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Overview



What is Network Science?!

Introduction

We view network science as the study of the collection,
management, analysis, interpretation, and presentation of
relational data.

!Brandes et al.: What is network science? (2013).



What is Network Science??

Introduction

» Network Model

abstraction

representation
phenomena — network concept —

network data

» Network Science is the study of Network Models

2Brandes et al.: What is network science? (2013).



What is Network Science?3

Introduction

Network abstraction

A network is a mapping x : § — W assigning values in a range W
to dyads from a finite domain S C N x A comprised of ordered
pairs of nodes N and affiliations A.

3Brandes et al.: What is network science? (2013).



Karate club®

Introduction

> Karate club will split into two groups
» Can you predict the partitioning?

Visualization of the Karate club network

» This silly graph layout is not useful for the task!

4Zachary: An information flow model for conflict and fission in small groups
(1977).



Graph layouts

Introduction

Basic notation
» Graph G = (V,E)
> V the set of vertices
» Edges ej; € E between vertices i,j € V
» Number of vertices n = |V/|

» Number of edges m = |E|

Graph layout
» d-dimensional embedding of G, typically d € {2,3}
» vertex coordinates X € R"*4



Graph layouts

Introduction

Data: Graph G = (V,E)
Result: X € R"*?
init X;
for ve V do

X[v][0] « O;

X[v][1] < 0
end

Algorithm 1: Silly layout



Graph layouts

Introduction

Data: Graph G = (V,E)
Result: X € R"*?
init X;
for ve Vdo

X[v][0] - random();

X[v][1] < random();
end

Algorithm 2: Random layout



Karate club
Can you predict the partitioning?

Random layout of the Karate club network

What can you see? n = 30, density is low, degree ~ 2 to 15
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A heuristic for graph drawing®
Spring embedding

To embed a graph we replace the vertices by steel rings and
replace each edge with a spring to form a mechanical system. The
vertices are placed in some initial layout and let go so that the
spring forces on the rings move the system to a minimal energy
state. Two practical adjustments are made to this idea: firstly,
logarithmic strength springs are used; that is, the force exerted by
a spring is: ¢ - log C%, where d is the length of the spring, and ¢;
and ¢ are constants. Experience shows that Hookes Law (linear)
springs are too strong when the vertices are far apart; the
logarithmic force solves this problem. Note that the springs exert
no force when d = ¢;. Secondly, we make nonadjacent vertices

c3

repel each other. An inverse square law force, Nt where c3 is

constant and d is the distance between the vertices, is suitable.

®Eades: A heuristics for graph drawing (1984).



A heuristic for graph drawing
Spring embedding®

[llustration of a generic spring embedder: starting from random positions,
treat the graph as spring system and look for a stable configuration.

®Kobourov: Spring embedders and force directed graph drawing algorithms
(2012).
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A heuristic for graph drawing
Spring embedding

Data: Graph G = (V,E),c1, ¢, c3,¢Ca, k
Result: X € R"*?

X < randomLayout(G); // see Algorithm 2
for i <~ 0 to k do
for vc V do
for uc V do
| move(u, force(u, v)); // Vector calculus
end
end
end

Algorithm 3: Spring embedder

Originally c; =2,c0 =1,¢c3 =1,¢4 = 0.1 and k = 100.



Karate club
Can you predict the partitioning?

Spring embedding of the Karate club network



Karate club
Can you predict the partitioning?
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Spring embedding of the Karate club network



Summary

Overview

» Basic notation
» Graph layout problem
» Spring embedding



Layout readability
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Readability Metrics’

Layout readability

Basic idea
> Set of fast, little measures m € M to measure readability
» Evaluate various aesthetic criteria of a graph layout

» Map scores into common range m: (G, X) — [0, 1]

"Dunne et al.: Readability metric feedback for aiding node-link visualization
designers (2015).



