(.95; 1,23). Remember that the t test is two-tailed 'Whereas the F test is one-tailed. 

Thus, at any given a level, we can use either the t test or the F test for testing f31 = 0 
versus f31 =1= O. Whenever one test leads to Ho, so will the other, and correspondingly for Ha. 
The t test, however, is more flexible since it can be used for one-sided alternatives involving 
f3, (.:s 2:) 0 versus f3, (> <) 0, while the F test cannot. 
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2.8 General Linear Test Approach 

Full Model 

The analysis of variance test of f31 = 0 versus f31 =1= 0 is an example of the general test for 
a linear statistical model. We now explain this general test approach in terms of the simple 
linear regression model. We do so at this time because of the generality of the approach 
and the wide use we shall make of it, and because of the simplicity of understanding the 
approach in terms of simple linear regression. 

The general linear test approach involves three basic steps, which we now describe in 
tum. 

-f? 

We begin with the model to be appropriate for the data, which in this context is 
called the full or unrestricted model. For the simple linear regression case, the full model is 
the normal error regression model (2.1): 

Full model (2.64) 

We fit this full model, either by the method of least squares or by the method of maximum 
likelihood, and obtain the error sum of squares. The error sum of squares is the sum of the 
squared deviations of each observation Yi around its estimated expected value. In this 
context, we shall denote this sum of squares by SSE( F) to indicate that it is the error sum 
of squares for the full model. Here, we have: 

(2.65) 

Thus, for the full model (2.64), the error sum of squares is simply SSE, which measures the 
variability of the Yi observations around the fitted regression line. 

Reduced Model 
Next, we consider Ho. In this instance, we have: 

Ho: f31 = 0 
Ha: f3, =1= 0 

(2.66) 

The model when Ho holds is called the reduced or restricted model. When f31 = 0, 
model (2.64) reduces to: 

Yj = f30 +8j Reduced model (2.67) 

We fit this reduced model, by either the method of least squares or the method of 
maximum likelihood, and obtain the error sum of squares for this reduced model, denoted 
by SSE(R). When we fit the particular reduced model (2.67), it can be shown that the least 
squares and maximum likelihood estimator of f30 is Y. Hence, the estimated expected value 
for each observation is ho = Y, and the error sum of squares for this reduced model is: 

SSE(R) = 2:(Yi - hoi = 2:(Yi - y)2 = SSTO (2.68) 
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Summary 
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The logic now is to compare the two error sums of squares SSE(F) and SSE(R). It can be 
shown that SSE(F) never is greater than SSE(R): 

SSE (F) .::5 SSE(R) (2.69) 

The reason is that the more parameters are in the model, the better one can fit the data 
and the smaller are the deviations around the fitted regression function. When SSE (F) is 
not much less than SSE(R), using the full model does not account for much more of the 
variability of the Y; than does the reduced model, in which case the data suggest that the 
reduced model is adequate (i.e., that Ho holds). To put this another way, when SSE(F) is 
close to SSE(R), the variation of the observations around the fitted regression function for 
the full model is almost as great as the variation around the fitted regression function for 
the reduced model. In this case, the added parameters in the full model really do not help to 
reduce the variation in the Y; about the fitted regression function. Thus, a small difference 
SSE(R) - SSE(F) suggests that Ho holds. On the other hand, a large difference suggests that 
Ha holds because the additional parameters in the model do help to reduce substantially the 
variation of the observations Yi around the fitted regression function. 

The actual test statistic is a function of SSE(R) - SSE (F), namely: 

SSE(R) - SSE(F) SSE (F) F* - ...:...---
- 4fR - 4fF . d!F 

(2.70) 

which follows the F distribution when Ho holds. TIle degrees of freedom 4fR and d!F are 
those associated with the reduced and full model error sums of squares, respectively. Large 
values of F* lead to Ha because a large difference SSE(R) - SSE(F) suggests that Ha holds. 
The decision rule therefore is: 

If F* .::5 F(l- a;4fR - d!F, d!F), conclude Ho 
If F* > F(l - a;4fR - d!F, d!F), conclude Ha 

For testing whether or not f31 = 0, we therefore have: 

SSE(R) = SSTO 
4fR=n-1 

so that we obtain when substituting into (2.70): 

SSE (F) = SSE 
d!F =n-2 

SSTO - SSE SSE 
F*=------

SSR SSE 
-1--'-n-2 (n - 1) - (n - 2) -,- n - 2 

which is identical to the analysis of vru;iance test statistic (2.60). 

MSR 
MSE 

(2.71) 

The general linear test approach can be used for highly complex tests of linear statistical 
models, as well as for simple tests. The basic steps in summary form are: 

1. Fit the full model and obtain the error sum of squares SSE (F). 
2. Fit the reduced model under Ho and obtain the error sum of squares SSE(R). 
3. Use test statistic (2.70) and decision rule (2.71). 
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2.9 Descriptive Measures of Linear Association between X and Y 
We have discussed the major uses of regression analysis-estimation of parameters and 
means and prediction of new observations-without mentioning the "degree of linear 
association" between X and Y, or similar terms. The reason is that the usefulness of estimates 
or predictions depends upon the width of the interval and the user's needs for precision, 
which vary from one application to another. Hence, no single descriptive measure of the 
"degree of linear association" can capture the essential information as to whether a given 
regression relation is useful in any particular application. 

Nevertheless, there are times when the degree of linear association is of interest in its 
own right. We shall now briefly discuss two descriptive measures that used 
in practice to describe the degree of linear association between X and Y: 

Coefficient of Determination 
We saw earlier that SSTO measures the variation in the observations Yi , or the uncertainty in 
predicting Y, when no account of the predictor variable· X is taken. Thus, SSTO is a measure 
of the uncertainty in predicting Y when X is not considered. Similarly, SSE measures the 
variation in the Yi when a regression model utilizing the predictor variable X is employed. 
A natural measure of the effect of X in reducing the variation in Y, i.e., in reducing the 
uncertainty in predicting Y, is to express the reduction in variation (SSTO - SSE = SSR) 
as a proportion of the total variation: 

(2.72) 

The measure R2 is called the coefficient of determination. Since 0 .:s SSE .:s SSTO, it 
follows that: 

(2.72a) 

We may interpret R2 as the proportionate reduction of total variation associated with 
the use of the predictor variable X. Thus, the larger R2 is, the more the total variation of 
Y is reduced by introducing the predictor variable X. The limiting values of R2 occur as 
follows: 

1. When all observations fallon the fitted regression line, then SSE = 0 and R2 = 1. 
This case is shown in Figure 2.8a. Here, the predictor variable X accounts for all variation 
in the observations Yi • 

2. When the fitted regression line is horizontal so that hI = 0 and Yi == Y, then SSE = 
SSTO and R2 = O. This case is shown in Figure 2.8b. Here, there is no linear association 
between X and Y in the sample data, and the predictor variable X is of no help in reducing 
the variation in the observations Yi with linear regression. 

In practice, R2 is not likely to be 0 or 1 but somewhere between these limits. The closer 
it is to 1, the greater is said to be the degree of linear association between X and Y. 
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(a) R2 = 1 (b) R2 = 0 
y 

Y= Y 

x 

. ). 
For the Toluca Company example, we obtamed SSTO = 307,203 and SSR = 252,378. 
Hence: 

R2 = 252,378 = .822 
307,203 

Thus, the variation in work hours is reduced by 82.2 percent when lot size is considered. 
The MINITAB output in Figure 2.2 shows the coefficient of determination R2 labeled 

as R-sq in percent fOnD. The output also shows the coefficient R-sq(adj), which will be 
explained in Chapter 6. 

limitations of R2 
We noted that no single measure will be adequate for describing the usefulness of a regres-
sion model for different applications. Still, the coefficient of determination is widely used. 
Unfortunately, it is subject to serious misunderstandings. We consider now three common 
misunderstandings: 

Misanderstanding 1. A high coefficient of determination indicates that useful 
predictions can be made. This is not necessarily correct. In the Toluca Company 
example, we saw that the coefficient of determination was high (R2 = .82). Yet the 
90 percent prediction interval for the next lot, consisting of 100 units, was wide (332 
to 507 hours) and not precise enough to pennit management to schedule workers 
effectively. 
Misunderstanding 2. A high coefficient of determination indicates that the estimated 
regression line is a good jit;-Again, this is not necessarily correct. Figure 2.9a shows 
a scatter plot where the coefficient of determiI\ation is high (R2 = .69). Yet a linear 
regression function would not be a good fit since the regression relation is curvilinear. 
Misunderstanding 3. A coefficienrof determination near zero indicates that X and Y 
are not related. This also is not necessarily correct. Figure 2.9b shows a scatter plot 
where the coefficient of determination between X and Y is R2 = .02. Yet X and Y are 
strongly related; however, the relationship between the two variables is curvilinear. 
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FIGURE 2.9 
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Misunderstanding 1 arises because R2 measures only a relative reduction from SSTO 
and provides no information about absolute precision for estimating a mean response or 
predicting a new observation. Misunderstandings 2 and 3 arise because R2 measures the 
degree of linear association between X and Y, whereas the actual regression relation may 
be curvilinear. 

Coefficient of Correlation 

Example 

A measure of linear association between Y and X when both Y and X are random is the 
coefficient of correlation. This measure is the signed square root of R2: 

r=±-JR.2 (2.73) 

A plus or minus sign is attached to this measure according to whether the slope of the fitted 
regression line is positive or negative. Thus, the range of r is: -1 .:s r .:s 1. 

For the Toluca Company example, we obtained R2 = .822. Treating X as a random variable, 
the correlation coefficient here is: 

r = +.J.822 = .907 

The plus sign is affixed since hI is positive. We take up the topic of correlation analysis in 
more detail in Section 2.11. 

Comments 
1. The value taken by R2 in a given sample tends to be affected by the spacing of the X observations. 

This is implied in (2.72). SSE is not affected systematically by the spacing of the Xi since, for regression 
model (2.1), 0-2 (Yd = 0-2 at all X levels. However, the wider the spacing of the Xi in the sample 
when b I 1= 0, the greater will tend to be the spread of the observed Yi around Y and hence the greater 
ssro will be. Consequently, the wider the Xi are spaced, the higher R2 will tend to be. 

2. The regression sum of squares SSR is often called the "explained variation" in Y, and the residual 
sum of squares SSE is called the "unexplained variation." The coefficient R2 then is interpreted in terms 
of the proportion of the total variation in Y (ssrO) which has been "explained" by X. Unfortunately, 
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this terminology frequently is taken literally and, hence, misunderstood. Remember that in a regression 
model there is no implication that Y necessarily depends on X in a causal or explanatory sense. 

3. Regression models do not contain a parameter to be estimated by R2 or r. These are simply 
descriptive measures of the degree of linear association between X and Y in the sample observations 
that may, or may not, be useful in any instance. • 

Considerations in Applying Regression Analysis 
We have now discussed the major uses of regression analysis-to make inferences about 
the regression parameters, to estimate the mean response for a given X, and to predict 
a new observation Y for a given X. It remains to make a 'few cautionary remarks about 
implementing applications of regression analysis. 

1. Frequently, regression analysis is used to make inferences for the future. For instance, 
for planning staffing requirements, a school board may wish to predict future enrollments by 
using a regression model containing several demographic variables as predictor variables. 
In applications of this type, it is important to remember that the validity of the regression 
application depends upon whether basic causal conditions in the Period ahead will be similar 
to those in existence during the period upon which the regression analysis is based. This 
caution applies whether mean responses are to be estimated, new observations predicted, 
or regression parameters estimated. 

2. In predicting new observations on Y, the predictor variable X itself often has to be 
predicted. For instance, we mentioned earlier the prediction of company sales for next year 
from the demographic projection of the number of persons 16 years of age or older next 
year. A prediction of company sales under these circumstances is a conditional prediction, 
dependent upon the correctness of the population projection. It is easy to forget the condi-
tional nature of this type of prediction. 

3. Another caution deals with inferences pertaining to levels of the predictor variable 
that fall outside the range of observations. Unfortunately, this situation frequently occurs 
in practice. A company that predicts its sales from a regression relation of company sales 
to disposable personal income will often find the level of disposable personal income of 
interest (e.g., for the year ahead) to fall beyond the range of past data. If the X level does 
not fall far beyond this range, one may have reasonable confidence in the application of the 
regression analysis. On the other hand, if the X level falls far beyond the range of past data, 
extreme caution should be exercised since one cannot be sure that the regression function 
that fits the past data is appropriate over the wider range of the predictor variable. 

4. A statistical test that leads to the conclusion that f3, =1= 0 does not establish a cause-
and-effect relation between the predictdr and response variables. As we noted in Chapter I, 
with nonexperimental data both the X and Y variables may be simultaneously influenced by 
other variables not in the regression model. On the other hand, the existence of a regression 
relation in controlled experiments is often good evidence of a cause-and-effect relation. . 

5. We should note again that frequently we wish to estimate several mean responses 
or predict several new observations for different levels of the predictor variable, and that 
special problems arise in this case. The confidence coefficients for the limits (2.33) for 
estimating a mean response and for the prediction limits (2.36) for a new observation apply 
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only for a single level of X for a given sample. In Chapter 4, we discuss how to make 
multiple inferences from a given sample. 

6. Finally, when observations on the predictor variable X are subject to measurement 
errors, the resulting parameter estimates are generally no longer unbiased. In Chapter 4, we 
discuss several ways to handle this situation. 

2 .11 Normal Correlation Models 
Distinction between Regression and Correlation Model 

T 
The normal error regression model (2.1), which has been used throughout this chapter 
and which will continue to be used, assumes that the X values are known constants. As a 
consequence of this, the confidence coefficients and risks of errors refer to repeated sampling 
when the X values are kept the same from sample to sample. 

Frequently, it may not be appropriate to consider the X values as known constants. For 
instance, consider regressing daily bathing suit sales by a department store on mean daily 
temperature. Surely, the department store cannot control daily temperatures, so it would not 
be meaningful to think of repeated sampling where the temperature levels are the same from 
sample to sample. As a second example, an analyst may use a correlation model for the two 
variables "height of person" and "weight of person" in a study of a sample of persons, each 
variable being taken as random. The analyst might wish to study the relation between the 
two variables or might be interested in making inferences about weight of a person on the 
basis of the person's height, in making inferences about height on the basis of weight, or in 
both. 

Other examples where a correlation model, rather than a regression model, may be 
appropriate are: 

1. To study the relation between service station sales of gasoline, and sales of auxiliary 
products. 

2. To study the relation between company net income determined by generally accepted 
accounting principles and net income according to tax regulations. 

3. To study the relation between blood pressure and age in human subjects. 

The correlation model most widely employed is the normal correlation modeL We discuss 
it here for the case of two variables. 

Bivariate Normal Distribution 
The normal correlation model for the case of two variables is based on the bivariate normal 
distribution. Let us denote the two variables as YI and Y2. (We do not use the notation X and 
Y here because both variables playa symmetrical role in correlation analysis.) We say that 
YI and Y2 are jointly normally distributed if the density function of their joint distribution 
is that of the bivariate normal distribution. 
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Density Function. The density function of the bivariate nonna! distribution is as follows: 

{ [( )

2 1 1 Y I - MI 
f(Y" Y2) = exp - 2· 

2na,a2v1 - Pf2 2(1- P12) al 

(2.74) 

Note that this density function involves five parameters: M" M2, a" a2, P12. We shall explain 
the meaning of these parameters shortly. First, let us consider a graphic representation of 
the bivariate normal distribution. 

Figure 2.10 contains a SYSTAT three-dimensional plot of a bivariate normal probability 
distribution. The probability distribution is a surface in three-dimensional space. For every 
pair of (Y" Y2) values, the density f(Y" Y2) represents the height of the surface at that 
point. The surface is continuous, and probability corresponds to volume under the surface. 

Marginal Distributions. If Y I and Y2 are jointly normally distributed, it can be shown 
that their marginal distributions have the following characteristics: 

The marginal distribution of Y I is normal with mean MI 
and standard deviation a I: 

1 [1 (YI - M I ) 2] fl(YI ) = I'C exp --
v 2nal 2 al 

I 

The marginal.distribution of Y2 is normal with mean M2 
and standard deviation a2: 

1 [ . I (Y2 - M2) 2] 
h(Y2) = ,J2:iia2 exp - 2 a2 

(2.75 b) 

Thus, when Y I and Y2 are jointly normally distributed, each of the two variables by itself 
is normally distributed. The converse, however, is not generally true; if Y I and Y2 are each 
normally distributed, they need not be jointly normally distributed in accord with (2.74). 
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Meaning of Parameters. The five parameters of the bivariate nonnal density func-
tion (2.74) have the following meaning: 

1. fJ, I and a I are the mean and standard deviation of the marginal distribution of Y I • 

2. fJ,2 and a2 are the mean and standard deviation of the marginal distribution of Y2. 
3. PI2 is the coefficient of correlation between the random variables YI and Y2. TIlls 

coefficient is denoted by P {YI, Y2} in Appendix A, using the correlation operator notation, 
and defined in (A.25a): 

(2.76) 

Here, al and a2, as just mentioned, denote the standard deviations of YI !Ww- Y2, and al2 
denotes the covariance a{Y" Y2} between YI and Y2 as defined in (A.2I): 

(2.77) 

Note that a 12 == a21 and PI2 == P21' 

If YI and Y2 are independent, al2 = 0 according to (A.28) so that PI2 = O. If-YI and 
Y2 are positively related-that is, YI tends to be large when Y2 is large, or small when 
Y2 is small-a12 is positive and so is P12. On the other hand, if YI and Y2 are negatively 
related-that is, YI tends to be large when Y2 is small, or vice versa-al2 is negative and so 
is P12. The coefficient of correlation PI2 can take on any value between -1 and 1 inclusive. 
It assumes 1 if the linear relation between YI and Y2 is perfectly positive (direct) and -1 if 
it is perfectly negative (inverse). 

Conditional Inferences 
As noted, one principal use of a bivariate correlation model is to make conditional inferences 
regarding one variable, given the other variable. Suppose YI represents a service station's 
gasoline sales and Y2 its sales of auxiliary products. We may then wish to predict a service 
station's sales of auxiliary products Y2 , given that its gasoline sales are YI = $5,500. 

Such conditional inferences require the use of conditional probability distributions, which 
we discuss next 

Conditional Probability Distribution of YI • The density function of the conditional 
probability distribution of YI for any given value of Y2 is denoted by f(Y I IY2) and defined 
as follows: 

fe y IY ) = f(Y" Y2) 
I 2 h(Y2) 

(2.78) 

where f (YI, Y2) is the joint density function of YI and Y2, and h (Y2) is the marginal density 
function of Y2. When YI and Y2 are jointly nonnally distributed according to (2.74) so that 
the marginal density function h(Y2) is given by (2.75b), it can be shown that: 

The conditional probability distribution of Y I for any given 
value of Y2 is nonnal with mean al12 + f312Y2 and standard 
deviation all2 and its density function is: 

f(YdY2) = 1 exp[_!(YI-aI12-f312Y2)2] 
.J2Jra112 2 all2 

(2.79) 
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The parameters a112, f312, and al12 of the conditional probability distributions of YI are 
functions of the parameters of the joint probability distribution (2.74), as follows: 

al 
al12 = MI - M2P12-

a2 
al 

f312 = P12-
a2 

= (1-

(2.80a) 

(2.80b) 

(2.80c) 

The parameter al12 is the intercept of the line of regression of YI on Y2, and the parameter 
f312 is the slope of this line. Thus we find that the conditional distribution of Y" given Y2, is 
equivalent to the nonnal error regression model (1.24). 

Conditional Probability Distributions of Y2. The random variables Y I and Y2 play sym-
metrical roles in the bivariate normal probability distribution (2.74). Hence, it follows: 

The conditional probability distribution of Y2 for any given 
value of YI is normal with mean a211 + f321 Y I and standard 
deviation a211 and its density function is: 

1 [1 (Y2 - a211 - f32IYI)2] !(Y2 IYI ) =.J2ii exp --2 
2na211 a211 

(2.81) 

The parameters a211, f321, and a211 of the conditional probability distributions of Y2 are 
functions of the parameters of the joint probability distribution (2.74), as follows: 

a2 
f321 = P12-

al 

= aJ(1 -

(2.82a) 

(2.82b) 

(2.82c) 

Important Characteristics of Conditional Distributions. Three important characteris-
tics of the conditional probability distributions of Y I are nonnality, linear regression, and 
constant variance. We take up each of these in turn. -

1. The conditional probability distribution of Y I for any given value of Y2 is nonna). 
Imagine that we slice a bivariate nonnal distribution vertically at a given value of Y2 , say, 
at Yh2 . That is, we slice it parallel to the VI axis. This slicing is shown in Figure 2.11. The 
exposed cross section has the shape of a nonnal distribution, and after being scaled so that 
its area is 1, it portrays the conditional probability distribution of YI, given that Y2 = Yh2 . 

This property of normality holds no matter the value Yh2 is. Thus, whenever we 
slice the bivariate nonnal distribution parallel to the Y I axis, we-obtain (after proper scaling) 
a normal conditional probability distribution. 

2. The means of the conditional probability distributions of YI fall on a straight line, and 
hence are a linear function of Y2 : 

(2.83) 
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FIGURE 2.11 
Cross Section 
of Bivariate 
Normal 
Distribution 
atY',2. 

Here, £¥112 is the intercept parameter and f312 the slope parameter. Thus, the relation between 
the conditional means and Y2 is given by a linear regression function. 

3. All conditional probability distributions of Y I have the same standard deviation a112. 

Thus, no matter where we slice the bivariate normal distribution parallel to the Y I axis, 
the resulting conditional probability distribution (after scaling to have an area of 1) has the 
same standard deviation. Hence, constant variances characterize the conditional probability 
distributions of YI • 

Equivalence to Normal Error Regression Model. Suppose that we select a random 
sample of observations (YI , Y2) from a bivariate normal population and wish to make 
conditional inferences about Yb given Y2• The preceding discussion makes it clear that the 
normal error regression model (1.24) is entirely applicable because: 

1. The YI observations are independent. 
2. The YI observations when Y2 is considered given or fixed are normally distributed with 

mean E {YI IY2} = £¥112 + f312Y2 and constant variance 

Use of Regression Analysis. In view of the equivalence of each of the conditional bivariate 
normal correlation models (2.81) and (2.79) with the normal error regression model (1.24), 
all conditional inferences with these correlation models can be made by means of the 
usual regression methods. For instance, if a researcher has data that can be appropriately 
described as having been generated from a bivariate normal distribution and wishes to make 
inferences about Y2, given a particular value of Y I , the ordinary regression techniques will 
be applicable. Thus, the regression function of Y2 on YI can be estimated by means of (1.12), 
the slope of the regression line can be estimated by means of the interval estimate (2.15), 
a new observation Y2 , given the value of Y" can be predicted by means of (2.36), and so 
on. Computer regression packages can be used in the usual manner. To avoid notational 
problems, it may be helpful to relabel the variables according to regression usage: Y = Y2 , 

X = YI • Of course, if conditional inferences on YI for given values of Y2 are desired, the 
notation correspondences would be: Y = Y" X = Y2. 
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Can we still use regression model (2.1) if Y, and Y2 are not bivariate normal? It can be 
shown that all results on estimation, testing, and prediction obtained from regression model 
(2.1) apply if Y, = Y and Y2 = X are random variables, and if the following conditions 
hold: 

1. TIle conditional distributions of the Yi , given Xi, are normal and independent, with 
conditional means f30 + f3,Xi and conditional variance a2• 

2. The Xi are independent random variables whose probability distribution g (Xi) does not 
invol ve the parameters f3o, f3" a2 • 

These conditions require only that regression model (2.1) is appropriate for each condi-
tional distribution of Yi , and that the probability distribution of the Xi does not involve the 
regression parameters. If these conditions are met, all earlier results on estimation, testing, 
and prediction still hold even though the XI are now random variables. The major modi-
fication occurs in the interpretation of confidence coefficients and specified risIts of error. 
When X is random, these refer to repeated sampling of pairs of (Xi, Yi ) values, where the 
Xi values as well as the Yi values change from sample to sample. Thus, in our bathing suit 
sales illustration, a confidence coefficient would refer to the proportion of correct interval 
estimates if repeated samples of n days' sales and temperatures were obtained and the 
confidence interval calculated for each sample. Another modification occurs in the test's 
power, which is different when X is a random variable. 

Comments 
1. The notation for the parameters of the conditional correlation models departs somewhat from 

our previous notation for regression models. The symbol a is now used to denote the regression 
intercept. The subscript 112 to a indicates that Y, is regressed on Y2• Similarly, the subscript 211 to a 
indicates that Y2 is regressed on Yr. The symbol {h2 indicates that it is the slope in the regression of Y 1 

on Y2 , while {h, is the slope in the regression of Y2 on Yr. Finally, a21' is the standard deviation of the 
conditional probability distributions of Y2 for any given Y" while a'12 is the standard deviation of the 
conditional probability distributions of Y, for any given Y2 • 

2. Two distinct regressions are involved in a bivariate normal model, that of Y, on Y2 when Yz is 
fixed and that of Y2 on Y, when Y, is fixed. In general, the two regression lines are not the same. For 
instance, the two slopes f3'2 and f321 are the same only if al = a2, as can be seen from (2.80b) and 
(2.82b). 

3. When interval estimates for the conditional correlation models are obtained, the confidence 
coefficient refers to repeated samples where pairs of observations (Y" Y2 ) are obtained from the 
bivariate normal distribution. • 

Inferences on Correlation Coefficients 
A principal use of the bivariate normal correlation model is to study the relationship between 
two variables. In a bivariate nOrmal model, the parameter P'2 provides information about 
the degree of the linear relationship between the two variables Y, and Y2 • 

Point Estimator of P12. The maximum likelihood estimator of P'2, denoted by r12, is 
given by: 

(2.84) 
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Example 

This estimator is often called the Pearson product-moment correlation coefficient. It is a 
biased estimator of PI2 (unless PI2 = 0 or 1), but the bias is small when n is large. 

It can be shown that the range of rl2 is: 

(2.85) 

Generally, values of rl2 near 1 indicate a strong positive (direct) linear association be-
tween YI and Y2 whereas values of rl2 near -1 indicate a strong negative (indirect) linear 
association. Values of rI2 near 0 indicate little or no linear association between YI and Y2 • 

Test whether P12 = O. When the population is bivariate normal, it is frequently desired 
to test whether the coefficient of correlation is zero: 

Ho: PI2 = 0 
Ha: PI2 =1= 0 

(2.86) 

The reason for interest in this test is that in the case where Y I and Y2 are jointly normally 
distributed, PI2 = 0 implies that YI and Y2 are independent. 

We can use regression procedures for the test since t2.80b) implies that the fol).owing 
alternatives are equivalent to those in (2.86): 

Ho: f312 = 0 
Ha: f312 =1= 0 

(2.86a) 

and (2.82b) implies that the following alternatives are also equivalent to the ones in (2.86): 

Ho: f3z1 = 0 
Ha: f3z1 =1= 0 

(2.86b) 

It can be shown that the test statistics for testing either (2.86a) or (2.86b) are the same 
and can be expressed directly in terms of r12: 

* rl2-Jn - 2 t = (2.87) Jl -
If Ho holds, t* follows the ten - 2) distribution. The appropriate decision rule to control 
the Type I error at a is: 

If It*1 :::: t(1 - a12; n - 2), conclude Ho 
If It*1 > t(l- al2;n - 2), conclude Ha 

Test statistic (2.87) is identical to the regression t* test statistic (2.17). 

(2.88) 

A national oil company was interested in the relationship between its service station gasoline 
sales and its sales of auxiliary products. A company analyst obtained a random sample of 
23 of its service stations and obtained average monthly sales data on gasoline sales (YI ) 

and comparable sales of its auxiliary products and services (Y2). These data (not shown) 
resulted in an estimated correlation coefficient rI2 = .52. Suppose the analyst wished to test 
whether or not the association was positive, controlling the level of significance at a = .05. 
The alternatives would then be: 

Ho: P12:::: 0 
Ha: PI2 > 0 
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and the decision rule based on test statistic (2.87) would be: 

If t* :s t(1 - a; n - 2), conclude Ho 
If t* > t (1 - a; n - 2), conclude Ha 

For a = .05, we require t(.95; 21) = 1.721. Since: 

t* = .52.J2I = 2.79 Jl - (.52)2 

is greater than 1.721, we would conclude Ha, that Pl2 > O. The P-value for this test is .006. 

Interval Estimation of P12 Using the z' Transformation. Because the sampling distri-
bution of rl2 is complicated when Pl2 =1= 0, interval estimation of Pl2 is usually carried 
out by means of an approximate procedure based on a transformation. This transformation, 
known as the Fisher z transformation, is as follows: k.. 

, 1 (1 + r12) Z = -log --
2 e 1 - rl2 

(2.89) 

When n is large (25 or more is a useful rule of thumb), the distribution of z' is approximately 
normal with approximate mean and variance: 

1 (1 + P12) E{z'} = l; = "2 loge 1 - Pl2 (2.90) 

1 
a 2 {z'} =--

n-3 
(2.91) 

Note that the transformation from rl2 to z' in (2.89) is the same as the relation in (2.90) 
between Pl2 and E{z'} = l;. Also note that the approximate variance of z' is a known 
constant, depending only on the sample size n. 

Table B.8 gives paired values for the left and right sides of (2.89) and (2.90), thus elim-
inating the need for calculations. For instance, if rl2 or Pl2 equals .25, Table B.8 indicates 
that z' or l; equals .2554, and vice versa. The values on the two sides of the transformation 
always have the same sign. Thus, if r12 or Pl2 is negative, a minus sign is attached to the 
value in Table B.8. For instance, if rl2 = -.25, z' = -.2554. 

Interval Estimate. When the sample size is large (n 2: 25), the standardized statistic: 

z' -l; 
a{z'} 

(2.92) 

is approximately a standard normal variable. Therefore, approximate I-a confidence limits 
for l; are: 

z'·±  z(1 - aI2)a{z'} (2.93) 

where z(l - (12) is the (1 - (12) 100 percentile of the standard normal distribution. The 
1 - a confidence limits for Pl2 are then obtained by transforming the limits on l; by means 
of (2.90). 
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Example An economist investigated food purchasing patterns by households in a midwestern city. 
Two hundred households with family incomes between $40,000 and $60,000 were selected 
to ascertain, among other things, the proportions of the food budget expended for beef and 
poultry, respectively. The economist expected these to be negatively related, and wished to 
estimate the coefficient of correlation with a 95 percent confidence interval. Some supporting 
evidence suggested that the joint distribution of the two variables does not depart markedly 
from a bivariate normal one. 

The point estimate of P12 was r12 = -.61 (data and calculations not shown). To obtain 
an approximate 95 percent confidence interval estimate, we require: 

z' = -.7089 when rl2 = -.61 (from Table B.8) 
, I 

a{z} = ,)200 _ 3 = .07125 

z(.975) = 1.960 

Hence, the confidence limits for l;, by (2.93), are -.7089 ± 1.960(.07125), and the approx-
imate 95 percent confidence interval is:' ". 

-.849 :s l; :s -.569 

Using Table B.8 to transform back to P12, we obtain: 

-.69:s Pl2 :s -.51 

This confidence interval was sufficiently precise to be useful to the economist, confirming 
the negative relation and indicating that the degree of linear association is moderately high. 

Comments 
1. As usual, a confidence interval for P12 can be employed to test whether or not P'2 has a specified 

value-say, .S-by noting whether or not the specified value falls within the confidence limits. 
2. It can be shown that the square of the coefficient of correlation, namely measures the 

relative reduction in the variability of Y2 associated with the use of variable Yr. To see this, we noted 
earlier in (2.80c) and (2.82c) that: 

= Pi2) 

= ai(1- Pi2) 

We can rewrite these expressions as follows: 

(2.94a) 

(2.94b) 

(2.95a) 

(2.95b) 

The meaning of Pi2 is now clear. Consider first (2.95a). measures how much smaller relatively is 
the variability in the conditional distributions of Y" for any given level of Y2, than is the variability 
in the marginal distribution of Yr. Thus, measures the relative reduction in the variability of Y, 
associated with the use of variable Y2. Correspondingly, (2.95b) shows that also measures the 
relative reduction in the variability of Y2 associated with the use of variable Yl. 
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It can be shown that: 

(2.96) 

The limiting value Pi2 = 0 occurs when YI and Y2 are independent, so that the variances of each 
variable in the conditional probability distributions are then no smaller than the variance in the 
marginal distribution. The limiting value Pi2 = 1 occurs when there is no variability in the conditional 
probability distributions for each variable, so perfect predictions of either variable can be made from 
the other. 

3. The interpretation of Pi2 as measuring the relative reduction in the conditional variances as 
compared with the marginal variance is valid for the case of a bivariate normal popUlation, but not 
for many other bivariate popUlations. Of course, the interpretation implies nothing in a causal sense. 

4. Confidence limits for Pi2 can be obtained by squaring the respective confidence limits for P12, 
provided the latter limits do not differ in sign. • 

Spearman Rank Correlation Coefficient 
At times the joint distribution of two random variables YI and Y2 differs considerably from 
the bivariate normal distribution (2.74). In those cases, transformations of the variables Y I 
and Y2 may be sought to make the joint distribution of the transformed variables approx-
imately bivariate normal and thus permit the use of the inference procedures about PI2 
described earlier. 

When no appropriate transformations can be found, a nonpararnetric rank correlation 
procedure may be useful for making inferences about the association between Y I and Y2 • The 
Spearman rank correlation coefficient is widely used for this purpose. First, the observations 
on YI (i.e., Yll , ••• , Ynl ) are expressed in ranks from 1 to n. We denote the rank of Yi! by 
Ri!. Similarly, the observations on Y2 (i.e., Y12, ... , Yn2) are ranked, with the rank of Yi2 
denoted by Ri2 . The Spearman rank correlation coefficient, to be denoted by rs, is then 
defined as the ordinary Pearson product-moment correlation coefficient in (2.84) based on 
the rank data: 

(2.97) 

Here RI is the mean of the ranks Ri! and R2 is the mean of the ranks Ri2. Of course, since 
the ranks Ri I and Ri2 are the integers 1, ... , n, it follows that R I = R2 = (n +- 1) /2. 

Like an ordinary correlation coefficient, the Spearman rank correlation coefficient takes 
on values between -1 and 1 inclusive: 

-1 .:S rs .:S 1 (2.98) 

The coefficient rs equals 1 when the ranks for YI are identical to those for Y2 , that is, when 
the case with rank 1 for Y I also has rank 1 for Y2 , and so on. In that case, there is perfect 
association between the ranks for the two variables. The coefficient rs equals -1 when the 
case with rank 1 for Y I has rank n for Y2, the case with rank 2 for Y I has rank n - 1 for 
Y2 , and so on. In that event, there is perfect inverse association between the ranks for the 
two variables. When there is little, if any, association between the ranks of Y I and Y2, the 
Spearman rank correlation coefficient tends to have a value near zero. 
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Example 

TABLE 2.4 
Data on 
Population and 
Expenditures 
and Their 
Ranks-SaJes 
Marketing 
Example. 

The Spearman rank correlation coefficient can be used to test the alternatives: 

Ho: There is no association between YI and Y2 

Ha: There is an association between YI and Y2 
(2.99) 

A two-sided test is conducted here since Ha includes either positive or negative association. 
When the alternative Ha is: 

Ha: There is positive (negative) association between Y I and Y2 (2.100) 

an upper-tail (lower-tail) one-sided test is conducted. 
The probability distribution of rs under Ho is not difficult to obtain. It is based on the 

condition that, for any ranking of Y" all rankings of Y2 are equally likelb-when there is no 
association between YI and Y2 • Tables have been prepared and are prestnted in specialized 
texts such as Reference 2.1. Computer packages generally do not present the probability 
distribution of rs under Ho but give only the two-sided P-value. When the sample size n 
exceeds 10, the test can be carried out approximately by using test statistic (2.87): 

* rs-Jn - 2 
t = -===-.)1- r} 

(2.101) 

based on the t distribution with n - 2 degrees of freedom. 

A market researcher wished to examine whether an association exists between population 
size (YI ) and per capita expenditures for a new food product (Y2). The data for a random 
sample of 12 test markets are given in Table 2.4, columns 1 and 2. Because the distributions of 
the variables do not appear to be approximately normal, a nonparametric test of association 
is desired. The ranks for the variables are given in Thble 2.4, columns 3 and 4. A computer 
package found that the coefficient of simple correlation between the ranked data in columns 
3 and 4 is rs = .895. The alternatives of interest are the two-sided ones in (2.99). Since n 

"(1) 

Test Population 
Market. (in thollsands) 

; Yil 
1 29 
2 435 
3 86 
4 1,090 
5 219 
6 503 
7 47 
8 
9 185 

Hi 98 
11 952 
12 89 

(2) 
per Capita 

Expenditure 

1';2 

127 
214 
133 
208 
153 
184 
1'30 
.2# 
154 
194 
H)3 

/l.1.l Rif 
12 
8 Jl 
3 4 
1110 
76 
:Q8 
L 3 
12<12 
6/ 5 
5 r 

·10" 9· 
lf 1 
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exceeds 10 here, we use test statistic (2.101): 

t* = .895,JT2"=2 = 6.34 
Jl - (.895)2 

Fora = .01, werequiret(.995; 10) = 3.169. Since It*1 = 6.34 > 3.169, we conclude Ha , 

that there is an association between population size and per capita expenditures for the food 
product. The two-sided P-value of the test is .00008. 

Comments 
1. In case of ties among some data values, each of the tied values is given the average of the ranks 

involved. 
2. It is interesting to note that had the data in Table 2.4 been analyzed by assuming the bivariate 

normal distribution assumption (2.74) and test statistic (2.87), then the strength of the association 
would have been somewhat weaker. In particular, the Pearson product-moment correlation coefficient 
is r,2 = .674, with t* = .674.JTI)/Jl - (.674)2 = 2.885. Our conclusion would hbe been to 
conclude Ho, that there is no association between population size and per capita expenditures for the 
food product. The two-sided P-value of the test is .016. 

3. Another nonpararnetric rank procedure similar to Spearman's rs is Kendall's T. This statistic 
also measures how far the rankings of Y! and Y2 differ from each other, but in a somewhat different 
way than the Spearman rank correlation coefficient. A discussion of Kendall's T may be found in 
Reference 2.2. • 

Cited 2.1. Gibbons, J. D. Nonparametric Methods for Quantitative Analysis. 2nd ed. Columbus, Ohio: 
References American Sciences Press, 1985. 

Problems 

2.2. Kendall, M. G., and J. D. Gibbons. Rank Correlation Methods. 5th ed. London: Oxford University 
Press, 1990. 

2.1. A student working on a summer internship in the economic research department of a large 
corporation studied the relation between sales of a product (Y, in million dollars) and population 
(X, in million persons) in the firm's 50 marketing districts. The normal error regression model 
(2.1) was employed. The student first wished to test whether or not a linear association between 
Y and X existed. The student accessed a simple linear regression program and obtained the 
following information on the regression coefficients: 

Parameter 
Intercept 
Slope 

Estimated Value 
7.43119 

:755048 

95 Percent 
Confidence limits 

-1.18518 
.452886 

16.0476 
1.05721 

a. The student concluded from these results that there is a linear association between Y and 
X. Is the conclusion warranre.d? What is the implied of significance? 

b. Someone questioned the negative lower confidence limit for the intercept, pointing out that 
dollar sales cannot be negative even if the population in a district is zero. Discuss. 

2.2. In a test of the alternatives Ho: f3! ::5 0 versus Ha: f3, > 0, an analyst concluded Ho. Does this 
conclusion imply that there is no linear association between X and Y? Explain. 
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2.3. A member of a student team playing an interactive marketing game received the following 
computer output when studying the relation between advertising expenditures (X) and sales 
(Y) for one of the team's products: 

Estimated regression equation: Y = 350.7 - .18X 
Two-sided P-value for estimated slope: .91 

The student stated: "The message I get here is that the more we spend on advertising this 
product, the fewer units we sell!" Comment. 

2.4. Refer to Grade point average Problem 1.19. 
a. Obtain a 99 percent confidence interval for f3,. Interpret your confidence interval. Does it 

include rero? Why might the director of admissions be interested in whether)he confidence 
interval includes rero? or.,," 

b. Test, using the test statistic t*, whether or not a linear association exists between student's 
ACT score (X) and GPA at the end of the freshman year (Y). Use a level of significance of 
.Ol. State the alternatives, decision rule, and conclusion. 

c. What is the P-value of your test in part (b)? How does it support the conclusion reached in 
part (b)? 

*2.5. Refer to Copier maintenance Problem 1.20. 
a. Estimate the change in the mean service time when the number of copiers serviced increases 

by one. Use a 90 percent confidence interval. Interpret your confidence interval. 
b. Conduct a t test to determine whether or not there is a linear association between X and Y 

here; control the a risk at .10. State the alternatives, decision rule, and conclusion. What is 
the P-value of your test? 

c. Are your results in parts (a) and (b) consistent? Explain. 
d. The manufacturer has suggested that the mean required time should not increase by more 

than 14 minutes for each additional copier that is serviced on a service call. Conduct a test to 
decide whether this standard is being satisfied by Tri-City. Control the risk of a Type I error 
at .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

e. Does bo give any relevant information here about the "start-up" time on calls-Le., about 
the time required before service work is begun on the copiers at a customer location? 

*2.6. Refer to Airfreight breakage Problem 1.21. 
a. Estimate f31 with a 95 percent confidence interval. Interpret your interval estimate. 
b. Conduct a t test to decide whether or not there is a linear association between number of times 

a carton is transferred (X) and number of broken ampules (Y). Use a level of significance 
of .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test? 

c. f30 represents here the mean number of ampules broken when no transfers of the shipment 
are made-Le., when X = O. Obtain a 95 percent confidence interval for f30 and interpret it. 

d. A consultant has suggested, on the basis of previous experience, that the mean number of 
broken ampules should not exceed 9.0 when no transfers are made. Conduct an appropriate 
test, using a = .025. State the alternatives, decision rule, and conclusion. What is the 
P-value of the test? 

e. Obtain the power of your test in part (b) if actually f3, = 2.0. Assume a(b,} = .50. Also 
obtain the power of your test in part (d) if actually f30 = 1l. Assume a{bo} = .75. 

2.7 Refer to Plastic hardness Problem 1.22. 
a. Estimate the change in the mean hardness when the elapsed time increases by one hour. Use 

a 99 percent confidence interval. Interpret your interval estimate. 
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b. The plastic manufacturer has stated that the mean hardness should increase by 2 Brinell 
units per hour. Conduct a two-sided test to decide whether this standard is being satisfied; 
use a = .01. State the alternatives, decision rule, and conclusion. What is the P-value of 
the test? 

c. Obtain the power of your test in part (b) if the standard actually is being exceeded by 
.3 Brinell units per hour. Assume a (bd = .1. 

2.8. Refer to Figure 2.2 for the Toluca Company example. A consultant has advised that an increase 
of one unit in lot size should require an increase of 3.0 in the expected number of work hours 
for the given production item. 
a. Conduct a test to decide whether or not the increase in the expected number of work hours 

in the Toluca Company equals this standard. Use a = .05. State the alternatives, decision 
rule, and conclusion. 

b. Obtain the power of your test in part (a) if the consultant's standard actually is being exceeded 
by .5 hour. Assume a{bd = .35. 

c. Why is F* = 105.88, given in the printout, not relevant for the test in part (a)? }.., 
2.9. Refer to Figure 2.2. A student, noting that s{bd is furnished in the printout, asks why s(Yd is 

not also given. Discuss. 
2.10. For each of the following questions, explain whether a confidence interval for a mean response 

or a prediction interval for a new observation is appropriate. 
a. What will be the humidity level in this greenhouse tomorrow when we set the temperature 

level at 31°C? 
b. How much do families whose disposable income is $23,500 spend, on the average, for meals 

away from home? 
c. How many kilowatt-hours of electricity will be consumed next month by commercial and 

industrial users in the Twin Cities service area, given that the index of business activity for 
the area remains at its present level? 

2.11. A person asks if there is a difference between the "mean response at X = X,," and the "mean 
of m new observations at X = X"." Reply. 

2.12. Can a 2 (pred} in (2.37) be brought increasingly close to 0 as n becomes large? Is this also the 
case for a 2 (y,,} in (2.29b)? What is the implication of this difference? 

2.13. to Grade point average Problem 1.19. 
a. Obtain a 95 percent interval estimate of the mean freshman OPA for students whose ACT 

test score is 28. Interpret your confidence interval. 
b. Mary Jones obtained a score of 28 on the entrance test. Predict her freshman OPA-using a 

95 percent prediction interval. Interpret your prediction interval. 
c. Is the prediction interval in part (b) wider than the confidence interval in part (a)? Shol}ld it 

be? 
d. Determine the boundary values 0f the 95 percent confidence band for the regression line 

when X" = 28. Is your-confidence band wider at this point than the confidence interval in 
part (a)? Should it be? 

*2.14. Refer to Copier maintenance Problem 1.20. 
a. Obtain a 90 percent confidence interval for the mean gervice time on calls in which six 

copiers are serviced. Interpret your confidence interval. 
b. Obtain a 90 percent prediction interval for the service time on the next call in which six 

copiers are serviced. Is your prediction interval wider than the corresponding confidence 
interval in part (a)? Should it be? 
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c. Management wishes ro estimate the expected service time per copier on calls in which six 
copiers are serviced. Obtain an appropriate 90 percent confidence interval by converting the 
interval obtained in part (a). Interpret the converted confidence interval. 

d. Determine the boundary values of the 90 percent confidence band for the regression line 
when X" = 6. Is your confidence band wider at this point than the confidence interval in 
part (a)? Should it be? 

*2.15. Refer to Airfreight breakage Problem 1.21. 
a Because of changes in airline routes, shipments may have to be transferred more frequently 

than in the past. Estimate the mean breakage for the following numbers of transfers: X = 2, 
4. Use separate 99 percent confidence intervals. Interpret your results. 

b. The next shipment will entail two transfers. Obtain a 99 percent prediction interval for the 
number of broken ampules for this shipment. Interpret your prediction 

c. In the next several days, three independent shipments will be made, each entailing two 
transfers. Obtain a 99 percent prediction interval for the mean number of ampules broken in 
the three shipments. Convert this interval into a 99 percent prediction interval for the total 
number of ampules broken in the three shipments. 

d. Determine the boundary values of the 99 percent confidence band for the regression line 
when Xh = 2 and when Xh = 4. Is your confidence band wider at these two points than the 
corresponding confidence intervals in part (a)? Should it be? 

2.16. Refer to Plastic hardness Problem 1.22. 
a Obtain a 98 percent confidence interval for the mean hardness of molded items with an 

elapsed time of 30 hours. Interpret your confidence interval. 
b. Obtain a 98 percent prediction interval for the hardness of a newly molded test item with 

an elapsed time of 30 hours. 
c. Obtain a 98 percent prediction interval for the mean hardness of 10 newly molded test items, 

each with an elapsed time of 30 hours. 
d. Is the prediction interval in part (c) narrower than the one in part (b)? Should it be? 
e. Determine the boundary values of the 98 percent confidence band for the regression line 

when X h = 30. Is your confidence band wider at this point than the confidence interval in 
part (a)? Should it be? 