Avoid divisions by zero
Layout Readability

2
divOrZero(a, b) = {8

if b>0

otherwise
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Node Overlap D¢

Layout Readability

Global:
a = area( U bounds(v))
veVv
Amax = area(z bounds(v))
veVv

ap = argmax area(bounds(v))
vev

N = divOrZero(a — an, amax — an)
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Node Overlap D1y

Layout Readability

Local (vertex):

a(v) = area( U bounds(v) N bounds(v;))
vieVn{v}

amax(v) = area(bounds(v))

Ny (v) =1 —divOrZero(a(v), amax(v))
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Edge Crossings €

Layout Readability

Global:

m

Call = Z(i— 1) = n1(n72—1)
i=1

Cimpossible = % Z d(v)(d(v) - 1)

veVv

Cmax = Call — Cimpossible

Ce=1- divOrZero(C, Cmax)
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Edge Crossings €¢

Layout Readability

Local (edge):
Cal/(e) =m-1

Cimpossible(€) = d(source(e)) + d(target(e)) — 2
Cmax(e) = Call(e) - Cimpossible(e)

¢e(e) = 1 — divOrZero(c(e), cmax(€))

24



Edge Crossings &\

Layout Readability

Local (vertex):

c(v) = Z c(e)

ecedges(v)
Cmax(v) = Z Cmax(e)
ecedges(v)
€y (v) =1—divOrZero(c(v), cmax(v))
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Edge Crossing Angle 2¢

Layout Readability

Global:
d=Y > |4-L(ee)
ecE eiec(e)
dmax =c4

Q[G =1-— divOrZero(d, dmax)
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Edge Crossing Angle g

Layout Readability

Local (edge):
dle)= Y |4~ Z(e &)

ei€c(e)
dmax(e) = c(e)4
Ae(e) =1 — divOrZero(d(e), dmax(€))
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Angular Resolution R
Layout Readability

Global:

28



Angular Resolution Ry
Layout Readability

Local (vertex):

-2
FPRECEVLC)
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Distance Coherence Dy, D¢
Layout Readability
Local (vertex):
dy,, := distance between u,v in embedding

d(u, v) := graph-theoretic distance between u,v

du,v

:2 M 2 d(u,v

veV\{u}
Global:

D¢ = n><(}7—1) Z Dy (u)

ueV
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Distance Coherence D¢
Layout Readability

Local (edge):

31



Example 1: Airports, node overlap, crossing angle
Layout Readability
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Example 2: Drug network, distance coherence
Layout Readability

Black box layout of Distance

Alternative layout
drug network coherence y
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Summary
Layout Readability

We have seen
» Node Overlap ¢, Nv
» Edge Crossings &g, Eg, €y
> Crossing Angle 20, 2Ag
» Angular Resolution RRg, Ry
» Distance Coherence D¢, Dv, OF

and there is more!
> Area coverage
» Group / cluster overlap
» Shape
> Symmetry

34



Layout algorithmics
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Layout algorithmics
Spring embedding...

...is slow
» Naive spring embedders are not practical for large networks
(with complexity in O(n?))
...Is not deterministic

» Random initialization leads to different results, every time we
run the algorithm

...results in a local optimum

» The system can reach local convergence before some lower
energy state is found.

36



Layout algorithmics
Spring embedding...

...is slow Barnes-Hut
» Naive spring embedders are not practical for large networks
(complexity in O(n?)).
...is not deterministic Pseudorandom

» Random initialization leads to different results, every time we
run the algorithm.

...results in a local optimum Stress Majorization

» The system can reach local convergence before some lower
energy state is found.

37



Barnes-Hut optimization®

Layout algorithmics

» Quad-tree data structure
» Inner tree-nodes accumulate center of and total mass

‘B

*C
*E

Quad-tree representation of a graph layout

38

8Barnes/Hut: A hierarchical O (N log N) force-calculation algorithm (1986).