2.17. An analyst fitted normal error regression model (2.1) and conducted an F test of f31 = 0 versus 
f3, ¥ O. The P-value of the test was .033, and the analyst concluded Ha: f31 ¥ O. Was the a 
level used by the analyst greater than or smaller than .033? If the a level had been .01, what 
would have been the appropriate conclusion? 

2.18. For conducting statistical tests concerning the parameter f3" why is the t test more versatile 
than the F test? 

2.19. When testing whether or not f3, = 0, why is the F test a one-sided test even though Ha includes 
both f3, < 0 and f3, > O? [Hint: Refer to (2.57).] 

2.20. A student asks whether R2 is a point estimator of any parameter in the normal error regression 
model (2.1). Respond. 

2.21. A value of R2 near I is sometimes interpreted to imply that the relation between Y and X is 
sufficiently close so that suitably precise predictions of Y can be made from knowledge of X. 
Is this implication a necessary consequence of the definition of R2? 

2.22. Using the normal error regression model (2.1) in an engineering safety experiment, a researcher 
found for the first 10 cases that R2 was zero. Is it possible that for the complete set of 30 cases 
R2 will not be zero? Could R2 not be zero for the first 10 cases, yet equal zero for all 30 cases? 
Explain. 
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2.23. Refer to Grade point average Problem 1.19. 
a. Set up the ANOVA table. 
b. What is estimated by MSR in your ANOVA table? by MSE? Under what condition do MSR 

and MSE estimate the same quantity? 
c. Conduct an F test of whether or not f31 = O. Control the a risk at .01. State the alternatives, 

decision rule, and conclusion. 
d. What is the absolute magnitude of the reduction in the variation of Y when X is introduced 

into the regression model? What is the relative reduction? What is the name of the latter 
measure? 

e. Obtain r and attach the appropriate sign. 
f. Which measure, R2 or r, has the more clear-cut operational interpretation? Explain. 

*2.24. Refer to Copier maintenance Problem 1.20. 
a. Set up the basic ANOVA table in the format of Table 2.2. Which elements of your table are ad-

ditive? Also set up the ANOVA table in the format of Table 2.3. How do the two tabl,es differ? 
b. Conduct an F test to determine whether or not there is a linear association between time 

spent and number of copiers serviced; use a = .10. State the alternatives, decision rule, and 
conclusion. 

c. By how much, relatively, is the total variation in number of minutes spent on a call- reduced 
when the number of copiers serviced is introduced into the analysis? Is this a relatively small 
or large reduction? What is the name of this measure? 

d. Calculate r and attach the appropriate sign. 
e. Which measure, r or R2, has the more clear-cut operational interpretation? 

*2.25. Refer to Airfreight breakage Problem 1.21. 
a. Set up the ANOVA table. Which elements are additive? 
b. Conduct an F test to decide whether or not there is a linear association between the number 

of times a carton is transferred and the number of broken ampules; control the a risk at .05. 
State the alternatives, decision rule, and conclusion. 

c. Obtain the t* statistic for the test in part (b) and demonstrate numerically its equivalence to 
the F* statistic obtained in part (b). 

d. Calculate R2 and r. What proportion of the variation in Y is accounted for by introducing 
-X into the regression model? 

2.26. Refer to Plastic hardness Problem 1.22. 
a. Set up the ANOVA table. 
b. Test by means of an F test whether or not there is a linear association between the hardness 

of the plastic and the elapsed time. Use a = .01. State the alternatives, decision rule, and 
conclusion. 

c. Plot the deviations Yi - Yi against Xi on a graph. Plot the deviations Yi - Y against Xi 
I 

on another graph, using the same scales as for the first graph. From your two graphs, does 
SSE or SSR appear to the larger component of ssrO? What does this imply about the 
magnitude of R2? 

d. Calculate R2 and r. 
*2.27. Refer to Muscle mass Problem 1.27. 

a. Conduct a test to decide whether or not there is a negative linear association between amount 
of muscle mass and age. Control the risk of Type I error at .05. State the alternatives, decision 
rule, and conclusion. What is the P-value of the test? 
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b. The two-sided P-value for the test whether /30 = 0 is 0+. Can it now be concluded 
that bo provides relevant information on the amount of muscle mass at birth for a female 
child? 

c. Estimate with a 95 percent confidence interval the difference in expected muscle mass for 
women whose ages differ by one year. Why is it not necessary to know the specific ages to 
make this estimate? 

*2.28. Refer to Muscle mass Problem 1.27. 
a. Obtain a 95 percent confidence interval for the mean muscle mass for women of age 60. 

Interpret your confidence interval. 
b. Obtain a 95 percent prediction interval for the muscle mass of a woman whose age is 60. Is 

the prediction interval relatively precise? 
c. Determine the boundary values of the 95 percent confidence band for-<tl1-tregression line 

when Xh = 60. Is your confidence band wider at this point than the confidence interval in 
part (a)? Should it be? 

*2.29. Refer to Muscle mass Problem 1.27. 
a. Plot the deviations Yi - Yi against Xi on one graph, Plot the deviations Yi - Y against Xi 

on another graph, using the same scales as in the first graph. From your two graphs, does 
SSE or SSR appear to be the larger component of SSTO? What does this imply ab9ut the 
magnitude of R2? 

b. Set up the ANOVA table. 
c. Test whether or not f3, = 0 using an F test with a = .05. State the alternatives, decision 

rule, and conclusion. 
d. What proportion of the total variation in muscle mass remains "unexplained" when age is 

introduced into the analysis? Is this proportion relatively small or large? 
e. Obtain R2 and r. 

2.30. Refer to Crime rate Problem 1.28. 
a. Test whether or not there is a linear association between crime rate and percentage of high 

school graduates, using a t test with a = .01. State the alternatives, decision rule, and 
conclusion. What is the P-value of the test? 

b. Estimate f3, with a 99 percent confidence interval. Interpret your interval estimate. 
2.31. Refer to Crime rate Problem 1.28 

a. Set up the ANOVA table. 
b. Carry out the test in Problem 2.30a by means of the F test. Show the numerical equivalence 

of the two test statistics and decision rules. Is the P-value for the F test the same as that for 
the t test? 

c. By how much is the total variation in crime rate reduced when percentage of high school 
graduates is introduced into the analysis? Is this a relatively large or small reduction? 

d. Obtain r. 
2.32. Refer to Crime rate Problems 1.28 and 2.30. Suppose that the test in Problem 2.30a is to be 

carried out by means of a general linear test. 
a. State the full and reduced models. 
b. Obtain (1) SSE(F), (2) SSE(R), (3) dfF. (4) dfR, (5) test statistic F* for the general linear 

test, (6) decision rule. 
c. Are the test statistic F* and the decision rule for the general linear test numerically equivalent 

to those in Problem 2.30a? 
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2.33. In developing empirically a cost function from observed data on a complex chemical experiment, 
an analyst employed normal error regression model (2.1). f30 was interpreted here as the cost 
of setting up the experiment. The analyst hypothesized that this cost should be $7.5 thousand 
and wished to test the hypothesis by means of a general linear test. 

a. Indicate the alternative conclusions for the test. 
b. Specify the full and reduced models. 
c. Without additional information, can you tell what the quantity dfR -dfF in test statistic (2.70) 

will equal in the analyst's test? Explain. 

2.34. Refer to Grade point average Problem 1.19. 

a. Would it be more reasonable to consider the Xi as known constants or as random variables 
here? Explain. 

b. If the Xi were considered to be random variables, would this have any effect on prediction 
intervals for new applicants? Explain. 

2.35. Refer to Copier maintenance Problems 1.20 and 2.5. How would the meaning of the wnfidence 
coefficient in Problem 2.5a change if the predictor variable were considered a random variable 
and the conditions on page 83 were applicable? 

2.36. A management trainee in a production department wished to study the relation between weight 
of rough casting and machining time to produce the finished block. The trainee selected castings 
so that the weights would be spaced equally apart in the sample and then observed the corre-
sponding machining times. Would you recommend that a regression or a correlation model be 
used? Explain. 

2.37. A social scientist stated: "The conditions for the bivariate normal distribution are so rarely met 
in my experience that I feel much safer using a regression mode!." Comment. 

2.38. A student was investigating from a large sample whether variables Y1 and Y2 follow a bivariate 
normal distribution. The student obtained the residuals when regressing Y, on Y2, and also 
obtained the residuals when regressing Y2 on Yb and then prepared a normal probability plot 
for each set of residuals. Do these two normal probability plots provide sufficient information 
for determining whether the two variables follow a bivariate normal distribution? Explain. 

2.39. For the bivariate normal distribution with parameters J-tl = 50, J-t2 = 100,0", = 3,0"2 = 4, and 
Pl2 = .80. 
a. Stare the characteristics of the marginal distribution of Yr. 
b. State the characteristics of the conditional distribution of Y2 when Y, = 55. 
c. State the characteristics of the conditional distribution of Y1 when Y2 = 95. 

2.40. Explain whether any of the following would be affected if the bivariate normal (2.74) 
were employed instead of the normal error regression model (2.1) with fixed levels of the 
predictor variable: (1) point estimates of the regression coefficients, (2) confidence for 
the regression coefficients, (3) interpretation of the confidence coefficient. 

2.4l. Refer to Plastic hardness Problem 1.22. A student was analyzing these data and received the 
following standard query from the interactive regression and correlation computer package: 
CALCULATE CONFIDENCE INTERVAL FOR POPULATION CORRELATION COEFFI-
CIENT RHO? ANSWER Y OR N. Would a "yes" response lead to meaningful information 
here? Explain. 

*2.42. Property assessments. The data that follow show assessed value for property tax purposes 
(Y" in thousand dollars) and sales price (Y2, in thousand dollars) for a sample of 15 parcels 
of land for industrial development sold recently in "arm's length" transactions in a tax district. 
Assume that bivariate normal model (2.74) is appropriate here. 
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2.43. 

i: 
13.9 
28.6 

2 

16.0 
34.7 

3 
10.3 
21.0 

13 
14.9 
35.1 

14 
12.9 
30.0 

15 
15.8 
36.2 

a. Plot the data in a scatter diagram. Does the bivariate normal model appear to be appropriate 
here? Discuss. 

b. Calculate r,2. What parameter is estimated by r,2? What is the interpretation of this 
parameter? 

c. Test whether or not Y, and Y2 are statistically independent in the population, using test statis-
tic (2.87) and level of significance .01. State the alternatives, decision rule, and conclusion. 

d. To test P'2 = .6 versus P'2 1= .6, would it be appropriate to use test statistic (2.87)? 

"" Contract profitability. A cost analyst for a drilling and blasting 84 con-
tracts handled in the last two years and found that the coefficient of correlation between value 
of contract (Y,) and profit contribution generated by the contract (Y2) is r'2 = .61. Assume 
that bivariate normal model (2.74) applies. 
a. Test whether or not Y, and Y2 are statistically independent in the population; use a = .05. 

State the alternatives, decision rule, and conclusion. 
b. Estimate P,2 with a 95 percent confidence interval. 
c. Convert the confidence interval in part (b) to a 95 percent confidence interval for Interpret 

this interval estimate. 
*2.44. Bid preparation. A building construction consultant studied the relationship between cost of 

bid preparation (Y,) and amount of bid (Y2) for the consulting firm's clients. In a sample of 
103 bids prepared by clients, r'2 = .87. Assume that bivariate normal model (2.74) applies. 
a. Test whether or not P,2 = 0; control the risk of Type I error at .10. State the alternatives, 

decision rule, and conclusion. What would be the implication if P'2 = O? 
b. Obtain a 90 percent confidence interval for P12' Interpret this interval estimate. 
c. Convert the confidence interval in part (b) to a 90 percent confidence interval for 

2.45. Water flow. An engineer, desiring to estimate the coefficient of correlation P'2 between rate 
of water flow at point A in a stream (Y,) and concurrent rate of flow at point B (Y2), obtained 
r'2 = .83 in a sample of 147 cases. Assume that bivariate normal model (2.74) is appropriate. 
a. Obtain a 99 percent confidence interval for P,2' 
b. Convert the confidence interval in part (a) to a 99 percent confidence interval for 

2.46. Refer to Property assessments Problem 2.42. There is some question as to whether or not 
bivariate model (2.74) is appropriate. 
a. Obtain the Spearman rank correlation coefficient rs. 
b. Test by means of the Spearman rank correlation coefficient whether an association exists 

between property assessments and sales prices using test statistic (2.101) with a = .01. 
State the alternatives, decision rule, and conclusion. 

c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in 
Problem 2.42? 

*2.47. Refer to Muscle mass Problem 1.27. Assume that the normal bivariate model (2.74) is 
appropriate. 
a. Compute the Pearson product-moment correlation coefficient r'2. 
b. Test whether muscle mass and age are statistically independent in the population; use 

a = .05. State the alternatives, decision rule, and conclusion. 
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c. The bivariate normal model (2.74) assumption is possibly inappropriate here. Compute the 
Spearman rank correlation coefficient, rs. 

d. Repeat part (b), this time basing the test of independence on the Spearman rank correlation 
computed in part (c) and test statistic (2.101). Use a = .05. State the alternatives, decision 
rule, and conclusion. 

e. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in 
parts (c) and (d)? 

2.48. Refer to Crime rate Problems 1.28, 2.30, and 2.31. Assume that the normal bivariate model 
(2.74) is appropriate. 
a. Compute the Pearson product-moment correlation coefficient r'2. 
b. Test whether crime rate and percentage of high school graduates are statistically independent 

in the population; use a = .01. State the alternatives, decision rule, and conclusion. 
c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in 

2.31b and 2.30a, respectively? }.., 
2.49. Refer to Crime rate Problems 1.28 and 2.48. The bivariate normal model (2.74) assumption 

is possibly inappropriate here. 
a. Compute the Spearman rank correlation coefficient rs. 
b. Test by means of the Spearman rank correlation coefficient whether an association exists 

between crime rate and percentage of high school graduates using test statistic (2.101) and 
a level of significance .01. State the alternatives, decision rule, and conclusion. 

c. How do your estimates and conclusions in parts (a) and (b) compare to those obtained in 
Problems 2.48a and 2.48b, respectively? 

2.50. Derive the property in (2.6) for the k i . 

2.51. Show that bo as defined in (2.21) is an unbiased estimator of /30. 
2.52. Derive the expression in (2.22b) for the variance of bo, making use of (2.31). Also explain how 

variance (2.22b) is a special case of variance (2.29b). 
2.53. (Calculus needed.) 

a. Obtain the likelihood function for the sample observations Yj, ... , Y" given Xj, ... , X"' if 
- the conditions on page 83 apply. 

b. Obtain the maximum likelihood estimators of /30, f3" and a 2. Are the estimators of f30 and 
f3, the same as those in (l.27) when the Xi are fixed? '. 

2.54. Suppose that normal error regression model (2.1) is applicable except that the error variance 
is not constant; rather the variance is larger, the larger is X. Does f3, = 0 still imply that there 
is no linear association between X and Y? That there is no association between X and Y? 
Explain. 

2.55. Derive the expression for SilR in (2.51). 
2.56. In a small-scale regression study, five observatiol)s on Y were obtained corresponding to X = 1, 

4,10, ll, and 14. Assume that a = .6, /30 = 5, and f3, = 3. 
a. What are the expected values Cff MSR and MSE here? 
b. For derermining whether or not a regression relation exists, would it have been better or 

worse to have made the five observations at X = 6,7, 8, 9, and 1O? Why? Would the 
same answer apply if the principal purpose were to estimate the mean response for X = 8? 
Discuss. 
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Projects 

2.57. The normal error regression model (2.1) is assumed to be applicable. 
a. When testing Ho: f3, = 5 versus Ha: f3, 1= 5 by means of a general linear test, what is the 

reduced model? What are the degrees offreedom dfR? 
b. When testing Ho: f30 = 2, f3, = 5 versus Ha: not both f30 = 2 and f3, = 5 by means of a 

general linear test, what is the reduced model? What are the degrees of freedom dfR? 
2.58. The random variables Y, and Y2 follow the bivariate normal distribution in (2.74). Show that if 

P'2 = 0, Y, and Y2 are independent random variables. 
2.59. (Calculus needed.) 

a Obtain the maximum likelihood estimators of the parameters of the bivariate normal distri-
bution in (2.74). 

b. Using the results in part (a), obtain the maximum likelihood estimators ofJhe parameters of 
the conditional probability distribution of Y, for any value of Y2 in (2.8ll). 

c. Show that the maximum likelihood estimators of all2 and f3'2 obtained in part (b) are the 
same as the least squares estimators ( 1.10) for the regression coefficients in the simple linear 
regression model. 

2.60. Show that test statistics (2.17) and (2.87) are equivalent. 
2.6l. Show that the ratio SSR/SsrO is the same whether Y, is regressed on Y2 or Y2 is regressed on 

Yr. [Hint: Use (1. lOa) and (2.51).] 

2.62. Refer to the CDI data set in Appendix C.2 and Project l.43. Using R2 as the criterion, which 
predictor variable accounts for the largest reduction in the variability in the number of active 
physicians? 

2.63. Refer to the CDI data set in Appendix C.2 and Project l.44. Obtain a separate interval estimate 
of f3, for each region. Use a 90 percent confidence coefficient in each case. Do the regression 
lines for the different regions appear to have similar slopes? 

2.64. Refer to the SENIC data set in Appendix C.1 and Project 1.45. Using R2 as the criterion, which 
predictor variable accounts for the largest reduction in the variability of the average length of 
stay? 

2.65. Refer to the SENIC data set in Appendix C.1 and Project l.46. Obtain a separate interval 
estimate of f31 for each region. Use a 95 percent confidence coefficient in each case. Do the 
regression lines for the different regions appear to have similar slopes? 

2.66. Five observations on Yare to be taken when X = 4, 8, 12, 16, and 20, respectively. The true 
regression function is E(y} = 20 + 4X, and the Bi are independent N(O, 25). 
a. Generate five normal random numbers, with mean 0 and variance 25. Consider these random 

numbers as the errorterms for the five Y observations at X = 4,8, 12, 16, and 20 and calculate 
Yj, Y2, Y3 , Y4 , and Ys. Obtain the least squares estimates ho and h, when fitting a straight 
line to the five cases. Also calculate Y" when X" = 10 and obtain a 95 percent confidence 
interval for E(Y,,} when X" = 10. 

b. Repeat part (a) 200 times, generating new random numbers each time. 
c. Make a frequency distribution of the 200 estimates hI. Calculate the mean and standard 

deviation of the 200 estimates hI. Are the results consistent with theoretical expectations? 
d. What proportion of the 200 confidence intervals for E (Yd when X" = 10 include E (Yd? 

Is this result consistent with theoretical expectations? 
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2.67. Refer to Grade point average Problem 1.19. 
a. Plot the data, with the least squares regression line for ACT scores between 20 and 30 

superimposed. 
b. On the plot in part (a), superimpose a plot of the 95 percent confidence band for the true 

regression line for ACT scores between 20 and 30. Does the confidence band suggest that 
the true regression relation has been precisely estimated? Discuss. 

2.68. Refer to Copier maintenance Problem 1.20. 
a. Plot the data, with the least squares regression line for numbers of copiers serviced between 

1 and 8 superimposed. 
b. On the plot in part (a), superimpose a plot of the 90 percent confidence band for the true 

regression line for numbers of copiers serviced between 1 and 8. Does the confidence band 
suggest that the true regression relation has been precisely estimated? Discuss. 
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Diagnostics and 
Remedial Measures 

When a regression model, such as the simple linear regression model (2.1), is considered 
for an application, we can usually not be certain in advance that the model is appropriate 
for that application. Anyone, or several, of the features of the model, such as linearity 
of the regression function or normality of the error terms, may not be appropriate for the 
particular data at hand. Hence, it is important to examine the aptness of the model for the 
data before inferences based on that model are undertaken. In this chapter, we discuss some 
simple graphic methods for studying the appropriateness of a model, as well as some formal 
statistical tests for doing so. We also consider some remedial techniques that can be helpful 
when the data are not in accordance with the conditions of regression model (2.1). We 
conclude the chapter with a case example that brings together the concepts and methods 
presented in this and the earlier chapters. 

While the discussion in this chapter is in terms of the appropriateness of the simple 
linear regression model (2.1), the basic principles apply to all statistical models discussed 
in this book. In later chapters, additional methods useful for examining the appropriateness 
of statistical models and other remedial measures will be presented, as well as methods for 
validating the statistical model. 

Diagnostics for Predictor Variable 
We begin by considering some graphic diagnostics for the predictor variable. We need 
diagnostic information about the predictor variable to see if there are any outlying X values 
that could influence the appropriateness of the fitted regression function. We discuss the 
role of influential cases in detail in Chapter 10. Diagnostic information about the range and 
concentration of the X levels in the study is also useful for ascertaining the range of validity 
for the regression analysis. 

Figure 3.1a contains a simple dot plot for the lot sizes in the Toluca Company example 
in Figure 1.10. A dot plot is helpful when the number of observations in the data set is not 
large. The dot plot in Figure 3.1a shows that the minimum and maximum lot sizes are 20 
and 120, respectively, that the lot size levels are spread throughout this interval, and that 
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FIGURE 3.1 MINITAB and SYGRAPH Diagnostic Plots for Predictor Variable-Toluca Company Example. 
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there are no lot sizes that are far outlying. The dot plot also shows that in a number of cases 
several runs were made for the same lot size. 

A second useful diagnostic for the predictor variable is a sequence plot. Figure 3.1b 
contains a time sequence plot of the lot sizes for the Toluca Company example. Lot size is 
here plotted against production run (i.e., against time sequence). The points in the plot;;rre 
connected to show more effectively the time sequence. Sequence plots should be utilized 
whenever data are obtained in a sequence, such as over time or for adjacent geographic 
areas. The sequence plot in Figure 3.1b contains no special pattern. If, say, the plot had 
shown that smaller lot sizes had been utilized early on and larger lot sizes later on, this 
information could be very helpful for subsequent diagnostic studies of the aptness of the 
fitted regression model. 

Figures 3.1c and 3.1d contain two other diagnostic plots that present information similar 
to the dot plot in Figure 3.la. The stem-and-leafplot in Figure 3.1c provides information 
similar to a frequency histogram. By displaying the last digits, this plot also indicates here 
that all lot sizes in the Toluca Company example were multiples of 10. The letter M in the 
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SYGRAPH output denotes the stem where the median is located, and the letter H denotes 
the stems where the first and third quartiles (hinges) are located. 

The box plot in Figure 3.ld shows the minimum and maximum lot sizes, the first and 
third quartiles, and the median lot size. We see that the middle half of the lot sizes range 
from 50 to 90, and that they are fairly symmetrically distributed because the median is 
located in the middle of the central box. A box plot is particularly helpful when there are 
many observations in the data set. 

3.2 Residuals 
Direct diagnostic plots for the response variable Y are ordinarily not too regression 
analysis because the values of the observations on the response variable are a function of 
the level of the predictor variable. Instead, diagnostics for the response variable are usually 
carried out indirectly through an examination of the residuals. 

The residual ei, as defined in (1.16), is the difference between the observed value Y; and 
the fitted value Y;: . 

e; = Y; - Y; (3.1) 

The residual may be regarded as the observed error, in distinction to the unknown true error 
C; in the regression model: 

C; = Y; - E{Y;} (3.2) 

For regression model (2.1), the error terms C; are assumed to be independent normal 
random variables, with mean 0 and constant variance a 2• If the model is appropriate for the 
data at hand, the observed residuals e; should then reflect the properties assumed for the C;. 

This is the basic idea underlying residual analysis, a highly useful means of examining the 
aptness of a statistical model. 