Barnes-Hut optimization
Layout algorithmics

Data: Quad-tree @, Tree-node V,Vertex v, Threshold 6
Result: force vector f for v

f «+ (0,0) ;

if V is null then
‘ return z?

end

if V is leaf || Z(‘%’d”’ < 6 then
‘ f « f 4 force(V, v);

end

else

F o F 4 self (Q,V.NW, v, 0); '+ self (Q. V.NE, v, 0);
Foe fo self(Q,V.SW, v, 0); fe e self (Q,V.SW,v,0);
end

return f
Algorithm 4: Barnes-Hut optimization

39



Barnes-Hut optimization

Layout algorithmics

Data: Graph G = (V, E), k, Threshold 6
Result: X € R"*2
X < randomLayout(G) init Q;
for i < 0 to k do
for vc V do
temp < v;
v < move(v, BarnesHut(Q, Q.root, v, 0));
update(Q, v, temp); // O(logn)
end

end
Algorithm 5: Force-layout with Barnes-Hut optimization
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Classical MDS?®

Layout algorithmics

» §;;: graph-theoretic distance between nodes i and j
» Find coordinates X € R™*9, such that §; ~ ||x; — xj||.
» Consider matrix B = XX of inner products bij = x,-TxJ-.
» Can be shown that
b= -3} -EL - YRk Y Y2
s=1 r=1s=1
» From B = UXUT we can derive coordinates X = U(d)\

with A(4) the diagonal matrix of d largest Eigenvalues.

— Global optimal solution
— Problem: Eigendecomposition of B in O(n%)

Torgerson: Multidimensional scaling: |. Theory and method (1952).

1/2

(d)’
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Pivot MDS™

Layout algorithmics

> |dea: Base decomposition on selected n x k-submatrix C:

R TR P B RS WP o

r=1s=

— In O(k3 + k2n)

10Brandes/Pich: Eigensolver methods for progressive multidimensional
scaling of large data (2007).
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Karate club
Can you predict the partitioning?

Classical MDS of the Karate club network

43



Karate club
Can you predict the partitioning?

Classical MDS of the Karate club network
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Karate club
Can you predict the partitioning?

Classical MDS of the Karate club network
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Karate club
Can you predict the partitioning?

Vertex 9 is overlapped - squared effect of Classical MDS
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Stress Majorization!?

Layout algorithmics

» Classical MDS fits squared distances d,-Jz- which overemphasizes
large distances:
strain(X) = > (bj — x; x;)?
ij
> ldea: Postprocessing step to minimize stress

stress(X) = Z wii(dj — [Ixi — x;|[)?, usually w;; = di,-j
iJ

— In O(n?)
— But hope is near
(Graph Drawing 2016, September 19-21 in Athens, Greece)

11

Ortmann/Klimenta/Brandes: A Sparse Stress Model (2016).
2Gansner/Koren/North: Graph drawing by stress majorization (2005).
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Karate club
Can you predict the partitioning?

@
,\ / DEPRSS

e

Stress layout of the Karate club network



Karate club
Can you predict the partitioning?

Stress layout of the Karate club network




Archaeological case study
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A Case Study on Network Visualization

Mark Golitko, James Meierhoff, Gary M. Feinman and Patrick Ryan Williams.
Complexities of collapse: the evidence of Maya obsidian as revealed by social network
graphical analysis. Antiquity, Cambridge University Press (2012).