Properties of Residuals 
Mean. The mean of the n residuals e; for the simple linear regression model (2.1) is, 
by (1.17): 

(3.3) 

where e denotes the mean of the residuals. Thus, since e is always 0, it provides no infor-
mation as to whether the true errors C; have expected value E {c;} = O. 

Variance. The variance of the n residuals ej is defined as follows for regression 
model (2.1): 

2 L(e; - e)2 L e; SSE 
s = =--=--=MSE 

n-2 n-2 n-2 
(3.4) 

If the model is appropriate, MSE is, as noted earlier, an unbiased estimator of the variance 
of the error terms a 2• 

Nonindependence. The residuals e; are not independent random variables because they 
involve the fitted values Y; which are based on the same fitted regression function. As 
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a result, the residuals for regression model (2.1) are subject to two constraints. These 
are constraint (1. 17)-that the sum of the ei must be O-and constraint (1.l9)-that the 
products Xiei must sum to O. 

When the sample size is large in comparison to the number of parameters in the regression 
model, the dependency effect among the residuals ei is relatively unimportant and can be 
ignored for most purposes. 

Semistudentized Residuals 
At times, it is helpful to standardize the residuals for residual analysis. Since the standard 
deviation of the error terms 8; is a, which is estimated by ./ MSE, it is natural to consider 
the following form of standardization: 

* ei - e ei e· =---=---
I ./ MSE ./ MSE 

(3.5) 
}.., 

If ./MSE were an estimate of the standard deviation of the residual ei, we would call e; 
a studentized residual. However, the standard deviation of ei is complex and varies for 
the different residuals ei, and ./MSE is only an approximation of the standard deviation 
of ei. Hence, we call the statistic e7 in (3.5) a semistudentized residual. We shall take 
up studentized residuals in Chapter 10. Both semistudentized residuals and studentized 
residuals can be very helpful in identifying outlying observations. 

Departures from Model to Be Studied by Residuals 
We shall consider the use of residuals for examining six important types of departures from 
the simple linear regression model (2.1) with normal errors: 

1. The regression function is not linear. 
2. The error terms do not have constant variance. 
3. The error terms are not independent. 
4. The model fits all but one or a few outlier observations. 
5. The error terms are not normally distributed. 
6. One or several important predictor variables have been omitted from the model. 

3.3 Diagnostics for Residuals 
We take up now some informal diagnostic plots of residuals to provide information on 
whether any of the six types of departures from the simple linear regression model (2.1) 
just mentioned are present. The following plots of residuals (or semistudentized residuals) 
will be utilized here for this purpose: ' 

1. Plot of residuals against predictor variable. 
2. Plot of absolute or squared residuals against predictor variable. 
3. Plot of residuals against fitted values. 
4. Plot of residuals against time or otl1er sequence. 
5. Plots of residuals against omitted predictor variables. 
6. Box plot of residuals. 
7. Normal probability plot of residuals. 
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FIGURE 3.2 MINIThB and SYGRAPH Diagnostic Residual Plots-Toluca Company Example. 
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Figure 3.2 contains, for the Toluca Company example, MlNITAB and SYGRAPH plots 
of the residuals in Table 1.2 against the predictor variable and against time, a box plot, and 
a normal probability plot. All of these plots, as we shall see, support the appropriateness of 
regression model (2.1) for the data. 

We tum now to consider how residual analysis can be helpful in studying each of the six 
departures from regression model (2.1). 

Nonlinearity of Regression Function 
Whether a linear regression function is appropriate for the data being analyzed can be 
studied from a residual plot against the predictor variable or, equivalently, from a residual 
plot against the fitted values. Nonlinearity of the regression function can also be studied 
from a scatter plot, but this plot is not always as effective as a residual plot. Figure 3.3a 
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(b) Residual Plot 
2 
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Maps Distributed (thousands) 

(3) ,(4) 

Fitted 
City (thousands) (thousands) Value Residual 

Y; X; if; Y,- if;=e; 

1 .60 80 1.66 -1.06 
2 6.70 220 7.75 -1.05 
3 5.30 140 4.27 1.03 
4 4.00 120 3.40 .6(); 
5 6.55 180 6.01 .54 
6 2.15 100 2.53 -.38 
7 6.60 6.88 .,-.28 
8 5.75 160 5.14- .61 

f = + .043;SX 

contains a scatter plot of the data and the fitted regression line for a study of the relation 
between maps distributed and bus ridership in eight test cities. Here, X is the number of 
bus transit maps distributed free to residents of the city at the beginning of the test period 
and Y is the increase during the test period in average daily bus ridership during nonpeak 
hours. The original data and fitted values are given in Table 3.1, columns 1,2, and 3. 'The 
plot suggests strongly that a linear regrFssion function is not appropriate. 

Figure 3.3b presents a plot_of the residuals, shown in Table 3.1, column 4, against the 
predictor variable X. The lack of fit of the linear regression function is even more strongly 
suggested by the residual plot against X in Figure 3.3b than by the scatter plot. Note that 
the residuals depart from 0 in a systf;.lllatic fashion; they are.negative for smaller X values, 
positive for medium-size X values, and negative again for large X values. 

In this case, both Figures 3.3a and '3.3b point out the lack of linearity of the regression 
function. In general, however, the residual plot is to be preferred, because it has some 
important advantages over the scatter plot. First, the residual plot can easily be used for 
examining other facets of the aptness of the model. Second, there are occasions when the 
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FIGURE 3.4 
Prototype 
Residual Plots. 
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scaling of the scatter plot places the Yi observations close to the fitted values Yi , for instance, 
when there is a steep slope. It then becomes more difficult to study the appropriateness of 
a linear regression function from the scatter plot. A residual plot, on the other hand, can 
clearly show any systematic pattern in the deviations around the fitted regression line under 
these conditions. 

Figure 3.4a shows a prototype situation of the residual plot against X when a linear 
regression model is appropriate. The residuals then fall within a horizontal band centered 
around 0, displaying no systematic tendencies to be positive and negative. This is the case 
in Figure 3.2a for the Toluca Company example. 

Figure 3.4b shows a prototype situation of a departure from the linear regression model 
that indicates the need for a curvilinear regression function. Here the residuals tend to vary 
in a systematic fashion between being positive and negative. This is the case in Figure 3.3b 
for the transit example. A different type of departure from linearity would, of course, lead 
to a picture different from the prototype pattern in Figure 3.4b. 

Comment 
A plor of residuals against the fitted values Y provides equivalent information as a plot of residuals 
against X for the simple linear regression model, and thus is not needed in addition to the residual plot 
against X. The two plots provide the same information because the fitted values Yi are a linear function 
of the values Xi for the predictor variable. Thus, only the X scale values, not the basic pattern of the 
plotted points, are affected by whether the residual plot is against the Xi or the Y;. For curvilinear 
regression and multiple regression, on the other hand, separate plots of the residuals against the fitted 
values and against the predictor variable(s) are usually helpful. • 
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Nonconstancy of Error Variance 

FIGURE 3.5 
Residual Plots 
lHustrating 
Nonconstant 
Error 
Variance. 

Plots of the residuals against the predictor variable or against the fitted values are not only 
helpful to study whether a linear regression function is appropriate but also to examine 
whether the variance of the error terms is constant. Figure 3.Sa shows a residual plot against 
age for a study ofthe relation between diastolic blood pressure of healthy, adult women (Y) 
and their age (X). The plot suggests that the older the woman is, the more spread out the 
residuals are. Since the relation between blood pressure and age is positive, this suggests 
that the error variance is larger for older women than for younger ones. 

The prototype plot in Figure 3.4a exemplifies residual plots when the error term variance 
is constant. The residual plot in Figure 3.2a for the Toluca Company example is of this type, 
suggesting that the error terms have constant variance here. 

Figure 3.4c shows a prototype picture of residual plots when the error variance increases 
with X. In many business, social science, and biological science applications, departures 
from constancy of the error variance tend to be of the "megaphone" type shoWn in Fig-
ure 3.4c, as in the blood pressure example in Figure 3.Sa. One can also encounter error 
variances decreasing with increasing levels of the predictor variable and occasionally vary-
ing in some more complex fashion. 

Plots of the absolute values of the residuals or of the squared residuals against the pre-
dictor variable X or against the fitted values Y are also useful for diagnosing nonconstancy 
of the error variance since the signs of the residuals are not meaningful for examining the 
constancy of the error variance. These plots are especially useful when there are not many 
cases in the data set because plotting of either the absolute or squared residuals places all of 
the information on changing magnitudes of the residuals above the horizontal zero line so 
that one can more readily see whether the magnitude of the residuals (irrespective of sign) 
is changing with the level of X or Y. 

Figure 3.Sb contains a plot of the absolute residuals against age for the blood pressure 
example. This plot shows more clearly that the residuals tend to be larger in absolute 
magnitude for older-aged women. 

(a) Residual Plot against X (b) Absolute Residual Plot against X 
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FIGURE 3.6 
Residual Plot 
with Outlier. 
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Outliers are extreme observations. Residual outliers can be identified from residual plots 
against X or Y, as well as from box plots, stem-and-leaf plots, and dot plots of the residu-
als. Plotting of semistudentized residuals is particularly helpful for distinguishing outlying 
observations, since it then becomes easy to identify residuals that lie many standard devi-
ations from zero. A rough rule of thumb when the number of cases is large is to consider 
semistudentized residuals with absolute value of four or more to be outliers. We shall take 
up more refined procedures for identifying outliers in Chapter 10. 

The residual plot in Figure 3.6 presents semistudentized residuals and contains one 
outlier, which is circled. Note that this residual represents an observation almost six standard 
deviations from the fitted value. 

Outliers can create great difficulty. When we encounter one, our first suspicion is that 
the observation resulted from a mistake or other extraneous effect, and hence should be 
discarded. A major reason for discarding it is that under the least squares method, a fitted 
line may be pulled disproportionately toward an outlying observation because the sum of 
the squared deviations is minimized. This could cause a misleading fit if indeed the outlying 
observation resulted from a mistake or other extraneous cause. On the other hand, outliers 
may convey significant information, as when an outlier occurs because of an intemction 
with another predictor variable omitted from the model. A safe rule frequently suggested is 
to discard an outlier only if there is direct evidence that it represents an error in recording, 
a miscalculation, a malfunctioning of equipment, or a similar type of circumstance. 

Comment 
When a linear regression model is fitted to a set with a small number of cases and an outlier is 
present, the fitted regression can be so distorted by the outlier that the residual plot may improperly 
suggest a lack of fit of the linear regression model, in addition to flagging the outlier. Figure 3.7 
illustrates this situation. The scatter plot in Figure 3.7a presents a situation where all observations 
except the outlier fall around a straight-line statistical relationship. When a linear regression function 
is fitted to these data, the outlier causes such a shift in the fitted regression line as to lead to a systematic 
pattern of deviations from the fitted line for the other observations, suggesting a lack of fit of the linear 
regression function. This is shown by the residual plot in Figure 3.7b. • 

Nonindependence of Error Terms 
Whenever data are obtained in a time sequence or some other type of sequence, such as 
for adjacent geographic areas, it is a good idea to prepare a sequence plot of the residuals. 
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The purpose of plotting the residuals against time or in some other type of sequen.ce is to 
see if there is any correlation between error terms that are near each other in the sequence. 
Figure 3.8a contains a time sequence plot of the residuals in an experiment to study the 
relation between the diameter of a weld (X) and the shear strength of the weld (Y): An 
evident correlation between the error terms stands out. Negative residuals are associated 

I 
mainly with the early trials, positive residuals with the later trials. Apparently, some 
effect connected with time was present, such as learning by the welder or a gradual change 
in the welding equipment, so the shear strength tended to be greater in the later welds 
because of this effect. 

A prototype residual plot showing a time-related trend effect is presented in Figure 3.4d, 
which portrays a linear time-related trend effect, as in the welding example. It is sometimes 
useful to view the problem of nonindependence of the error terms as one in which an 
important variable (in this case, time) has been omitted from the model. We shall discuss 
this type of problem shortly. 



110 Part One Simple Linear Regression 

Another type of nonindependence of the error terms is illustrated in Figure 3.8b. Here 
the adjacent error terms are also related, but the resulting pattern is a cyclical one with no 
trend effect present. 

When the error terms are independent, we expect the residuals in a sequence plot to 
fluctuate in a more or less random pattern around the base line 0, such as the scattering 
shown in Figure 3.2b for the Toluca Company example. Lack of randomness can take the 
form of too much or too little alternation of points around the zero line. In practice, there is 
little concern with the former because it does not arise frequently. Too little alternation, in 
contrast. frequently occurs, as in the welding example in Figure 3.8a. 

Comment 
When the residuals are plotted against X, as in Figure 3.3b for the transit example, the scatter may not 
appear to be random. For this plot, however. the basic problem is probably not lack of independence 
of the error terms but a poorly fitting regression function. indeed, is the situation portrayed in 
the scatter plot in Figure 3.3a. • 

Nonnormality of Error Terms 
As we noted earlier, small departures from normality do not create any serious problems. 
Major departures, on the other hand, should be of concern. The normality of the error terms 
can be studied informally by examining the residuals in a variety of graphic ways. 

Distribution Plots. A box plot of the residuals is helpful for obtaining summary informa-
tion about the symmetry of the residuals and about possible outliers. Figure 3.2c contains 
a box plot of the residuals in the Toluca Company example. No serious departures from 
symmetry are suggested by this plot. A histogram, dot plot, or stem-and-leaf plot of the 
residuals can also be helpful for detecting gross departures from normality. However, the 
number of cases in the regression study must be reasonably large for any of these plots to 
convey reliable information about the shape of the distribution of the error terms. 

Comparison of Frequencies. Another possibility when the number of cases is reasonably 
large is to compare actual frequencies of the residuals against expected frequencies under 
normality. For example, one can determine whether, say, about 68 percent of the residuals 
ei fall between ± -JMSE or about 90 percent fall between ± 1.645-JMSE. When the sample 
size is moderately large, corresponding t values may be used for the comparison. 

To illustrate this procedure, we again consider the Toluca Company example of Chapter 1. 
Table 3.2, column t, repeats the residuals from Table 1.2. We see from Figure 2.2 that 
.JMSE = 48.82. Using the t distribution, we expect under normality about 90 percent of 
the residuals to fall between ± t(.95; 23).JMSE = ±1.714(48.82), or between -83.68 
and 83.68. Actually, 22 residuals. or 88 percent, fall within these limits. Similarly, under 
normality, we expect about 60 percent of the residuals to fall between -41.89 and 41.89. 
The actual percentage here is 52 percent. Thus, the actual frequencies here are reasonably 
consistent with those expected under normality. 

Normal Probability Plot. Still another possibility is to prepare a normal probability plot 
of the residuals. Here each residual is plotted against its expected value under normality. 
A plot that is nearly linear suggests agreement with normality, whereas a plot that departs 
substantially from linearity suggests that the error distribution is not normal. 

Table 3.2, column 1, contains the residuals for the Toluca Company example. To find 
the expected values of the ordered residuals under normality, we utilize the facts that (1) 
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(1) (2) (3) 
Expected 

Run Residual Rank Value under 
; ej If Normality 
1 51.02 22 51.95 
2 -48.47 5 -44.10 
3 -19.88 10 ,-14j6 

23 38.83 19 31.05 
24 -5.98 13 0 
25 10.72 17 19.93 

k.. 
the expected value of the error terms for regression model (2.1) is zero and (2) the standard 
deviation of the error terms is estimated by ,JMSE. Statistical theory has shown that for a 
normal random variable with mean 0 and estimated standard deviation -J MSE, a good ap-
proximation of the expected value of the kth smallest observation in a random sample of n is: 

-JMSE[Z (k - .375)] 
n+.25 

(3.6) 

where Z (A) as usual denotes the (A) 100 percentile of the standard normal distribution. 
Using this approximation, let us calculate the expected values of the residuals under 

normality for the Toluca Company example. Column 2 of Table 3.2 shows the ranks of 
the residuals, with the smallest residual being assigned rank 1. We see that the mnk of the 
residual for run 1, e, = 51.02, is 22, which indicates that this residual is the 22nd smallest 
among the 25 residuals. Hence, for this residual k = 22. We found earlier (Table 2.1) that 
MSE = 2,384. Hence: 

k - .375 
n+.25 

22 - .375 21.625 
--- = -- = .8564 
25 + .25 25.25 

so that the expected value of this residual under normality is: 

yl2,384[z(.8564)] = V2,384(1.064) = 51.95 

Similarly, the expected value ofthe residual forrun 2, e2 = -48.47, is obtained by noting 
that the mnk of this residual is k = 5; in other words, this residual is the fifth smallest one 
among the 25 residuals. Hence, we require (k - .375)/(n + .25) = (5 - .375)/(25 + .25) = 
.1832, so that the expected value of this residual under normality is: 

V2,384[z(.1832)] = V2,384(-.9032) = -44.10 

Table 3.2, column 3, contains the expected values under the assumption of normality 
for a portion of the 25 residuals. Figure 3.2d presents a pklt of the residuals against their 
expected values under normality. Note that the points in Figure 3.2d fall reasonably close to 
a straight line, suggesting that the distribution of the error terms does not depart substantially 
from a normal distribution. 

Figure 3.9 shows three normal probability plots when the distribution of the error terms 
departs substantially from normality. Figure 3.9a shows a normal probability plot when 
the error term distribution is highly skewed to the right. Note the concave-upward shape 
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FIGURE 3.9 Normal Probability Plots when Error Term Distribution Is Not Normal. 
(a) Skewed Right (b) Skevved Left (c) Symmetrical with Heavy Tails 
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of the plot. Figure 3.9b shows a normal probability plot when the error term distribution 
is highly skewed to the left. Here, the pattern is concave downward. Finally, Figure 3.9c 
shows a normal probability plot when the distribution of the error tenus is symmetrical but 
has heavy tails; in other words, the distribution has higher probabilities in the tails than 
a normal distribution. Note the concave-downward curvature in the plot at the left end, 
corresponding to the plot for a left-skewed distribution, and the concave-upward plot at the 
right end, corresponding to a right-skewed distribution. 

Comments 
1. Many computer packages will prepare normal probability plots, either automatically or at the 

option of the user. Some of these plots utilize semistudentized residuals, others omit the factor "jMSE 
in (3.6), but neither of these variations affect the nature of the plot 

2. For continuous data, ties among the residuals should occur only rarely. If two residuals do have 
the same value, a simple procedure is to use the average rank for the tied residuals for calculating the 
corresponding expected values. • 

Difficulties in Assessing Nonnality. The analysis for model departures with respect to 
normality is, in many respects, more difficult than that for other types of departures. In the 
first place, random variation can be particularly mischievous when studying the nature of 
a probability distribution unless the sample size is quite large. Even worse, other types of 
departures can and do affect the distribution of the residuals. For instance, residuals may 
appear to be not normally distributed because an inappropriate regression function is used or 
because the error variance is not constant. Hence, it is usually a good strategy to investigate 
these other types of departures first, before concerning oneself with the normality of the 
error terms. 

Omission of Important Predictor Variables 
Residuals should also be plotted against variables omitted from the model that might have 
important effects on the response. The time variable cited earlier in the welding example is 
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an illustration. The purpose of this additional analysis is to determine whether there are 
any other key variables that could provide important additional descriptive and prediftive 
power to the model. 

As another example, in a study to predict output by piece-rate workers in an assembling 
operation, the relation between output (Y) and age (X) of worker was studied for a sample 
of employees. The plot of the residuals against X, shown in Figure 3.lOa, indicates no 
ground for suspecting the of the linearity of the regression function or the 
constancy of the error variance. Since machines produced by two companies (A and B) are 
used in the assembling operation and could have an effect on output, residual plots against 
X by type of machine were undertaken and are shown in Figures 3.lOb and 3.lOc. Note 
that the residuals for Company A machines tend to be positive: while those for Company B 
machines tend to be negative. Thus, type of machine appears to have a definite effect on 
productivity, and output predictions may turn out to be far superior when this variable is 
added to the model. 
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While this second example dealt with a qualitative variable (type of machine), the resid-
ual analysis for an additional quantitative variable is analogous. The residuals are plotted 
against the additional predictor variable to see whether or not the residuals tend to vary 
systematically with the level of the additional predictor variable. 

Comment 
We do not say that the original model is "wrong" when it can be improved materially by adding one or 
more predictor variables. Only a few of the factors operating on any response variable Y in real-world 
situations can be included explicitly in a regression model. The chief purpose of residual analysis in 
identifYing other important predictor variables is therefore to test the adequacy of the model and see 
whether it could be improved materially by adding one or more predictor variables. • 

Some Final Comments 
1. We discussed model departures one at a time. In actuality, several types of departures 

may occur together. For instance, a linear regression function may be a poor fit and the 
variance of the error terms may not be constant. In these cases, the prototype patterns of 
Figure 3.4 can still be useful, but they would need to be combined into composite patterns. 

2. Although graphic analysis of residuals is only an informal method of analysis, in 
many cases it suffices for examining the aptness of a model. 

3. The basic approach to residual analysis explained here applies not only to simple 
linear regression but also to more complex regression and other types of statistical models. 

4. Several types of departures from the simple linear regression model have been identi-
fied by diagnostic tests of the residuals. Model misspecification due to either nonlinearity or 
the omission of important predictor variables tends to be serious, leading to biased estimates 
of the regression parameters and error variance. These problems are discussed further in 
Section 3.9 and Chapter 10. Nonconstancy of error variance tends to be less serious,leading 
to less efficient estimates and invalid error variance estimates. The problem is discussed in 
depth in Section 11.1. The presence of outliers can be serious for smaller data sets when 
their influence is large. Influential outliers are discussed further in Section lOA. Finally, the 
nonindependence of error terms results in estimators that are unbiased but whose variances 
are seriously biased. Alternative estimation methods for correlated errors are discussed in 
Chapter 12. 

3.4 Overview of Tests Involving Residuals 
Graphic analysis of residuals is inherently SUbjective. Nevertheless, subjective analysis of a 
variety of interrelated residual plots will frequently reveal difficulties with the model more 
clearly than particular formal tests. There are occasions, however, when one wishes to put 
specific questions to a test. We now briefly review some of the relevant tests. 

Most statistical tests require independent observations. As we have seen, however, the 
residuals are dependent. Fortunately, the dependencies become quite small for large samples, 
so that one can usually then ignore them. 

Tests for Randomness 
A runs test is frequently used to test for lack of randomness in the residuals arranged in time 
order. Another test, specifically designed for lack of randomness in least squares residuals, 
is the Durbin-Watson test. This test is discussed in Chapter 12. 
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Tests for Constancy of Variance 
When a residual plot gives the impression that the variance may be increasing or decreasing 
in a systematic manner related to X or E {Y}, a simple test is based on the rank correlation 
between the absolute values of the residuals and the corresponding values of the predictor 
variable. Two other simple tests for constancy of the error variance-the Brown-Forsythe 
test and the Breusch-Pagan test-are discussed in Section 3.6. 

Tests for Outliers 
A simple test for identifying an outlier observation involves fitting a new regression line to 
the other n - 1 observations. The suspect observation, which was not used in fitting the new 
line, can now be regarded as a new observation. One can calculate the probability that in n 
observations, a deviation from the fitted line as great as that of the outlier will be obtained 
by chance. If this probability is sufficiently small, the outlier can be rejected as not having 
come from the same population as the other n - 1 observations. Otherwise, the 
retained. We discuss this approach in detail in Chapter 10. 

Many other tests to aid in evaluating outliers have been developed. These are discussed 
in specialized references, such as Reference 3.1. 

Tests for Normality 
Goodness of fit tests can be used for examining the normality of the error terms. For instance, 
the chi-square test or the Kolmogorov-Smirnov test and its modification, the Lilliefors test, 
can be employed for testing the normality of the error terms by analyzing the residuals. 
A simple test based on the normal probability plot of the residuals will be taken up in 
Section 3.5. 

Comment 
The runs test, rank correlation, and goodness of fit tests are commonly used statistical procedures and 
are discussed in many basic statistics texts. • 

3.5 Correlation Test for Normality 

Example 

In addition to visually assessing the approximate linearity of the points plotted in a nor-
mal probability plot, a formal test for normality of the error terms can be conducted by 
calculating the coefficient of correlation (2.74) between the residuals ei and their expected 
values under normality. A high value of the correlation coefficient is indicative of normality. 
Table B.6, prepared by Looney and Gulledge (Ref. 3.2), contains critical values (percentiles) 
for various sample sizes for the distribution of the coefficient of correlation between the 
ordered residuals and their expected values under normality when the error terms are nor-
mally distributed. If the observed coefficient of correlation is at least as large as the tabled 
value, for a given a level, one can conclude that the en;or terms are reasonably normally 
distributed. . 
For the Toluca Company example in Table 3.2, the coefficient of correlation between the 
ordered residuals and their expected values under normality is .991. Controlling the a risk 
at .05, we find from Table B.6 that the critical value for n = 25 is .959. Since the observed 
coefficient exceeds this level, we have support for our earlier conclusion that the distribution 
of the error terms does not depart substantially from a normal distribution. 
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Comment 
The correlation test for normality presented here is simpler than the Shapiro-Wilk test (Ref. 3.3), 
which can be viewed as being based approximately also on the coefficient of correlation between the 
ordered residuals and their expected values under normality. • 

3.6 Tests for Constancy of Error Variance 
We present two formal tests for ascertaining whether the error terms have constant variance: 
the Brown-Forsythe test and the Breusch-Pagan test. 

Brown-Forsythe Test .7' 
The Brown-Forsythe test, a modification of the Levene test (Ref. 3.4), does not depend 
on normality of the error terms. Indeed, this test is robust against serious departures from 
normality, in the sense that the nominal significance level remains approximately correct 
when the error terms have equal variances even if the distribution of the error terms is 
far from normal. Yet the test is still relatively efficient when the error terms are normally 
distributed. The Brown-Forsythe test as described is applicable to simple linear regression 
when the variance of the error terms either increases or decreases with X, as illustrated in 
the prototype megaphone plot in Figure 3.4<.:. The sample size needs to be large enough so 
that the dependencies among the residuals can be ignored. 

The test is based on the variability of the residuals. The larger the error variance, the 
larger the variability of the residuals will tend to be. To conduct the Brown-Forsythe test, we 
divide the data set into two groups, according to the level of X, so that one group consists 
of cases where the X level is comparatively low and the other group consists of cases where 
the X level is comparatively high. If the error variance is either increasing or decreasing 
with X, the residuals in one group will tend to be more variable than those in the other 
group. Equivalently, the absolute deviations of the residuals around their group mean will 
tend to be larger for one group than for the other group. In order to make the test more 
robust, we utilize the absolute deviations of the residuals around the median for the group 
(Ref. 3.5). The Brown-Forsythe test then consists simply of the two-sample t test based on 
test statistic (A.67) to determine whether the mean of the absolute deviations for one group 
differs significantly from the mean absolute deviation for the second group. 

Although the distribution of the absolute deviations of the residuals is usually not normal, 
it has been shown that the t* test statistic still follows approximately the t distribution when 
the variance of the error terms is constant and the sample sizes of the two groups are not 
extremely small. 

We shall now use eil to denote the ith residual for group 1 and ei2 to denote the ith 
residual for group 2. Also we shall use nl and n2 to denote the sample sizes of the two 
groups, where: 

(3.7) 

Further, we shall use el and e2 to denote the medians of the residuals in the two groups. 
The Brown-Forsythe test uses the absolute deviations of the residuals around their group 
median, to be denoted by dil and di2 : 

(3.8) 
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With this notation, the two-sample t test statistic (A.67) becomes: 

([I - ([2 
t;F=-=== sJ 1 + 1 

nl n2 

(3.9) 

w here ([I and ([2 are the sample means ofthe di! and dib respectively, and the pooled variance 
S2 in (A.63) becomes: 

(3.9a) 

We denote the test statistic for the Brown-Forsythe test by 
If the error terms have constant variance and n 1 and n2 are not extremely small, F 

follows approximately the t distribution with n - 2 degrees of freedom. Large absolute 
values of indicate that the error terms do not have constant variance. 1-

We wish to use the Brown-Forsythe test for the Toluca Company example to determine 
whether or not the error term variance varies with the level of X. Since the X levels are 
spread fairly uniformly (see Figure 3.1a), we divide the 25 cases into two groups with 
approximately equal X ranges. The first group consists of the 13 runs with lot sizes from 
20 to 70. The second group consists of the 12 runs with lot sizes from 80 to 120. Table 3.3 

Group 1 

(1) (2)' (3) -(4) 
Lot Residual 

Run Size ell dll (41 - iJ1)2 

1 14 20 -20.77 ;89 1!929.41 
2 2 30 .:...48.47 28.59 2p3.25 

12 12 70 -60.28 40.40 19.49 
13 25 70 10.7'2 30:60 202.07 -

Total '12,566.6 
€1 = -19.88 di = 44.815 

Group 2 

(1) (2) (3) (4) 
Lot Residual 

Run Size e;2 42 f42 - iJ2)2 

1 1 80 '51.02 '·53170 637.56 
2 8 80 4.02 6.10 473.06 .... 

11 20 110 31.41 8.76 
12 7 120 55.21 57:89 866)1' 

--
Total 341)40 9;610;2 

€2 == 22.68 iJi=is.450 
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presents a portion of the data for each group. In columns 1 and 2 are repeated the lot sizes 
and residuals from Table 1.2. We see from Table 3.3 that the median residual is e, = -19.88 
for group I and e2 = -2.68 for group 2. Column 3 contains the absolute deviations of the 
residuals around their respective group medians. For instance, we obtain: 

d" = Ie" - eli = I - 20.77 - (-19.88)1 = .89 
d'2 = le'2 - e21 = 151.02 - (-2.68)1 = 53.70 

The means of the absolute deviations are obtained in the usual fashion: 

- 582.60 
d, = ----u- = 44.815 

- 341.40 
d2 = ---u- = 28.450 

Finally, column 4 contains the squares of the deviations of the do and di2 around their 
respective group means. For instance, we have: 

(d" - d1i = (.89 - 44.815)2 1,929.41 
(d'2 - d2i = (53.70 - 28.450)2 = 637.56 

We are now ready to calculate test statistic (3.9): 

2 12,566.6 + 9,610.2 64 
s = = 9 .21 

25 -2 
s = 31.05 

44.815 - 28.450 
t;F = = 1.32 

31.05 - +-13 12 

To control the a risk at .05, we require t(.975; 23) = 2.069. The decision rule therefore is: 

If It;FI ::::: 2.069, conclude the error variance is constant 
If It;FI > 2.069, conclude the error variance is not constant 

Since = 1.32 ::::: 2.069, we conclude that the error variance is constant and does not 
vary with the level of X. The two-sided P-value of this test is .20. 

Comments 
1. If the data set contains many cases, the two-sample t test for constancy of error variance can 

be conducted after dividing the cases into three or four groups, according to the level of X, and using 
the two extreme groups. 

2. A robust test for constancy of the error variance is desirable because nonnormality and lack of 
constant variance often go hand in hand. For example, the distribution of the error terms may become 
increasingly skewed and hence more variable with increasing levels of X. • 

Breusch-Pagan Test 
A second test for the constancy of the error variance is the Breusch-Pagan test (Ref. 3.6). 
This test, a large-sample test, assumes that the error terms are independent and normally 
distributed and that the variance of the error term lOb denoted by a?, is related to the level 
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of X in the following way: 

(3.10) 

Note that (3.10) implies that al either increases or decreases with the level of X, depending 
on the sign of YI. Constancy of error variance corresponds to y, = O. The test of Ho: y, = 0 
versus Ha: y, i= 0 is carried out by means of regressing the squared residuals against Xi 
in the usual manner and obtaining the regression sum of squares, to be denoted by SSR*. 
The test statistic is as follows: 

= 7 2 (3.11) 

where SSR* is the regression sum of squares when regressing e2 on X and SSE is the error 
sum of squares when regressing Yon X. If Ho: YI = 0 holds and n is reasonably large, 

follows approximately the chi-square distribution with one degree of freeJom. Large 
values of lead to conclusion Ha, that the error variance is not constant. 

To conduct the Breusch-Pagan test for the Toluca Company example, we regress the squared 
residuals in Table 1.2, column 5, against X and obtain SSR* = 7,896,128. We know from 
Figure 2.2 that SSE = 54,825. Hence, test statistic (3.11) is: 

2 _ 7,896,128 . (54,825)2 _ 1 
XBP - 2 --;- 25 -.82 

To control the a risk at .05, we require X2 (.95; 1) = 3.84. Since = .821 ::s 3.84, we 
conclude Ho, that the error variance is constant. The P-value of this test is .64 so that the 
data are quite consistent with constancy of the error variance. 

Comments 
1. The Breusch-Pagan test can be modified to allow for different relationships between the error 

variance and the level of X than the one in (3.10). 
2. Test statistic (3.11) was developed independently by Cook and Weisberg (Ref. 3.7), and the test is 

sometimes referred to as the Cook-Weisberg test. • 

3.7 F Test for Lack of Fit 

Assumptions 

We next take up a formal test for determining whether a specific type of regression func:tion 
adequately fits the data We illustrate this test for ascertaining whether a linear regression 
function is a good fit for the data. 

The lack of fit test assumes that the observations Y for given X are (1) independent and 
(2) normally distributed, and that (3) the distributions of the same variance a 2 • 

The lack of fit test requires repeat, observations at one or more X levels. In nonexperi-
mental data, these may occur fortuitously, as when in a productivity study relating workers' 
output and age, several workers of the same age happen to be included in the study. In an 
experiment, one can assure by design that there are repeat observations. For instance, in an 



120 Part One Simple Linear Regression 

Example 

TABLE 3.4 
Data and 
Analysis of 
Variance 
Table-Bank 
Example. 

experiment on the effect of size of salesperson bonus on sales, three salespersons can be 
offered a particular size of bonus, for each of six bonus sizes, and their sales then observed. 

Repeat trials for the same level of the predictor variable, of the type described, are called 
replications. The resulting observations are called replicates. 

In an experiment involving 12 similar but scattered suburban branch offices of a commercial 
bank, holders of checking accounts at the offices were offered gifts for setting up money 
market accounts. Minimum initial deposits in the new money market account were specified 
to qualify for the gift. The value of the gift was directly proportional to the specified 
minimum deposit. Various levels of minimum deposit and related gift values were used in 
the experiment in order to ascertain the relation between the specified minimum deposit 
and gift value, on the one hand, and number of accounts opened at the office, orr'the other. 
Altogether, six levels of minimum deposit and proportional gift value were used, with two 
of the branch offices assigned at random to each level. One branch office had a fire during 
the period and was dropped from the study. Table 3.4a contains the results, where X is the 
amount of minimum deposit and Y is the number of new mOl}ey market accounts that were 
opened and qualified for the gift during the test period. 

A linear regression function was fitted in the usual fashion; it is: 

Y = 50.72251 + .48670X 

The analysis of variance table also was obtained and is shown in Table 3.4b. A scatter plot, 
together with the fitted regression line, is shown in Figure 3.11. The indications are strong 
that a linear regression function is inappropriate. To test this formally, we shall use the 
general linear test approach described in Section 2.8. 

(a) Data 

Size of Size of 
Minimum Number Minimum Number 
Deposit of New Deposit of New 

Branch (dollars) Accounts Branch (dollars) Accounts 
i X; Y; i X; Y; 
1 125 160 7 75 42 
2 100 112 8 175 124 
3 200 124 9 125 150 
4 75 28 10 200 104 
5 150 152 11 100 136 
6 175 156 

(b) ANOVA Table 

Source of 
Variation 55 df M5 
Regressi'on 5,141.3 1 5,141.3 
Error 14,741.6 9 1,638.0 
Total 19,882.9 10 
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TABLE 3.5 
Data Arranged 
by Replicate 
Number and 
Minimum 
Deposit-Bank 
Ex3D1ple. 

Notation 

Full Model 
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V) c: 175 
:::l • 0 u u 
« 125 3: 
(]J z 
'0 75 Y = 50.7 + .49X 
(;:; 
.0 
E • 
:::l 
Z 50 100 150 200 

Size of Minimum Deposit 

Size of Minimum DelJosit (dollars) 

j=l j=2 j=3 jdo4 j=5 j=6 1-
Replicate Xl =75 X2 = 100 X3 =125 X4.=7 150 Xs = 175 X6 =200 
i =1 28 ,.,2 160 152 156 124 
i=2 42 136 150 124 104 
Mean Yi 35 124 155 152 140 114 

First, we need to modify our notation to recognize the existence of replications at some levels 
of X. Table 3.5 presents the same data as Table 3.4a, but in an arrangement that recognizes 
the replicates. We shall denote the different X levels in the study, whether or not replicated 
observations are present, as X I, ... , Xc' For the bank example, c = 6 since there are six 
minimum deposit size levels in the study, for five of which there are two observations and 
for one there is a single observation. We shall let Xl = 75 (the smallest minimum deposit 
level), X2 = 100, '" , X6 = 200. Further, we shall denote the number of replicates for the 
j th level of X as n j; for our example, n I = n2 = n3 = ns = n6 = 2 and n4 = 1. Thus, the 
total number of observations n is given by: 

(3.12) 

We shall denote the observed value of the response variable for the ith replicate for 
the jth level of X by Yij, where i = 1, ... , nj, j = 1, ... , c. For the bank example 
(Table 3.5), Yll = 28, Y21 = 42, YI2 = 112, and so on. Finally, we shall denote the 
mean of the Y observations at the level X =' X j by :Vj . Thus, :VI = (28 + 42) /2 = 35 and 
:V4 = 152/1 = 152. -

The general linear test approach begins with the specification of the full model. The full 
model used for the lack of fit test makes the same assumptions as the simple linear regression 
model (2.1) except for assuming a linear regression relation, the subject of the test. This 
full model is: 

Full model (3.13) 
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where: 

M j are parameters j == 1, ... , C 

Cij are independent N(O, a 2 ) 

Since the error terms have expectation zero, it follows that: 

Thus, the parameter Mj (j == 1, ... , c) is the mean response when X = X j • 

(3.14) 

The full model (3.13) is like the regression model (2.1) in stating that each response 
Y is made up of two components: the mean response when X = X j and a raI!,gQm error 
term. The difference between the two models is that in the full model (3.13) there are no 
restrictions on the means M j , whereas in the regression model (2.1) the mean responses are 
linearly related to X (i.e., E{Y} = f30 + f3, X). 

To fit the full model to the data, we require the least squares or maximum likelihood 
estimators for the pammeters M j. It can be shown that these estimators of M j are simply the 
sample means Yj: 

(3.15) 

Thus, the estimated expected value for observation Yij is Yj , and the error sum of squares 
for the full model therefore is: 

(3.16) 

In the context of the test for lack of fit, the full model error sum of squares (3.16) is called 
the pure error sum of squares and is denoted by SSPE. 

Note that SSPE is made up of the sums of squared deviations at each X level. At level 
X == X j, this sum of squared deviations is: 

(3.17) 

These sums of squares are then added over all of the X levels (j = 1, ... , c). For the bank 
example, we have: 

SSPE == (28 - 35)2 + (42 - 35i + (112 - 124)2 + (136 - 124)2 + (160 - 155)2 
+ (150 - 155)2 + (152 - 152)2 + (156 - 140)2 + (124 - 140)2 

+ (124 - 114)2 + (104 - 114)2 

= 1,148 

Note that any X level with no replications makes no contribution to SSPE because Yj = Y1j 

then. Thus, (152 - 152)2 = 0 for j == 4 in the bank example. 
The degrees of freedom associated with SSPE can be obtained by recognizing that the 

sum of squared deviations (3.17) at a given level of X is like an ordinary total sum of squares 
based on n observations, which has n - 1 degrees of freedom associated with it. Here, there 
are n j observations when X = X j; hence the degrees of freedom are n j - 1. Just as SSPE 
is the sum of the sums of squares (3.17), so the number of degrees of freedom associated 



Chapter 3 Diagnostics and Remedial Measures 123 

with SSPE is the sum of the component degrees of freedom: 

dfF = 2)n j - 1) = I> j - c = n - c (3.18) 

For the bank example, we have dfF = 11 - 6 = 5. Note that any X level with no replications 
makes no contribution to dfF because n j - I = 1 - 1 = 0 then, just as such an X level 
makes no contribution to SSPE. 

Reduced Model 

Test Statistic 

The general linear test approach next requires consideration of the reduced model under 
Ho. For testing the appropriateness of a linear regression relation, the alternatives are: 

Ho: E{Y} = f30 + f3,X 
Ha: E{Y} i= f30 + f3,X 

Thus, Ho postulates that Mj in the full model (3.13) is linearly related to X( 

Mj = f30 + f3,X j 

the reduced model under Ho therefore is: 

Yij = f30 + f3,X j + Cij Reduced model 

(3.19) 

(3.20) 

Note that the reduced model is the ordinary simple linearregression model (2.1), with the 
subscripts modified to recognize the existence of replications. We know that the estimated 
expected value for observation Yij with regression model (2.1) is the fitted value Yij : 

Yij = bo + blXj (3.21) 
Hence, the error sum of squares for the reduced model is the usual error sum of squares SSE: 

SSE(R) = L 2)Yij - (bo + b,Xj)]2 

= LL(Yij - Yij)2 = SSE 

We also that the degrees of freedom associated with SSE(R) are: 

d/R=n-2 

For the bank example, we have from Table 3.4b: 

SSE(R) = SSE = 14,741.6 

d/R = 9 

The general linear test statistic (2.70): 

F* = SSE(R) - SSE(F) ...;-. SSE(F) 
dfN - dfF dfF • 

here becomes: 
SSE - SSPE SSPE 

F*= ---
(n - 2) - (n - c) . n - c 

(3.22) 

(3.23) 
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The difference between the two error sums of squares is called the lack of fit sum of squares 
here and is denoted by SSLF: 

SSLF = SSE - SSPE (3.24) 

We can then express the test statistic as follows: 

F* = SSLF -;-. SSPE 
c-2 n-c 
MSLF 
MSPE 

(3.25) = 
where MSLF denotes the lack offit mean square and MSPE denotes the pure error mean 

,4j¢" 

square. .-
We know that large values of F* lead to conclusion Ha in the general linear test. Decision 

rule (2.71) here becomes: 

If F* :S F(1 - a; c - 2, n - c), Ho 

If F* > F(1 - a; c - 2, n - c), conclude Ha 
(3.26) 

For the bank example, the test statistic can be constructed easily from our earlier results: 

SSPE = 1,148.0 
SSE = 14,741.6 

n-c=11-6=5 

SSLF = 14,741.6 - 1,148.0 = 13,593.6 c - 2 = 6 - 2 = 4 

F* = 13,593.6 --'- 1,148.0 
4 . 5 

= 3,398.4 = 14.80 
229.6 

If the level of significance is to be a = .01, we require F(.99;4, 5) = 11.4. Since 
F* = 14.80 > 11.4, we conclude Ha, that the regression function is not linear. This, of 
course, accords with our visual impression from Figure 3.11. The P-value for the test is 
.006. 

ANOVATable 
The definition of the lack of fit sum of squares SSLF in (3.24) indicates that we have, in 
fact, decomposed the error sum of squares SSE into two components: 

SSE = SSPE + SSLF 

This decomposition follows from the identity: 

YIj - Y;j = Yij - Yj + Yj - Yij 
'-v--" '-v-" '-v-" 

Error Pure error Lack of fit 
deviation deviation deviation 

(3.27) 

(3.28) 

This identity shows that the error deviations in SSE are made up of a pure error component 
and a lack of fit component. Figure 3.12 illustrates this partitioning for the case Y l3 = 160, 
X3 = 125 in the bank example. 
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(pure error deviation) 5 = YB - Y3 { 

(lack offit deviation) 43 = Y3 - Yn 

75 100 125 

YB = 160 

Y3 = 155 

YB - YB = 48 (error deviation) 

150 
Size of Minimum Deposit (dollars) 

When (3.28) is squared and summed over all observations, we obtain (3.27) since the 
cross-product sum equals zero: 

(3.29) 
SSE = SSPE + SSLF 

Note from (3.29) that we can define the lack of fit sum of squares directly as follows: 

(3.30) 

Since all Yij observations at the level X j have the same fitted value, which we can denote 
by Yj , we can express (3.30) equivalently as: 

(3.30a) 

Formula (3.30a) indicates clearly why SSLF measures lack of fit. If the linear regression 
function is appropriate, then the means :Vj will be near the fitted values Yj calculated from 
the estimated linear regression function and SSLF will be small. On the other hand, if the 
linear regression function is not appropriate, the means :Vj will not be near the fitted values 
calculated from the estimated linear ,regression function, as in Figure 3.11 for the bank 
example, and SSLF will be large. 

Formula (3.30a) also indicates why c - 2 degrees of freedom are associated with SSLF. 
There are c means :Vj in the sum of squares, and two degrees of freedom are lost in estimating 
the parameters f30 and f3, of the linear regression function to obtain the fitted values Yj • 

An ANOVA table can be constructed for the decomposition of SSE. Table 3.6a contains 
the general ANOVA table, including the decomposition of SSE just explained and the 
mean squares of interest, and Table 3.6b contains the ANOVA decomposition for the bank 
example. 
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TABLE 3.6 
General 
ANOVA Table 
for Testing 
Lack of Fit of 
Simple Linear 
Regression 
Function and 
ANOVA 
Table-Bank 
Example. 

Simple Linear Regression 

Source of 
Variation 55 df M5 

Regression SSR= EE(Yij - y)2 1 MSR= 
1 

Error SSE = E E(Yij - Yij)2 n-2 MSE= SSE 
. n-2 

Lack of fit SSLF = EE(Y j - Yij? c-2 NfSL _ SStF F- .. c-2 

Pure errOr SSPE = EE(Yij - Y j)2 n-c MSPE= SSPE .. / 
n-c 

Tqtaf ssf6= E E(Yij - Y)2 n-l 

.(b) Bank Example 

Source of 
Variation 55 df M5 
Regression 1 
Error 14,741.6 9 j·l,638.0 
Lack Qffit 13,593.6 4 3,398.4 
Pure error 1,148.0 5 229.6 
Total 19,'882.9 10 

Comments 
1. As shown by the bank example, not all levels of X need have repeat observations for the F test 

for lack of fit to be applicable. Repeat observations at only one or some levels of X are sufficient. 
2. It can be shown that the mean squares MSPE and MSLFhave the following expectations when 

testing whether the regression function is linear: 

E{MSPE) = u 2 

E{MSLF) = u 2 + Enj[JLj - (130 + ,8I X j))2 
c-2 

(3.31) 

(3.32) 

The reason for the term "pure error" is that MSPE is always an unbiased estimator of the error term 
variance u 2 , no matter what is the true regression function. The expected value of MSLF also is u 2 if 
the regression function is linear, because JLj = 130 +,81 Xj then and the second term in (3.32) becomes 
zero. On the other hand, if the regression function is not linear, JL j of. 130 + ,81 X j and E {MSLF) will 
be greater than u 2 • Hence, a value of F* near 1 accords with a linear regression function; large values 
of F* indicate that the regression function is not linear. 