Maya Obsidian data:
» ~ 120 Maya sites

» 5 sources of obsidian

> 4 temporal periods:

Classic (AD 250/300 - 800)
Terminal Classic (AD 800 - 1050)

Early Postclassic (AD 1050 - 1300)
Late Postclassic (AD 1300 - 1520)

v

vV vy
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Geographical Overview

Introduction

Central
Southeastern
Highland Guatemala
Soconusco
Intermediate

Northwestern

CN JOX N XN NOoNOX X XX J

Maya sites in Mesoamerica: mountainous / plain / coastal regions
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Site Coloring

Introduction

Chenes
Rio Bec

East Coast

Belize

Pasion

Central
Southeastern
Highland Guatemala
Soconusco
Intermediate
Northwestern

Puuc

0000000 0COOOS

North Plains

Coloring by Geographic Zones!3

3 Adams/Culbert: The origins of civilization in the Maya lowlands (1977).
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Chronological Overview

Introduction

Classic [50 sites]

Terminal Classic [20 sites]

%c%o

Late Postclassic [40 sites]
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Obsidian Sources

Introduction

[ e &
A ° '.'
MEX Lad
e , 08
® ...
9 ° e
- 8 OTHER,
oo ®
A °
SMg ¢ IXT @ A Obsidian Sources

. Sites
Obsidian Source Location (MEX and OTHER are aggregations)
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Generalization of the Data

Introduction

Given

> a set of geographic locations L,
» a set of discrete temporal units T,
> a set of classes of artifacts C,
define geo-temporal frequencies as three-dimensional tensor
L|x|T|x|C
X e NILXITIx|cl

i.e. the number X . of pottery sherds of a certain ware c € C
found on site / € L for temporal unit t € T.

56



Network Abstraction

Replication

Choose nodes A and affiliations A from tensor dimensions:
N, Ae{Ll, T,C}

e.g. site-site relations:

x:LxL—=W

But other combinations are possible, too!

57



(Normalized) Brainerd-Robinson Similarity

Replication

Similarity of two sites a and b according to their relative
distribution of obsidian sources!*:

Z ’Da,c_ Db,C’
C
UBR(a, b) = 1— << 2
with D € RILXIC Dy o = pZhe ||Dy ||y = 1

and l,a,be L,ce C
thus oggr € [0, 1]

*Brainerd: The place of chronological ordering in archaeological analysis
(1951); Robinson: A method for chronologically ordering archaeological
deposits (1951); Cowgill: Why Pearson’s r is not a good similarity coefficient

for comparing collections (1990). *



Steps

Replication

1. Network Abstraction
Edges encode Brainerd-Robinson Similarity
between sites.

2. Thresholding
Delete least similar edges as long as network

stays connected.

3. Binarization
Set similarity of all remaining edges to 1.

4. Layout

Determine node positions by Spring embedder.

59



Results

Replication
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Classic Period

Terminal Classic Early Postclassic Late Postclassic
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Layout for Valued Networks
Refining the method

1. Network Abstraction
Edges encode Brainerd-Robinson Similarity between sites.

2. Thresholding
Delete least similar edges as long as network stays connected.

3. Binarization
Set similarity of all remaining edges to 1.

4. Layout
Determine node positions by Spring embedder.
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Layout for valued networks
Refining the method

1. Network Abstraction
Edges encode Brainerd-Robinson Similarity between sites.

x Thresholding

Delete least similar edges as long as network stays connected.
x Binarization

Set similarity of all remaining edges to 1.

2. Layout for valued networks
Determine node positions by Multidimensional Scaling (MDS).
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Classic Period
Refining the method

Iﬂaantun
N\

Copan is not only connected through Quirigua.
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Terminal Classic Period
Refining the method

S

Seibal (yellow) becomes broker for orange cluster, too.
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Early Postclassic Period

Refining the method

wildCanecEﬁﬂ‘SiO
criftaton cans
|y4"ms
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Overall distances to green sites increase.
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Late Postclassic Period
Refining the method

BT
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MediaCuesta is dissimilar from the blue cluster.
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Including Sources as Reference Points®
Extending the method

Early Postclassic Late Postclassic

®\Weidele et al.: On graphical representations of similarity in geo-temporal
frequency data (2016).
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Homework Assignment:

» Implement random layout 10 pts.

» Implement node-local overlap metric 10 pts.

Contact:

Daniel Weidele
dkweidel@us.ibm.com
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