3. The terminology "error sum of squares" and "error mean square" is not precise when the 
regression function under test in Ho is not the true function since the error sum of squares and error 
mean square then reflect the effects of both the lack of fit and the variability of the error terms. We 
continue to use the terminology for consistency and now use the term "pure error" to identifY the 
variability associated with the error term only. 
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4. Suppose that prior to any analysis of the appropriateness of the model, we had fitted a linear 
regression model and wished to test whether or not f3! = 0 for the bank example (Table 3Ab). Test 
statistic (2.60) would be: 

* MSR 5,141.3 F =-=--=3.14 
MSE 1,638.0 

For a = .10, F(.90; 1, 9) = 3.36, and we would conclude Ho, that f31 = 0 or that there is no linear 
association between minimum deposit size (and value of gift) and number of new accounts. A conclu-
sion that there is no relation between these variables would be improper, however. Such an inference 
requires that regression model (2.1) be appropriate. Here, there is a definite relationship, but the re-
gression function is not linear. This illustrates the importance of always examining the appropriateness 
of a model before any inferences are drawn. 

5. The general linear test approach just explained can be used to test the appropriateness of other 
regression functions. Only the degrees of freedom for SSLF will need be modified. In general, c - p 
degrees of freedom are associated with SSIF, where p is the number of parameters in the regression 
function. For the test of a simple linear regression function, p = 2 because there are two pararrv;ters, 
f30 and f31' in the regression function. 

6. The alternative Ha in (3.19) includes all regression functions other than a linear one. For 
instance, it includes a quadratic regression function or a logarithmic one. If Ha is concluded, a study 
of reSiduals can be helpful in identifying an appropriate function. 

7. When we conclude that the employed model in Ho is appropriate, the usual practice is to use 
the error mean square MSE as an estimator of u 2 in preference to the pure error mean square MSPE, 
since the former contains more degrees of freedom. 

8. Observations at the same level of X are genuine repeats only if they involve independent trials 
with respect to the error term. Suppose that in a regression analysis of the relation between hardness 
(Y) and amount of carbon (X) in specimens of an alloy, the error term in the model covers, among 
other things, random errors in the measurement of hardness by the analyst and effects of uncontrolled 
production factors, which vary at random from specimen to specimen and affect hardness. If the 
analyst takes two readings on the hardness of a specimen, this will not provide a genuine replication 
because the effects of random variation in the production factors are fixed in any given specimen. 
For genuine replications, different specimens with the same carbon content (X) would have to be 
measured by the analyst so that all the effects covered in the error term could vary at random from 
one repeated observation to the next 

9. When no replications are present in a data set, an approximate test for lack of fit can be 
conducted if there are some cases at adjacent X levels for which the mean responses are quite close to 
each other. Such adjacent cases are grouped together and treated as pseudoreplicates, and the test for 
lack of fit is then carried out using these groupings of adjacent cases. A useful summary of this'<and 
related procedures for conducting a test for lack of fit when no replicates are present may be found in 
Reference 3.8. • 

3.8 Overview of Remedial Measures' 
If the simple linear regression model (2.1) is not appropriate for a data set, there are two 
basic choices: 

1. Abandon regression model (2.1) and develop and use a more appropriate model. 
2. Employ some transformation on the data so that regression model (2.1) is appropriate 

for the transformed data. 
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Each approach has advantages and disadvantages. The first approach may entail a more 
complex model that could yield better insights, but may also lead to more complex proce-
dures for estimating the parameters. Successful use of transformations, on the other hand, 
leads to relatively simple methods of estimation and may involve fewer parameters than 
a complex model, an advantage when the sample size is small. Yet transformations may 
obscure the fundamental interconnections between the variables, though at other times they 
may illuminate them. 

We consider the use of transformations in this chapter and the use of more complex 
models in later chapters. First, we provide a brief overview of remedial measures. 

Nonlinearity of Regression Function 
When the regression function is not linear, a direct approach is to m;d7fy regression 
model (2.1) by altering the nature of the regression function. For instance, a quadratic 
regression function might be used: 

E{Y} = f30 + f3,X + f3'l.X2 

or an exponential regression function: 

E {Y} = f3of3f 

In Chapter 7, we discuss polynomial regression functions, and in Part ill we take up nonlinear 
regression functions, such as an exponential regression function. 

The transformation approach employs a transformation to linearize, at least approxi-
mately, a nonlinear regression function. We discuss the use of transformations to linearize 
regression functions in Section 3.9. 

When the nature of the regression function is not known, exploratory analysis that does 
not require specifYing a particular type of function is often useful. We discuss exploratory 
regression analysis in Section 3.10. 

Nonconstancy of Error Variance 
When the error variance is not constant but varies in a systematic fashion, a direct approach 
is to modify the model to allow for this and use the method of weighted least squares to 
obtain the estimators of the parameters. We discuss the use of weighted least squares for 
this purpose in Chapter 11. 

Transformations can also be effective in stabilizing the variance. Some of these are 
discussed in Section 3.9. 

Nonindependence of Error Terms 
When the error terms are correlated, a direct remedial measure is to work with a model that 
calls for correlated error terms. We discuss such a model in Chapter 12. A simple remedial 
transformation that is often helpful is to work with first differences, a topic also discussed 
in Chapter 12. 

Nonnormality of Error Terms 
Lack of normality and nonconstant error variances frequently go hand in hand. Fortunately, 
it is often the case that the same transformation that helps stabilize the variance is also helpful 
in approximately normalizing the error terms. It is therefore desirable that the transformation 
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for stabilizing the error variance be utilized first, and then the residuals studied to see if 
serious departures from normality are still present. We discuss transformations to achieve 
approximate normality in Section 3.9. 

Omission of Important Predictor Variables 
When residual analysis indicates that an important predictor variable has been omitted from 
the model, the solution is to modify the model. In Chapter 6 and later chapters, we discuss 
multiple regression analysis in which two or more predictor variables are utilized. 

Outlying Observations 
When outlying observations are present, as in Figure 3.7a, use of the least squares and 
maximum likelihood estimators (1.10) for regression model (2.1) may lead to serious dis-
tortions in the estimated regression function. When the outlying observations do not repre-
sent recording errors and should not be discarded, it may be desirable to use aruestimation 
procedure that places less emphasis on such outlying observations. We discuss one such 
robust estimation procedure in Chapter 11. 

3.9 Transformations 
We now consider in more detail the use of transformations of one or both of the original 
variables before carrying out the regression analysis. Simple transformations of either the 
response variable Y or the predictor variable X, or of both, are often sufficient to make the 
simple linear regression model appropriate for the transformed data. 

Transformations for Nonlinear Relation Only 

Example 

We first consider transformations for linearizing a nonlinear regression relation when the 
distribution of the error terms is reasonably close to a normal distribution and the error 
terms have approximately constant variance. In this situation, transformations on X should 
be attempted. The reason why transformations on Y may not be desirable here is that a 
transformation on Y, such as Y' = -/y, may materially change the shape of the distribution 
of the -error terms from the normal distribution and may also lead to substantially differing 
error term variances. 

Figure 3.13 contains some prototype nonlinear regression relations with constant error 
variance and also presents some simple transformations on X that may be helpful to lin-
earize the regression relationship without affecting the distributions of Y. Several alternative 
transformations may be tried. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed, to decide which transformation is most effective. 

Data from an experiment on the effect of number of days of training received (X) on 
performance (Y) in a battery of simulated sales situations are presented in Table 3.7, 
columns 1 and 2, for the 10 participants in the study. A scatter plot of these data is shown in 
Figure 3.14a. Clearly the regression relation appears to be'curvilinear, so the simple linear 
regression model (2.1) does not seemto be appropriate. Since the variability at the different 
X levels appears to be fairly constant, we shall consider a transformation on X. Based on 
the prototype plot in Figure 3.13a, we shall consider initially the· square root transformation 
X' = .JX. The transformed values are shown in column 3 of Table 3.7. 
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FIGURE 3.13 
Prototype 
Nonlinear 
Regression 
Patterns with 
Constant Error 
Variance and 
Simple Trans-
formations 
ofX. 

TABLE 3.7 
Use of Square 
Root Transfor-
mation of X to 
Linearize 
Regression 
Relation-
Sales Training 
Exanlple. 

(a) 

(b) 

(c) 

Prototype Regression Pattern 

•• '.""'. 

. ," ' 
<, 

. 

, . 

.. ' 

' .. 

>' - -"y , 

c , -.-", '> _ _ 

(1) 
Sales Days of 

Trainee Training 
; Xi 
1 .5 
2 .5 
3 1.0 
4 1.0 
5 1.5 
6 1.,5 
7 2.0 
8 2.0 
9 2.5 

10 2.5 

Transformations of X 

X' = 10910 X X' = .JX. 

X' = X2 X' = exp(X) 

X' = l/X X' = exp(-X) 

(2) (3) 
·Performance 

Score 
Yi Xi =.jX; 

42.5 ;70711 
50.6 .70711 
68.5 1.00000 
80.7 1.00000 
89.0 1.22474 
99.6 1.22474 

105.3 1.41421 
111;8 1.41421 
112.3 1.58114 
125.7 1.58114 

In Figure 3.14b, the same data are plotted with the predictor variable transformed to 
X' = .JX. Note that the scatter plot now shows a reasonably linear relation. The variability 
of the scatter at the different X levels is the same as before, since we did not make a 
transformation on Y. 

To examine further whether the simple linear regression model (2.1) is appropriate now, 
we fit it to the transformed X data. The regression calculations with the transformed X data 
are carried out in the usual fashion, except that the predictor variable now is X'. We obtain 
the following fitted regression function: 

Y = -10.33 + 83.45X' 

Figure 3.14c contains a plot of the residuals against X'. There is no evidence of lack of 
fit or of strongly unequal error variances. Figure 3.14d contains a normal probability plot of 
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Scatter Plots and Residual P1ots--Sales Training Example. 

(a) Scatter Plot Scatter Plot against .JX. 
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(c) Residual Plot against .JX. (d) Normal Probability PI,ot 
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the residuals. No strong of substantial departures from normality are indicated 
by this plot. This conclusion is supported by the high coefficient of correlation between the 
ordered residuals and their expected values under normality, .979. For ex = .01, Table B.6 
shows that the critical value is .879, so the observed cqefficient is substantially larger 
and supports the reasonableness of normal error terms. Thus, the simple linear regression 
model (2.1) appears to be appropriate here for the transformed data. 

The fitted regression function in the original units of X can easily be obtained, if desired: 

Y = -10.33 + 83.4S.JX 
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FIGURE 3.15 
Prototype 
Regression 
Patterns with 
Unequal Error 
Variances and 
Simple Trans-
formations 
ofY. 

(a) 

Prototype Regression Pattern 

(b) 

Transformations on Y 

Y'= JY 
Y' = 10glo Y 

Y' = l/Y 

Note: A simultaneous transformation on X may also be helpful or necessary. 

Comment 
At times, it may be helpful to introduce a constant into the transformation. For example, if some of 
the X data are near zero and the reciprocal transformation is desired, we can shift the origin by using 
the transformation X' = 1/ (X + k), where k is an appropriately chosen constant. • 

Transformations for Nonnormality and Unequal Error Variances 

Example 

Unequal error variances and nonnormality of the error terms frequently appear together. 
To remedy these departures from the simple linear regression model (2.1), we need a 
transformation on Y, since the shapes and spreads of the distributions of Y need to be 
changed. Such a transformation on Y may also at the same time help to linearize a curvilinear 
regression relation. At other times, a simultaneous transformation on X may be needed to 
obtain or maintain a linear regression relation. 

Frequently, the nonnormality and unequal variances departures from regression 
model (2.1) take the form of increasing skewness and increasing variability of the distribu-
tions of the error terms as the mean response E {Y} increases. For example, in a regression 
of yearly household expenditures for vacations (Y) on household income (X), there will 
tend to be more variation and greater positive skewness (i.e., some very high yearly vacation 
expenditures) for high-income households than for low-income households, who tend to 
consistently spend much less for vacations. Figure 3.15 contains some prototype regression 
relations where the skewness and the error variance increase with the mean response E {Y}. 
This figure also presents some simple transformations on Y that may be helpful for these 
cases. Several alternative transformations on Y may be tried, as well as some simultaneous 
transformations on X. Scatter plots and residual plots should be prepared to determine the 
most effective transformation(s). 

Data on age (X) and plasma level of a polyamine (Y) for a portion of the 25 healthy 
children in a study are presented in columns 1 and 2 of Table 3.8. These data are plotted in 
Figure 3.16a as a scatter plot. Note the distinct curvilinear regression relationship, as well 
as the greater variability for younger children than for older ones. 



TABLE 3.8 
Use of 
Logarithmic 
Transforma-
tion ofY to 
Linearize 
Regression 
Relation and 
Stabilize Error 
Variance-
Plasma Levels 
Example. 
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(1) (2) (3) 
Child Age Plasma Level 

X; Y; Y; = IOg10 Y; 
1 0 (newbom) 13.44 1.1284 
2 0 (newbom) 12.84 1.1086 
3 0 (newborn) 11.91 1.0759 
4 0 (newbom) 20.09 1.3030 
5 0 (newborn) 15.60 1.1931 
6 1.0 10.11 1.0048 
7 1.0 11.38 1.0561 

. .. - ... 
19 3.0 6.90 .8388 
20 3.0 6.77 .8306 
21 4.0 4.86 .6866 
22 4.0 5.10 :7076 
23 4.0 5.67 .7536 
24 5.75 .7597 
25 4.0 6.23 .7945 

On the basis of the prototype regression pattern in Figure 3.15b, we shall first try the 
logarithmic transformation Y' = 10glO Y. The transformed Y values are shown in column 3 
of Table 3.8. Figure 3.16b contains the scatter plot with this transformation. Note that the 
transformation not only has led to a reasonably linear regression relation, but the variability 
at the different levels of X also has become reasonably constant. 

To further examine the reasonableness of the transformation Y' = 10glO Y, we fitted the 
simple linear regression model (2.1) to the transformed Y data and obtained: 

Y' = 1.135 - .1023X 

A plot of the residuals against X is shown in Figure 3.16c, and a normal probability plot of 
the residuals is shown in Figure 3.16d. The coefficient of correlation between the ordered 
residuals and their expected values under normality is .981. For a = .05, Table B.6 indicates 
that the critical value is .959 so that the observed coefficient supports the assumption of 
normality of the error terms. All of this evidence supports the appropriateness of regress.ion 
model (2.1) for the transformed Y data. 

Comments 
1. At times it may be desirable to introduce a constant into a transformation of Y, such as when 

Y may be negative. For instance, the logarithmic transformation to shift the origin in Y and make all 
Y observations positive would be Y' = + k), where k is an appropriately chosen constant. 

2. When unequal error variances are present but the regression relation is linear, a transformation 
on Y may not be sufficient While such a transformation may stabilize the error variance, it will also 
change the linear relationship to a curvilinear one. A transformation on X may therefore also be 
required. This case can also be handled by using weighted least squares, a procedure explained in 
Chapter 11. -. 
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The difference between the two error sums of squares is called the lack of fit sum of squares 
here and is denoted by SSLF: 

SSLF = SSE - SSPE (3.24) 

We can then express the test statistic as follows: 

F* = SSLF -;- SSPE 
c-2 n-c 
MSLF 
MSPE 

(3.25) 

where MSLF denotes the lack offit mean square and MSPE denotes the pu!:¥ error mean 
,.,.fo' square. 

We know that large values of F* lead to conclusion Ha in the general linear test. Decision 
rule (2.71) here becomes: 

If F* .:::: F(1 - a; c - 2, n - c), Q"Onclude Ho 

If F* > F(1 - a;c - 2, n c), conclude Ha 
(3.26) 

For the bank example, the test statistic can be constructed easily from our earlier results: 

SSPE = 1,148.0 
SSE = 14,741.6 

n-c=1l-6=5 

SSLF = 14,741.6 - 1,148.0 = 13,593.6 c - 2 = 6 - 2 = 4 
* 13,593.6. 1,148.0 

F = 4 --;--5-

= 3,398.4 = 14.80 
229.6 

If the level of significance is to be a = .01, we require F(.99;4, 5) = 11.4. Since 
F* = 14.80 > 11.4, we conclude Ha, that the regression function is not linear. This, of 
course, accords with our visual impression from Figure 3.11. The P-value for the test is 
.006. 

AN OVA Table 
The definition of the lack of fit sum of squares SSLF in (3.24) indicates that we have, in 
fact, decomposed the error sum of squares SSE into two components: 

SSE = SSPE + SSLF 

This decomposition follows from the identity: 

Yij - Yij = Yij - Yj + Yj - Yij 
'-v--" '-v-" '-v-" 

Error Pure error Lack of fit 
deviation deviation deviation 

(3.27) 

(3.28) 

This identity shows that the error deviations in SSE are made up of a pure error component 
and a lack of fit component. Figure 3.12 illustrates this partitioning for the case Y13 = 160, 
X3 = 125 in the bank example. 
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(pure error deviation) 5 = Yn - Y3 { 

Yn = 160 

Y3 = 155 

(lack offit deviation) 43 = Y3 - Vn Yn - Vn = 48 (error deviation) 

v = 50.72251 + .48670X 

75 100 125 150 x L 
Size of Minimum Deposit (dollars) 

When (3.28) is squared and summed over all observations, we obtain (3.27) since the 
cross-product sum equals zero: 

(3.29) 
SSE SSPE + SSLF 

Note from (3.29) that we can define the lack of fit sum of squares directly as follows: 

(3.30) 

Since all Yij observations at the level X j have the same fitted value, which we can denote 
by 9j , we can express (3.30) equivalently as: 

SSLF = I>j(Yj - 9j)2 
j 

(3.30a) 

Formula (3.30a) indicates clearly why SSLF measures lack of fit. If the linear regression 
function is appropriate, then the means Yj will be near the fitted values Yj calculated from 
the estimated linear regression function and SSLF will be small. On the other hand, if the 
linear regression function is not appropriate, the means 1'j will not be near the fitted values 
calculated from the estimated linear regression function, as in Figure 3.11 for the bank 
example, and SSLF will be large. 

Formula (3.30a) also indicates why c - 2 degrees of freedom are associated with SSLF. 
There are c means Yj in the sum of squares, and degrees of freedom are lost in estimating 
the parameters f30 and f3, of the linear regression function to obtain the fitted values 9j • 

An ANOVA table can be constructed for the decomposition of SSE. Table 3.6a contains 
the general ANOVA table, including the decomposition of SSE just explained and the 
mean squares of interest, and Table 3.6b contains the ANOVA decomposition for the bank 
example. 
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TABLE 3.6 
General 
ANOVATable 
for Testing 
Lack of Fit of 
Simple Linear 
Regression 
Function and 
ANOVA 
Table-Bank 
Example. 

Simple Linear Regression 

(a) General 

Source of 
Variation 55 df M5 

Regression SSR = E E(fij - Yf 1 MSR= 
1 

Error SSE = E E(Yij - fij)2 n-2 MSE"'" SSE 
'n-2 

Lack of fit SSLF = EE(Y j - fij)2 c-2 MSLF= SSLF 
c-'2 

pure error SSPE = EE(Yij - y j)2 n-c MSPE= SSPE ../ 
n-c 

Total SSTO'='E E(Yi i - yy n-1 

(b), BanI< Example -¥ 

Source of , 
Variation 55 df M5 

Regression 5,141.3 '1 i 5;141.3 
&ror 14;741.6 9 
Lack:offit 13;593;6 4 3;398.4 
PUI'e'error 1,148.0 5 229.6 
total 19,882.9 10 

Comments 
1. As shown by the bank example, not all levels of X need have repeat observations for the F test 

for lack of fit to be applicable. Repeat observations at only one or some levels of X are sufficient 
2. It can be shown that the mean squares MSPE and MSLF have the following expectations when 

testing whether the regression function is linear: 

E{MSPE} = u 2 

E{MSLF} = u 2 + Enj[JLj - (/30 + thXj)f 
c-2 

(3.31) 

(3.32) 

The reason for the term "pure error" is that MSPE is always an unbiased estimator of the error term 
variance u 2 , no matter what is the true regression function. The expected value of MSLF also is u 2 if 
the regression function is linear, because JL j = f30 + f31 X j then and the second term in (3.32) becomes 
zero. On the other hand, if the regression function is not linear, JLj =1= f30 + f31Xj and E{MSLF) will 
be greater than u 2 • Hence, a value of F* near 1 accords with a linear regression function; large values 
of F* indicate that the regression function is not linear. 

3. The terminology "error sum of squares" and "error mean square" is not precise when the 
regression function under test in Ho is not the true function since the error sum of squares and error 
mean square then reflect the effects of both the lack of fit and the variability of the error tenns. We 
continue to use the terminology for consistency and now use the term "pure error" to identify the 
variability associated with the error tenn only. 
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4. Suppose that prior to any analysis of the appropriateness of the model, we had fitted a linear 
regression model and wished to test whether or not fh = 0 for the bank example (Thble 3.4b). Thst 
statistic (2.60) would be: 

F* = MSR = 5,141.3 = 3.14 
MSE 1,638.0 

For a = .10, F(.90; 1, 9) = 3.36, and we would conclude Ho, that f31 = 0 or that there is no linear 
association between minimum deposit size (and value of gift) and number of new accounts. A conclu-
sion that there is no relation between these variables would be improper, however. Such an inference 
requires that regression model (2.1) be appropriate. Here, there is a definite relationship, but the re-
gression function is not linear. This illustrates the importance of always examining the appropriateness 
of a model before any inferences are drawn. 

5. The general linear test approach just explained can be used to test the appropriateness of other 
regression functions. Only the degrees offreedom for SSLF will need be modified. In general, c - p 
degrees of freedom are associated with SSLF, where p is the number of parameters in thekregression 
function. For the test of a simple linear regression function, p = 2 because there are two parameters, 
f30 and f3l> in the regression function. 

6. The alternative Ha in (3.19) includes all regression functions other than a linear one. For 
instance, it includes a quadratic regression function or a logarithmic one. If Ha is concluded, a study 
of residuals can be helpful in identifying an appropriate function. 

7. When we conclude that the employed model in Ho is appropriate, the usual practice is to use 
the error mean square MSE as an estimator of (12 in preference to the pure error mean square MSPE, 
since the former contains more degrees of freedom. 

8. Observations at the same level of X are genuine repeats only if they involve independent trials 
with respect to the error term. Suppose that in a regression analysis of the relation between hardness 
(Y) and amount of carbon (X) in specimens of an alloy, the error term in the model covers, among 
other things, random errors in the measurement of hardness by the analyst and effects of uncontrolled 
production factors, which vary at random from specimen to specimen and affect hardness. If the 
analyst takes two readings on the hardness of a specimen, this will not provide a genuine replication 
because the effects of random variation in the production factors are fixed in any given specimen. 
For genuine replications, different specimens with the same carbon content (X) would have to be 
measured by the analyst so that all the effects covered in the error term could vary at random from 
one repeated observation to the next 

9. when no replications are present in a data set, an approximate test for lack of fit can be 
conducted if there are some cases at adjacent X levels for which the mean responses are quite close to 
each other. Such adjacent cases are grouped together and treated as pseudoreplicates, and the'test for 
lack of fit is then carried out using these groupings of adjacent cases. A useful summary of this and 
related procedures for conducting a test for lack of fit when no replicates are present may be found in 
Reference 3.8. . • 

3.8 Overview of Remedial Measures 
If the simple linear regression model (2.1) is not appropriate for a data set, there are two 
basic choices: 

1. Abandon regression model (2.1) and develop and use a more appropriate model. 
2. Employ some transformation on the data so that regression model (2.1) is appropriate 

for the transformed data. 
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Each approach has advantages and disadvantages. The first approach may entail a more 
complex model that could yield better insights, but may also lead to more complex proce-
dures for estimating the parameters. Successful use of transformations, on the other hand, 
leads to relatively simple methods of estimation and may involve fewer parameters than 
a complex model, an advantage when the sample size is small. Yet transformations may 
obscure the fundamental interconnections between the variables, though at other times they 
may illuminate them. 

We consider the use of transformations in this chapter and the use of more complex 
models in later chapters. First, we provide a brief overview of remedial measures. 

Nonlinearity of Regression Function -When the regression function is not linear, a direct approach is to mot'llfy regression 
model (2.1) by altering the nature of the regression function. For instance, a quadratic 
regression function might be used: 

or an exponential regression function: 

E {Y} = 

In Chapter 7 , we discuss polynomial regression functions, and in partIn we take up nonlinear 
regression functions, such as an exponential regression function. 

The transformation approach employs a transformation to linearize, at least approxi-
mately, a nonlinear regression function. We discuss the use of transformations to linearize 
regression functions in Section 3.9. 

When the nature of the regression function is not known, exploratory analysis that does 
not require specifying a particular type of function is often useful. We discuss exploratory 
regression analysis in Section 3.10. 

Nonconstancyof Error Variance 
When the error variance is not constant but varies in a systematic fashion, a direct approach 
is to modify the model to allow for this and use the method of weighted least squares to 
obtain the estimators of the parameters. We discuss the use of weighted least squares for 
this purpose in Chapter 11. 

Transformations can also be effective in stabilizing the variance. Some of these are 
discussed in Section 3.9. 

Nonindependence of Error Terms 
When the error terms are correlated, a direct remedial measure is to work with a model that 
calls for correlated error terms. We discuss such a model in Chapter 12. A simple remedial 
transformation that is often helpful is to work with first differences, a topic also discussed 
in Chapter 12. 

Nonnormalityof Error Terms 
Lack of normality and nonconstant error variances frequently go hand in hand. Fortunately, 
it is often the case that the same transformation that helps stabilize the variance is also helpful 
in approximately normalizing the errorterms.ltis therefore desirable that the transformation 
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for stabilizing the error variance be utilized first, and then the residuals studied to see if 
serious departures from normality are still present. We discuss transformations to achieve 
approximate normality in Section 3.9. 

Omission of Important Predictor Variables 
When residual analysis indicates that an important predictor variable has been omitted from 
the model, the solution is to modify the model. In Chapter 6 and later chapters, we discuss 
multiple regression analysis in which two or more predictor variables are utilized. 

Outlying Observations 
When outlying observations are present, as in Figure 3.7a, use of the least squares and 
maximum likelihood estimators (1.10) for regression model (2.1) may lead to serious dis-
tortions in the estimated regression function. When the outlying observations do not repre-
sent recording errors and should not be discarded, it may be desirable to use 
procedure that places less emphasis on such outlying observations. We discuss one such 
robust estimation procedure in Chapter 11. 

3.9 Transformations 
We now consider in more detail the use of transformations of one or both of the original 
variables before carrying out the regression analysis. Simple transformations of either the 
response variable Y or the predictor variable X, or of both, are often sufficient to make the 
simple linear regression model appropriate for the transformed data. 

Transformations for Nonlinear Relation Only 

Example 

We first consider transformations for linearizing a nonlinear regression relation when the 
distribution of the error terms is reasonably close to a normal distribution and the error 
terms have approximately constant variance. In this situation, transformations on X should 
be attempted. The reason why transformations on Y may not be desirable here is that a 
transformation on Y, such as Y' = -/y, may materially change the shape of the distribution 
of the.error terms from the normal distribution and may also lead to substantially differing 
error term variances. 

Figure 3.13 contains some prototype nonlinear regression relations with const{mt error 
variance and also presents some simple transformations on X that may be helpful to lin-
earize the regression relationship without affecting the distributions of Y. Several alternative 
transformations may be tried. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to decide which transformation is most effective. , 
Data from an experiment OH the effect of number of days of training received (X) on 
performance (Y) in a battery of simulated safes situations are presented in Table 3.7, 
columns 1 and 2, for the 10 participants in the study. A scatter plot of these data is shown in 
Figure 3. 14a. Clearly the regressioFl. relation appears to be-curvilinear, so the simple linear 
regression model (2.1) does not seem.to be appropriate. Since the variability at the different 
X levels appears to be fairly constant, we shall consider a transformation on X. Based on 
the prototype plot in Figure 3.13a, we shall consider initially the square root transformation 
X' = .JX. The transformed values are shown in column 3 of Table 3.7. 
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FIGURE 3.13 
Prototype 
Nonlinear 
Regression 
Patterns with 
Constant Error 
Variance and 
Simple Trans-
formations 
ofX. 

TABLE 3.7 
Use of Square 
Root Transfor-
mation of X to 
Linearize 
Regression 
Relation-
Sales Training 
Example. 

Prototype Regression Pattern Transformations of X 

(a) X' = 10910 X X' = JX 

(b) X' = X2 X' = exp(X) 

(c) X'= l/X X'= exp(-X) 

(1) (2) (3) 
Sales Days of Performance 

TrainE!e Training Score 
X; Y; Xf =./Xi 

1 .5 42.5 .70711 
2 .5 50.6 .70711 
3 1.0 68.5 1:00000· 
4 1.0 80.7 LOOOOO 
5 1.5 89.0 1.22474 
6 1 .. 5 99.6 1.22474 
7 2.0 105.3 1.41421 
8 2;0 111.8 1.41421 
9 2.5 112.3 1.58h4 

10 125.7 1.58114 

In Figure 3.14b, the same data are plotted with the predictor variable transformed to 
X' = .JX. Note that the scatter plot now shows a reasonably linear relation. The variability 
of the scatter at the different X levels is the same as before, since we did not make a 
transformation on Y. 

To examine further whether the simple linear regression model (2.1) is appropriate now, 
we fit it to the transformed X data. The regression calculations with the transformed X data 
are carried out in the usual fashion, except that the predictor variable now is X'. We obtain 
the following fitted regression function: 

Y = -10.33 + 83.45X' 

Figure 3.14c contains a plot of the residuals against X'. There is no evidence of lack of 
fit or of strongly unequal error variances. Figure 3.14d contains a normal probability plot of 
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Scatter Plots and Residual Plots--Sales Training Example. 

(a) Scatter Plot (b) Scatter Plot against .JX. 
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(c) Residual Plot against ,fX (d) Normal Probability Plot 

0.8 

10 

CIt CIt 
CIt 

5 
CIt CIt CIt CIt 

"' CIt 
::J 
"0 0 ·in 
(]J 

CIt a! 
CIt CIt CIt 

-5 CIt 

CIt 

CIt 
-10 CIt 

1.0 1.2 1.4 1.6 -10 -5 0 5 10 
.JX. Expected 

, 
the residuals. No strong indications of substantial departures from normality are indicated 
by this plot. This conclusion is supported by the high coefficient of correlation between the 
ordered residuals and their expected values under hormality, .979. For ex .01, Table B.6 
shows that the critical value is so the observed coefficient is substantially larger 
and supports the reasonableness of normal error terms. Thus, the simple linear regression 
model (2.1) appears to be appropriate here for the transformed data. 

The fitted regression function in the original units of X can easily be obtained, if desired: 

Y = -10.33 + 83.4S.JX 
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FIGURE 3.15 Prototype Regression Pattern 
Prototype 
Regression 
Patterns with 
Unequal Error 
Variances and 
Simple Trans-
formations 
ofY. 

(a) (b) 

Transformations on Y 

y' = loglO Y 

Y' = l/Y 

Note: A simultaneous transformation on X may also be helpful or necessary. 

Comment 

(c) 

At times, it may be helpful to introduce a constant into the transformation. For example, if some of 
the X data are near zero and the reciprocal transfonnation is desired, we can shift the origin by using 
the transformation X' = I/(X + k), where k is an appropriately chosen constant. • 

Transformations for Nonnormality and Unequal Error Variances 

Example 

Unequal en-or variances and nonnormality of the en-or terms frequently appear together. 
To remedy these departures from the simple linear regression model (2.1), we need a 
transformation on Y, since the shapes and spreads of the distributions of Y need to be 
changed. Such a transformation on Y may also at the same time help to linearize a curvilinear 
regression relation. At other times, a simultaneous transformation on X may be needed to 
obtain or maintain a linear regression relation. 

Frequently, the nonnormality and unequal variances departures from regression 
model (2.1) take the form of increa<;ing skewness and increasing variability of the distribu-
tions of the error terms a<; the mean response E {Y} increa<;es. For example, in a regression 
of yearly household expenditures for vacations (Y) on household income (X), there will 
tend to be more variation and greater positive skewness (i.e., some very high yearly vacation 
expenditures) for high-income households than for low-income households, who tend to 
consistently spend much less for vacations. Figure 3.15 contains some prototype regression 
relations where the skewness and the error variance increase with the mean response E{Y}. 
This figure also presents some simple transformations on Y that may be helpful for these 
cases. Several alternative transformations on Y may be tried, as well as some simultaneous 
transformations on X. Scatter plots and residual plots should be prepared to determine the 
most effective transformation(s). 

Data on age (X) and plasma level of a polyamine (Y) for a portion of the 25 healthy 
children in a study are presented in columns I and 2 of Table 3.8. These data are plotted in 
Figure 3.16a as a scatter plot. Note the distinct curvilinear regression relationship, as well 
as the greater variability for younger children than for older ones. 



TABLE 3.8 
vseof 
Logarithmic 
Transforma-
tionofY to 
Linearize 
Regression 
Relation and 
Stabilize Error 
variance-
Plasma Levels 
Example. 
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(1) (2) (3) 
Child Age Plasma Level 

XI YI Yf = log10 YI 

1 0 (newborn) 13.44 1.1284 
2 0 (newborn) 12.84 1.1086 
3 0 (newborn) 11.91. 1.0759 
4 0 (newborn) 20.09 1.3030 
5 0 (newborn) 15.60 1.1931 
6 1.0 10.11 1.0048 
7 1.0 11.38 1.0561 

19 3.0 6.90 .8388 
20 3.0 6.77 .8306 
21 4.0 4.86 .6866 
22 4.0 5.10 ]076 
23 4.0 5.67 .7536 
24 4.0 5.75 .7597 
25 4.0 6.23 .7945 

On the basis of the prototype regression pattern in Figure 3.15b, we first try the 
logarithmic transformation Y' = 10giO Y. The transformed Y values are shown in column 3 
of Table 3.8. Figure 3.16b contains the scatter plot with this transformation. Note that the 
transformation not only has led to a reasonably linear regression relation, but the variability 
at the different levels of X also has become reasonably constant. 

To further examine the reasonableness of the transformation Y' = 10glO Y, we fitted the 
simple linear regression model (2.1) to the transformed Y data and obtained: 

y' = 1.135 - .1023X 

A plot of the residuals against X is shown in Figure 3.16c, and a normal probability plot of 
the residuals is shown in Figure 3.16d. The coefficient of correlation between the ordered 
residuals and their expected values under normality is .981. For a = .05, Table B.6 indicates 
that the critical value is .959 so that the observed coefficient supports the assumption of 
normality of the error terms. All of this evidence supports the appropriateness of regression 
model (2.1) for the transformed Y data. 

Comments 
1. At times it may be desirable to introduce a constant into a transformation of Y, such as when 

Y may be negative. For instance, the logarithmic transf.ormation to shift the origin in Y and make all 
Y observations positive would be Y' = 10glO(Y + k), where k is an appropriately dQosen constant 

2. When unequal error variances are present but the regression relation is linear, a transformation 
on Y may not be sufficient While such a tmnsformation may stabilize the error variance, it will also 
change the linear relationship to a curvilinear one. A transformation on X may therefore also be 
required. This case can also be handled by using weighted least squares, a procedure explained in 
Chapter 11. .• 
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FIGURE 3.16 Scatter Plots and Residual Plots-Plasma Levels Example. 

(a) Scatter Plot 
(b) Scatter Plot with y' = 10glo Y 
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Box-Cox Transformations 
It is often difficult to detennine from diagnostic plots, such as the one in Figure 3.16a for 
the plasma levels example, which transfonnation of Y is most appropriate for correcting 
skewness of the distributions of error tenus, unequal error variances, and nonlinearity ofthe 
regression function. The Box.,.Cox procedure (Ref. 3.9) automatically identifies a transfor-
mation from the family of power transformations on Y. The family of powertransfonnations 
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is of the form: 

y'= yA (3.33) 

where A is a parameter to be determined from the data. Note that this family encompasses 
the following simple transformations: 

A=2 
A =.5 
A=O 

A= -.5 

A = -1.0 

y' = y2 

y' =-/y 
y' = log" Y 

y' = _1_ 
-/y 

I 1 Y=y 

(by definition) (3.34) 

The normal error regression model with the response variable a member of the family of 
power transformations in (3.33) becomes: 

(3.35) 

Note that regression model (3.35) includes an additional parameter, A, which needs to be 
estimated. The Box-Cox procedure uses the method of maximum likelihood to estimate A, 
as well as the other parameters f3o, f31, and a 2 • In this way, the Box-Cox procedure identifies 
)", the maximum likelihood estimate of A to use in the power transformation. 

Since some statistical software packages do not automatically provide the Box-Cox max-
imum likelihood estimate)" for the power transformation, a simple procedure for obtaining 
)" using standard regression software can be employed instead. This procedure involves a 
numerical search in a range of potential A values; for example, A = -2, A = -1.75, ... , 
A = 1.75, A = 2. For each A value, the Y( observations are first standardized so that the 
magnitude of the error sum of squares does not depend on the value of A: 

where: 

(iH"" 
1 

K,t=--

Note that K2 is the geometric mean of the Yi 

(3.36) 

(3.36a) 

(3.36b) 

Once the standardized observations Wi have been obtained for a given A value, they are 
regressed on the predictor variable X -and the error sum of sqHares SSE is obtained. It can be 
shown that the maximum likelihood estimate)" is that value of A for which SSE is a minimum. 

If desired, a finer search can be conducted in the neighborhood of the A value that 
minimizes SSE. However, the Box-Cox procedure ordinarily is used only to provide a guide 
for selecting a transformation, so overly precise results are not needed. In any case, scatter 

( 
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Example 

TABLE 3.9 
Box-Cox 
Results-
Plasma Levels 
Example. 

FIGURE 3.17 
SAS-JMP 
Box-Cox 
ResuIts-
Plasma Levels 
Example. 

and residual plots should be utilized to examine the appropriateness of the transformation 
identified by the Box-Cox procedure. 

Table 3.9 contains the Box-Cox results for the plasma levels example. Selected values of A, 
ranging from -1.0 to 1.0, were chosen, and for each chosen A the transformation (3.36) 
was made and the linear regression of W on X was fitted. For instance, for A = .5, the 
transformation Wi = K I ( -JYi -1) was made and the linearregression of W on X was fitted. 
For this fitted linear regression, the error sum of squares is SSE = 48.4. The transformation 
that leads to the smallest value of SSE corresponds to A = -.5, for which SSE = 30.6. 

Figure 3.17 contains the SAS-JMP Box-Cox results for this example. It consists of a 
plot of SSE as a function of A. From the plot, it is clear that a power value near A = -.50 
is indicated. However, SSE as a function of A is fairly stable in the rang0"from near 0 to 
-1.0, so the earlier choice of the logarithmic transformation Y' = 10glO Y for the plasma 
levels example, corresponding to A = 0, is not unreasonable according to the Box-Cox 
approach. One reason the logarithmic transformation was chosen here is because of the 
ease of interpreting it The use of logarithms to base lO;4"ather than natural logarithms does 
not, of course, affect the appropriateness of the logarithmic transformation . 

. " 

Comments 
1. At times, theoretical or a priori considerations can be utilized to help in choosing an appropriate 

transformation. For example, when the shape of the scatter in a study of the relation between price of a 
commodity (X) and quantity demanded (Y) is that in Figure 3.1Sb, economists may prefer logarithmic 
transformations of both Y and X because the slope of the regression line for the transformed variables 
then measures the price elasticity of demand. The slope is then commonly interpreted as showing the 
percent change in quantity demanded per 1 percent change in price, where it is understood that the 
changes are in opposite directions. 
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Similarly, scientists may prefer logarithmic transformations of both Y and X when studying the 
relation between radioactive decay (Y) of a substance and time (X) for a curvilinear relation of the 
type illustrated in Figure 3.15b because the slope of the regression line for the transformed variables 
then measures the decay rate. 

2. After a transformation has been tentatively selected, residual plots and other analyses described 
earlier need to be employed to ascertain that the simple linear regression model (2.1) is appropriate 
for the transformed data 

3. When transformed models are employed, the estimators bo and bi obtained by least squares 
have the least squares properties with respect to the transformed observations, not the original ones. 

4. The maximum likelihood estimate of A with the Box-Cox procedure is subject to sampling 
variability. In addition, the error sum of squares SSE is often fairly stable in a neighborhood around the 
estimate. It is therefore often reasonable to use a nearby A value for which the power transformation 
is easy to understand. For example. use of A = 0 instead of the maximum likelihood estimate 
1 = .13 or use of A = -.5 instead of 1 = -.79 may facilitate understanding without sacrificing 
much in terms of the effectiveness of the transformation. To determine the of using 
an easier-to-understand value of A, one should examine the flatness of the likelihood function in 
the neighborhood of 1, as we did in the plasma levels example. Alternatively, one may construct an 
approximate confidence interval for A; the procedure for constructing such an interval is discussed in 
Reference 3.10. 

5. When the Box-Cox procedure leads to a A value near 1, no transformation of Y may be needed . 

• 
Exploration of Shape of Regression Function 

Scatter plots often indicate readily the nature of the regression function. For instance, 
Figure 1.3 clearly shows the curvilinear nature of the regression relationship between steroid 
level and age. At other times, however, the scatter plot is complex and it becomes difficult to 
see the nature of the regression relationship, if any, from the plot. In these cases, it is helpful 
to explore the nature of the regression relationship by fitting a smoothed curve without any 
constraints on the regression function. These smoothed curves are also called nonparametric 
regression curves. They are useful not only for exploring regression relationships but also 
for confirming the nature of the regression function when the scatter plot visually suggests 
the nature of the regression relationship. 

Many smoothing methods have been developed for obtaining smoothed curves for time 
series data, where the Xi denote time periods that are equally spaced apart. The method of 
moving averages uses the mean of the Y observations for"adjacent time periods to obtain 
smoothed values. For example, the mean of the Y values for the first three time periods 
in the time series might constitute thf1 first smoothed value corresponding to the middle 
of the three time periods, in Q!her words, corresponding to time period 2. Then the mean 
of the Y values for the second, third, and fourth time periods would constitute the second 
smoothed value, corresponding to the middle o( these three time periods, in other words, 
corresponding to time period 3, and so on. Special procedures are required for obtaining 
smoothed values at the two ends of the time series. The larger the successive neighborhoods 
used for obtaining the smoothed values, the smoother the curve will be. 

The method of running medians is similar to the method of moving averages, except 
that the median is used as the average measure in order to reduce the influence of outlying 



138 Part One Simple Linear Regression 

observations. With this method, as well as with the moving average method, successive 
smoothing of the smoothed values and other refinements may be undertaken to provide a 
suitable smoothed curve for the time series. Reference 3.11 provides a good introduction 
to the running median smoothing method. 

Many smoothing methods have also been developed for regression data when the X 
values are not equally spaced apart. A simple smoothing method, band regression, divides 
the data set into a number of groups or "bands" consisting of adjacent cases according to 
their X levels. For each band, the median X value and the median Y value are calculated, 
and the points defined by the pairs of these median values are then connected by straight 
lines. For example, consider the following simple data set divided into three groups: 

,,,,,,,-
Median Median 

X y X Y 

2.0 13.1 
2.7 J4.4 

3.4 15.7 

3.7 14.9 
4.5 16.8 4.5 16.8 
5.0 17.1 

5.2 16.9 
5.9 

5.55 17.35 
17.8 

The three pairs of medians are then plotted on the scatter plot of the data and connected by 
straight lines as a simple smoothed nonparametric regression curve. 

lowess Method 
The lowess method, developed by Cleveland (Ref. 3.12), is a more refined nonparametric 
method than band regression. It obtains a smoothed curve by fitting successive linear re-
gression functions in local neighborhoods. The name lowess stands for locally weighted 
regression scatter plot smoothing. The method is similar to the moving average and running 
median methods in that it uses a neighborhood around each X value to obtain a smoothed 
Y value corresponding to that X value. It obtains the smoothed Y value at a given X by 
fitting a linear regression to the data in the neighborhood of the X value and then using the 
fitted value at X as the smoothed value. To illustrate this concretely, let (X I, Y1) denote the 
sample case with the smallest X value, (X2' Y2) denote the sample case with the second 
smallest X value, and so on. If neighborhoods of three X values are used with the lowess 
method, then a linear regression would be fitted to the data: 

The fitted value at X2 would constitute the smoothed value corresponding to X2 • Another 
linear regression would be fitted to the data: 
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and the fitted value at X3 would constitute the smoothed value corresponding to X3 • 

Smoothed values at each end of the X range are also obtained by the lowess procedure. 
The lowess method uses a number of refinements in obtaining the final smoothed values 

to improve the smoothing and to make the procedure robust to outlying observations. 

1. The linear regression is weighted to give cases further from the middle X level in each 
neighborhood smaller weights. 

2. To make the procedure robust to outlying observations, the linear regression fitting is 
repeated, with the weights revised so that cases that had large residuals in the first fitting 
receive smaller weights in the second fitting. 

3. To improve the robustness of the procedure further, step 2 is repeated one or more 
times by revising the weights according to the size of the residuals in the latest fitting. 

To implement the lowess procedure, one must choose the size of the successive neigh-
borhoods to be used when fitting each linear regression. One must also choose the 'weight 
function that gives less weight to neighborhood cases with X values far from each center 
X level and another weight function that gives less weight to cases with large residuals. 
Finally, the number of iterations to make the procedure robust must be chosen. 

In practice, two iterations appear to be sufficient to provide robustness. Also, the weight 
functions suggested by Cleveland appear to be adequate for many circumstances. Hence, 
the primary choice to be made for a particular application is the size of the successive 
neighborhoods. The larger the size, the smoother the function but the greater the danger 
that the smoothing will lose essential features of the regression relationship. It may require 
some experimentation with different neighborhood sizes in order to find the size that best 
brings out the regression relationship. We explain the lowess method in detail in Chapter 11 
in the context of multiple regression. Specific choices of weight functions and neighborhood 
sizes are discussed there. 

Figure 3.18a contains a scatter plot based on a study of research quality at 24 research 
laboratories. The response variable is a measure of the quality of the research done at the 
laboratory, and the explanatory variable is a measure of the volume of research performed 
at the labQratory. Note that it is very difficult to tell from this scatter plot whether or not a 
relationship exists between research quality and quantity. Figure 3.18b repeats the scatter 
plot and also shows the lowess smoothed curve. The curve suggests that there might be 
somewhat higher research quality for medium-sized laboratories. However, the scatter is 
great so that this suggested relationship should be considered only as a possibility. Also, 
because any particular measures of research quality and quantity are so limited, other 
measures should be considered to see if these corroborate the relationship suggested in 
Figure 3.18b. 

Use of Smoothed Curves to Confirm Fitted Regression Function 
Smoothed curves are useful not only in the exploratory a regression model is 
selected but they are also helpful in confirming the regression function chosen. The proce-
dure for confirmation is simple: The curve is plotted together with the confidence 
band for the fitted regression function. If the smoothed curve falls within the confidence 
band, we have supporting evidence of the appropriateness of the fitted regression function. 
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Figure 3.19a repeats the scatter plot for the Toluca Company example from Figure 1.1Oa 
and shows the lowess smoothed curve. It appears that the regression relation is linear or 
possibly slightly curved. Figure 3.19b repeats the confidence band for the regression line 
from Figure 2.6 and shows the lowess smoothed curve. We see that the smoothed curve falls 
within the confidence band for the regression line and thereby supports the appropriateness 
of a linear regression function. 

Comments 
1. Smoothed curves, such as the lowess curve, do not provide an analytical expression for the 

functional form of the regression relationship. They only suggest the shape of the regression curve. 
2. The lowess procedure is not restricted to fitting linearregression functions in each neighborhood. 

Higher-degree polynomials can also be utilized with this method. 
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3. Smoothed curves are also useful when examining residual plots to ascertain whether the resid-
uals (or the absolute or squared residuals) follow some relationship with X or Y. 

4. References 3.13 and 3.14 provide good introductions to other nonparametric methods in re-
gression analysis. • 

3.11 Case Example-Plutonium Measurement 

TABLE 3.10 
BasicData-
Plutonium 
Measurement 
Example. 

Some environmental cleanup work requires that nuclear materials, such as plutonium 238, 
be located and completely removed from a restoration site. When plutonium has become 
mixed with other materials in very small amounts, detecting its presence can be a difficult 
task. Even very small amounts can be traced, however, because plutonium emits subatomic 
particles--alpha particles-that can be detected. Devices that are used to detect plutonium 
record the intensity of alpha particle strikes in counts per second (#/sec). The regression rela-
tionship between alpha counts per second (the response variable) and plutonium actii1,ity (the 
explanatory variable) is then used to estimate the activity of plutonium in the material under 
study. This use of a regression relationship involves inverse prediction [i.e., predicting plu-
tonium activity (X) from the observed alpha count (Y)], a procedure discussed in Chapter 4. 

The task here is to estimate the regression relationship between alpha counts per second 
and plutonium activity. This relationship varies for each measurement device and must be 
established precisely each time a different measurement device is used. It is reasonable to 
assume here that the level of alpha counts increases with plutonium activity, but the exact 
nature of the relationship is generally unknown. 

In a study to establish the regression relationship for a particular measurement device, 
four plutonium standards were used. These standards are aluminum/plutonium rods con-
taining a fixed, known level of plutonium activity. The levels of plutonium activity in the 
four standards were 0.0, 5.0, 10.0, and 20.0 picocuries per gram (pCi/g). Each standard was 
exposed to the detection device from 4 to 10 times, and the rate of alpha strikes, measured 
as counts per second, was observed for each replication. A portion of the data is shown 
in Table 3.10, and the data are plotted as a scatter plot in Figure 3.20a. Notice that, as 
expected, the strike rate tends to increase with the activity level of plutonium. Notice also 
that nonz..ero strike rates are recorded for the standard containing no plutonium. This results 
from background radiation and indicates that a regression model with an intercept term is 
required here. 

Pll.Itonium Alpha Count 
Case Activity Rate 

. (pCi/g) (#/set) 
1 20 .150 
2 ° .004 
3. 10 ,0(59 . ... 

22 ° . 002 
23 5 .049 
24 0 .106 
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FIGURE 3.20 
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As an initial step to examine the nature of the regression relationship, a lowess smoothed 
curve was obtained; this curve is shown in Figure 3.20b. We see that the regression rela-
tionship may be linear or slightly curvilinear in the range of the plutonium activity levels 
included in the study. We also see that one ofthe readings taken at 0.0 pCi/g (case 24) does not 
appear to fit with the rest of the observations. An examination oflaboratory records revealed 
that the experimental conditions were not properly maintained for the last case, and it was 
therefore decided that case 24 should be discarded. Note, incidentally, how robust the lowess 
smoothing process was here by assigning very little weight to the outlying observation. 

A linear regression function was fitted next, based on the remaining 23 cases. The SAS-
JMP regression output is shown in Figure 3.21a, a plot of the residuals against the fitted 
values is shown in Figure 3.21b, and a normal probability plot is shown in Figure 3.2Ic. 
The JMP output uses the label Model to denote the regression component of the analysis 
of variance; the label C Total stands for corrected total. We see from the regression output 
that the slope of the regression line is not zero (F* = 228.9984, P-value = .0000) so that a 
regression relationship exists. We also see from the flared, megaphone shape of the residual 
plot that the error variance appears to be increasing with the level of plutonium activity. 
The normal probability plot suggests non normality (heavy tails), but the nonlinearity of the 
plot is likely to be related (at least in part) to the unequal error variances. The existence of 
nonconstant variance is confirmed by the Breusch-Pagan test statistic (3.11): 

x1p = 23.29 > X2 (.95; 1) = 3.84 

The presence of nonconstant variance clearly requires remediation. A number of ap-
proaches could be followed, including the use of weighted least squares discussed in Chap-
ter 11. Often with count data, the error variance can be stabilized through the use of a 
square root transformation of the response variable. Since this is just one in a range of 
power transformations that might be useful, we shall use the Box-Cox procedure to suggest 
an appropriate power transformation. Using the standardized variable (3.36), we find the 
maximum likelihood estimate of A to be )" = .65. Because the likelihood function is fairly 
flat in the neighborhood of)" = .65, the Box-Cox procedure supports the use of the square 
root transformation (i.e., use of A = .5). The results of fitting a linear regression function 
when the response variable is Y' = -JY are shown in Figure 3.22a. 
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FIGURE 3.21 SAS-JMP Regression Output and Diagnostic Plots for Untransformed Data-Plutonium 
Measurement Example. 
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At this point a new problem has arisen. Although the residual plot in Figure 3.22b shows 
that the error variance appears to be more stable and the points in the normal probability 
plot in Figure 3.22c fall roughly on a straight line, the residual plot now suggests Y' 
is nonlinearly related to X. This concern is confirmed by the lack of fit test statistic (3.25) 
(F* = 10.1364, P-value = .0010). Qf course, this result is not completely unexpected, 
since Y was linearly related tQ.X. 

To restore a linear relation with the transformed Y variable, we shall see if a square root 
transformation of X will lead to a satisfactory linear fit. The regression results when re-
gressing Y' = -/Y on X' = .JX are presented in Figure 3.23. Notice from the residual plot 
in Figure 3.23b that the square root transformation of the predictor variable has eliminated 
the lack of fit. Also, the normal plot of the residuals in Figure 3.23c appears 
to be satisfactory, and the correlation test (r = .986) supports the assumption of normally 
distributed error terms (the interpolated critical value in TItble B.6 for ex = .05 and n = 23 
is .9555). However, the residual plot suggests that some nonconstancy of the error variance 
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FIGURE 3.22 SAS-JMP Regression Output and Diagnostic Plots for Transformed Response 
Variable-Plutonium Measurement Example. 
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may still remain; but if so, it does not appear to be substantial. The Breusch-Pagan test statis-
tic (3.11) is x1p = 3.85, which corresponds to a P-value of .05, supporting the conclusion 
from the residual plot that the nonconstancy of the error variance is not substantial. 

Figure 3.23d contains a SYSTAT plot of the confidence band (2.40) for the fitted regres-
sion line: 

y' = .0730 + .0573X' 

We see that the regression line has been estimated fairly precisely. Also plotted in this figure 
is the lowess smoothed curve. This smoothed curve falls entirely within the confidence band, 
supporting the reasonableness of a linear regression relation between Y' and X'. The lack of 
fit test statistic (3.25) now is F* = 1.2868 (P-value = .2992), also supporting the linearity 
of the regression relating Y' = ..JY to X' = .JX. 



FIGURE 3.23 SAS-JMP Regression Output and Diagnostic Plots for Transformed Response and Predictor 
Variables-Plutonium Measurement Example. 
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3.1. DistingUish between (1) residual and semistudentized residual, (2) E {cd = 0 and e = 0, 
(3) error term and residual. 

3.2. Prepare a prototype residual plot for each of the following cases: (1) error variance decreases 
with X; (2) true regression function is U shaped, but a linear regression function is fitted. 

3.3. Referto Grade point average Problem 1.19. 
a. Prepare a box plot for the ACT scores Xi. Are there any noteworthy features in this plot? 
b. Prepare a dot plot of the residuals. What information does this plot provide? 
c. Plot the residual el against the fitted values Y;. What departures from regreSSion model (2.1) 

can be studied from this plot? What are your findings? 
d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 

between the ordered residuals and their expected values under normality. Test the reason-
ableness of the normality assumption here using Table B.6 and a = .05. What do you 
conclude? 

e. Conduct the Brown-Forsythe test to determine whether or not the error variance varies with 
the level of X. Divide the data into the two groups, X < 26, X 2: 26, and use a = .01. State 
the decision rule and conclusion. Does your conclusion support your preliminary findings 
in part (c)? 
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f. Information is given below for each student on two variables not included in the model, 
namely, intelligence test score (X2 ) and high school class rank percentile (X3). (Note that 
larger class rank percentiles indicate higher standing in the class, e.g., I % is near the bottom 
of the class and 99% is near the top of the class.) Plot the residuals against X2 and X3 on 
separate graphs to ascertain whether the model can be improved by including either of these 
variables. What do you conclude? 

i: 2 3 

X2 : 122 132 119 
X3: 99 71 75 

*3.4. Refer to Copier maintenance Problem 1.20. 

118 119 120 

140 111 110 
97 65 85 

a. Prepare a dot plot for the number of copiers serviced XI. What information is provided by 
this plot? Are there any outlying cases with respect to this variable? 

b. The cases are given in time order. Prepare a time plot for the number of copiers serviced. 
What does your plot show? 

c. Prepare a stem-and-leaf plot of the residuals. Are there any noteworthy features in this plot? 
d. Prepare residual plots of ei versus Y; and el versus Xi on separate graphs. Do these plots 

provide the same information? What departures from regression model (2.1) can be studied 
from these plots? State your findings. 

e. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality. Does the normality 
assumption appear to be tenable here? Use Table B.6 and a = .10. 

f. Prepare a time plot of the residuals to ascertain whether the error terms are correlated over 
time. What is your conclusion? 

g. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether 
or not the error variance varies with the level of X. Use a = .05. State the alternatives, 
decision rule, and conclusion. 

h. Information is given below on two variables not included in the regression model, namely, 
mean operational age of copiers serviced on the call (X2' in months) and years of experience 
ofthe service person making the call (X3 ). Plot the residuals against X2 and X3 on separate 

- graphs to ascertain whether the model can be improved by including either or both of these 
variables. What do you conclude? 

i: 

20 
4 

2 

19 
5 

3 

27 
4 

*3.5. Refer to Airfreight breakage Problem 1.21. 

43 

28 
3 

44 

26 
3 

45 

33 
6 

a. Prepare a dot plot forthe number of transfers XI. Does the distribution of number oftransfers 
appear to be asymmetrical? 

h. The cases are given in time order. Prepare a time plot for the number of transfers. Is any 
systematic pattern evident in your plot? Discuss. 

c. Obtain the residuals el and prepare a stem-and-leaf plot of the residuals. What information 
is provided by your plot? 
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d. Plot the residuals ei against Xi to ascertain whether any departures from regression 
model (2.1) are evident. What is your conclusion? 

e. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected val ues under normality to ascertain whether 
the normality assumption is reasonable here. Use Table B.6 and ex = .01. What do you 
conclude? 

f. Prepare a time plot of the residuals. What information is provided by your plot? 
g. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether 

or not the error variance varies with the level of X. Use ex = .10. State the alternatives, 
decision rule, and conclusion. Does your conclusion support your preliminary findings in 
part (d)? 

3.6. Refer to Plastic hardness Problem 1.22. .,,.#':#-' 

a. Obtain the residuals ei and prepare a box plot of the residuals. What information is provided 
by your plot? 

b. Plot the residuals ei against the fitted values Y; to ascertain whether any departures from 
regression model (2.1) are evident. State your findings. 

c. Prepare a normal probability plot ofthe residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality. Does the normality 
assumption appear to be reasonable here? Use Table B.6 and ex = .05. 

d. Compare the frequencies of the residuals against the expected frequencies under normality, 
using the 25th, 50th, and 75th percentiles of the relevant t distribution. Is the information 
provided by these comparisons consistent with the findings from the normal probability plot 
in part (c)? 

e. Use the Brown-Forsythe test to determine whether or not the error variance varies with the 
level of X. Divide the data into the two groups, X :::: 24, X > 24, and use ex = .05. State 
the decision rule and conclusion. Does your conclusion support your preliminary findings 
in part (b)? 

*3.7. Refer to Muscle mass Problem 1.27. 
a. Prepare a stem-and-leaf plot for the ages Xi, Is this plot consistent with the random selection 

of women from each lO-year age group? Explain. 
b. Obtain the residuals ei and prepare a dot plot of the residuals. What does your plot show? 
c. Plot the residuals ei against Yi and also against Xi on separate graphs to ascertain whether 

any departures from regression model (2.1) are evident. Do the two plots provide the same 
information? State your conclusions. 

d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 
between the ordered residuals and their expected values under normality to ascertain whether 
the normality assumption is tenable here. Use Table B.6 and ex = .10. What do you conclude? 

e. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether 
or not the error variance varies with the level of X. Use ex = .01. State the alternatives. 
decision rule, and conclusion. Is your conclusion consistent with your preliminary findings 
in part (c)? 

3.8. Refer to Crime rate Problem 1.28. 
a. Prepare a stem-and-leaf plot for the percentage of individuals in the county having at least 

a high school diploma Xi. What information does your plot provide? 
b. Obtain the residuals ei and prepare a box plot of the residuals. Does the distribution of the 

residuals appear to be symmetrical? 
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c. Make a residual plot of ei versus 1>;. What does the plot show? 
d. Prepare a normal probability plot of the residuals. Also obtain the coefficient of correlation 

between the ordered residuals and their expected values under normality. 'Jest the reason-
ableness of the normality assumption using Table B.6 and ex = .05. What do you conclude? 

e. Conduct the Brown-Forsythe test to determine whether or not the error variance varies with 
the level of X. Divide the data into the two groups, X .:::: 69, X > 69, and use ex = .05. State 
the decision rule and conclusion. Does your conclusion support your preliminary findings 
in part (c)? 

3.9. Electricity consumption. An economist studying the relation between household electricity 
consumption (Y) and number of rooms in the home (X) employed linear regression model (2.1) 
and obtained the following residuals: 

i: 

X;: 
e;: 

2 
3.2 

2 3 4 5 6 7 

345 6 7 8 
2.9 -1.7 -2.0 -2.3 -1.2 -.9 

8 

9 
.8 

9 10 

10 11 
.7 .5 

Plot the residuals ei against Xi. What problem appears to be present here? Might a transforma-
tion alleviate this problem? 

3.10. Per capita earnings. A sociologist employed linear regression model (2.1) to relate per capita 
earnings (Y) to average number of years of schooling (X) for 12 cities. The fitted values Y; and 
the semistudentized residuals e; follow. 

i: 

9';: 9.9 
ej': -1.12 

2 

9.3 
.81 

3 

10.2 
-.76 

10 

15.6 
-3.78 

11 

11.2 
.74 

12 

13.1 
.32 

a Plot the semistudentized residuals against the fitted values. What does the plot suggest? 
b. How many semistudentized residuals are outside ± 1 standard deviation? Approximately 

how many would you expect to see if the normal error model is appropriate? 

3.11. Drug concentration. A pharmacologist employed linear regression model (2.1) to study the 
relation between the concentration of a drug in plasma (Y) and the log-dose of the drug (X). 
The residuals and log-dose levels follow. 

i: 

Xi: -1 
.5 

2 

o 
2.1 

3 

-3.4 

4 

-1 
.3 

5 

o 
-1.7 

6 

4.2 

7 

-1 
-.6 

8 

o 
2.6 

a. Plot the residuals ei against Xi' What conclusions do you draw from the plot? 

9 

-4.0 

b. Assume that (3.10) is applicable and conduct the Breusch-Pagan test to determine whether 
or not the error variance with log-dose of the grug (X). Use ex = .05. State the 
alternatives, decision rule, and conclusion. Does your conclusion support your preliminary 
findings in part (a)? 

3.12. A student does not understand why the sum of squares defined in (3.16) is called a pure error 
sum of squares "since the formula looks like one for an ordinary sum of squares." Explain. 
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*3.13. Refer to Copier maintenance Problem 1.20. 
a. What are the alternative conclusions when testing for lack of fit of a linear regression 

function? 
b. Perform the test indicated in part (a). Control the risk of Type I error at .05. State the decision 

rule and conclusion. 
c. Does the test in part (b) detect other departures from regression model (2.1), such as lack 

of constant variance or lack of normality in the error terms? Could the results of the test of 
lack of fit be affected by such departures? Discuss. 

3.14. Refer to Plastic hardness Problem 1.22. 
a Perform the F test to determine whether or not there is lack of fit of a linear regression 

function; use ex = .01. State the alternatives, decision rule, and conclusion. 
#. 

b. Is there any advantage of having an equal number of replications at each of1he X levels? Is 
there any disadvantage? 

c. Does the test in part (a) indicate what regression function is appropriate when it leads to the 
conclusion that the regression function is not linear? How would you proceed? 

3.15. Solution concentration. A chemist studied the concentraTion of a solution (Y) over time (X). 
Fifteen identical solutions were prepared. The IS. solutions were randomly divided into five 
sets of three, and the fi ve sets were measured, respectively, after I, 3, 5, 7, and 9 hours. The 
results follow. 

i: 2 

Xi: 9 9 
Yi: .07 .09 

a Fit a linear regression function. 

3 

9 
.08 

13 

1 
2.84 

14 15 

2.57 3.10 

b. Perform the F test to determine whether or not there is lack of fit of a linear regression 
function; use ex = .025. State the alternatives, decision rule, and conclusion. 

c. Does the test in part (b) indicate what regression function is appropriate when it leads to the 
conclusion that lack of fit of a linear regression function exists? Explain. 

3.16. Refer to Solution concentration Problem 3.15. 
a. Prepare a scatter plot of the data. What transformation of Y might you try, using the prototype 

patterns in Figure 3.15 to achieve constant variance and linearity? 
b. Use the Box-Cox procedure and standardization (3.36) to find an appropriate power 

transformation. Evaluate SSE for A = -.2, -.1,0, .1, .2. What transformation of Y is 
suggested? 

c. Use the transformation Y' = 10gIO Y and obtain the estimated linear regression function for 
the transformed data. 

d. Plot the estimated regression line and the transformed data Does the regression line appear 
to be a good fit to the transformed data? 

e. Obtain,the residuals and plot them against the fitted values. Also prepare a normal probability 
plot. What do your plots show? 

f. Express the estimated regression function in the original units. 
*3.17. Sales growth. A marketing researcher studied annual sales of a product that had been introduced 

10 years ago. The data are as follows, where X is the year (coded) and Y is sales in thousands 
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of units: 

i: 

Xi: 
Vi: 

o 
98 

2 

135 

3 

2 
162 

4 

3 
178 

5 

4 
221 

6 

5 
232 

7 

6 
283 

8 

7 
300 

9 

8 
374 

a. Prepare a scatter plot of the data. Does a linear relation appear adequate here? 

10 

9 
395 

b. Use the Box-Cox procedure and standardization (3.36) to find an appropriate power transfor-
mation of Y. Evaluate SSE for A = .3, .4, .5, .6, .7. What transformation of Y is suggested? 

c. Use the transformation Y' = ..JY and obtain the estimated linear regression function for the 
transformed data. 

d. Plot the estimated regression line and the transformed data. Does the regression line appear 
to be a good fit to the transformed data? 

e. Obtain the residuals and plot them against the fitted values. Also prepare a normal probabili ty 
plot. What do your plots show? 

f. Express the estimated regression function in the original units. 

3.18. Production time. In a manufacturing study, the production times for III recent production 
runs were obtained. The table below lists for each run the production time in hours (Y) and the 
production lot size (X). 

i: 

Xi: 
Vi: 

15 
14.28 

2 

9 
8.80 

3 

7 
12.49 

109 

12 
16.37 

110 

9 
11.45 

111 

15 
15.78 

a. Prepare a scatter plot of the data Does a linear relation appear adequate here? Would a 
transformation on X or Y be more appropriate here? Why? 

b. Use the transformation X' = -JX and obtain the estimated linear regression function for the 
transformed data. 

c. Plot the estimated regression line and the transformed data. Does the regression line appear 
to be a good fit to the transformed data? 

d. -Obtain the residuals and plot them against the fitted values. Also prepare a normal probabili ty 
plot. What do your plots show? 

e. Express the estimated regression function in the original units. 

3.19. A student fitted a linear regression function for a class assignment. The student plotted the 
residuals ej again!t Y; and found a P9sitive relation. When the residuals were plotted against 
the fitted values Yj , the student found no relation. How could this difference arise? Which is 
the more meaningful plot? -

3.20. If the error terms in a regression model are independent N (0, u 2), what can be said about the 
error terms after transformation X' = II X is used? Is the situation the same after transformation 
Y' = llY is used?' # 

3.21. Derive the result in (3.29). 
3.22. Using (A.70), (A.41), and (A.42), show that E{MSPE} = u 2 for normal error regression 

model (2.1). 
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3.23. A linear regression model with intercept f30 = 0 is under consideration. Data have been 
obtained that contain replications. State the full and reduced models for testing the appro-
priateness of the regression function under consideration. What are the degrees of freedom 
associated with the full and reduced models if n = 20 and c = 10? 

3.24. Blood pressure. The following data were obtained in a study of the relation between diastolic 
blood pressure (Y) and age (X) for boys 5 to 13 years old. 

i: 

Xi: 
Y;: 

5 
63 

2 

8 
67 

3 

11 
74 

4 

7 
64 

5 

13 
75 

6 

12 
69 

7 

12 
90 

8 

6 
60 

a. Assuming normal error regression model (2.1) is appropriate, obtain the estimated regression 
function and plot the residuals ei against Xi. What does your.,residual plot show? 

b. Omit case 7 from the data and obtain the estimated regression function based on the remaining 
seven cases. Compare this estimated regression function to that obtained in part (a). What 
can you conclude about the effect of case 7? 

c. Using your fitted regression function in part (b), obtain a 99 percent prediction interval for 
a new Y observation at X = 12. Does observation Y7 fall outside this prediction interval? 
What is the significance of this? 

3.25. Referto the CDI data set in Appendix C.2 and Project 1.43. For each ofthe three fitted regression 
models, obtain the residuals and prepare a residual plot against X and a normal probability plot. 
Summarize your conclusions. Is linear regression model (2.1) more appropriate in one case than 
in the others? 

3.26. Refer to the CDI data set in Appendix C.2 and Project 1.44. For each geographic region, obtain 
the residuals and prepare a residual plot against X and a normal probability plot. Do the four 
regions appear to have similar error variances? What other conclusions do you draw from your 
plots? 

3.27. Refer to the SENIC data set in Appendix C. I and Project 1.45. 

a. For each ofthe three fitted regression models, obtain the residuals and prepare a residual plot 
against X and a normal probability plot. Summarize your conclusions. Is linear regression 
model (2.1) more apt in one case than in the others? 

b. Obtain the fitted regression function for the relation between length of stay and infection 
risk after deleting cases 47 (X47 = 6.5, Y47 = 19.56) and 112 (Xm = 5.9, YlI2 = 17.94). 
From this fitted regression function obtain separate 95 percent prediction intervals for new 
Y observations at X = 6.5 and X = 5.9, respectively. Do observations Y47 and YII2 fall 
outside these prediction intervals? Discuss the significance of this. 

3.28. Refer to the SENIC data set in Appendix C.l and Project 1.46. For each geographic region, 
obtain the residuals and prepare a residual plot against X and a normal probability plot. Do the 
four regions appear to have similar error variances? What other conclusions do you draw from 
your plots? 

3.29. Refer to Copier maintenance Problem 1.20. 

a. Divide the data into four bands according to the number of copiers serviced (X). Band 1 
ranges from X = .5 to X = 2.5; band 2 ranges from X = 2.5 to X = 4.5; and so forth. 
Determine the median value of X and the median value of Y in each ofthe bands and develop 


