Graph Layout Algorithmics Special Topics on Visualization in Network Science CS 7280-03

Daniel K. Weidele

	Universität Konstanz

September 22, 2016

Graph Layout Algorithmics

Special Topics on Visualization in Network Science

Overview

Introduction Spring embedding

Layout readability

Defintions Examples

Layout algorithmics

Barnes-Hut optimization Classical MDS Pivot MDS Stress Majorization

Archaeological case study

Introduction Replication Refining the method

Overview

What is Network Science?¹

Introduction

We view network science as the study of the collection, management, analysis, interpretation, and presentation of relational data.

¹Brandes et al.: What is network science? (2013).

What is Network Science?²

Introduction

Network Model

phenomena $\stackrel{\rm abstraction}{\to}$ network concept $\stackrel{\rm representation}{\to}$ network data

Network Science is the study of Network Models

²Brandes et al.: What is network science? (2013).

What is Network Science?³

Introduction

Network abstraction

A *network* is a mapping $x : S \to W$ assigning *values* in a range W to *dyads* from a finite domain $S \subseteq \mathcal{N} \times \mathcal{A}$ comprised of ordered pairs of *nodes* \mathcal{N} and *affiliations* \mathcal{A} .

³Brandes et al.: What is network science? (2013).

Karate club⁴

Introduction

- Karate club will split into two groups
- Can you predict the *partitioning*?

Visualization of the Karate club network

This silly graph layout is not useful for the task!

⁴Zachary: An information flow model for conflict and fission in small groups (1977).

Graph layouts

Introduction

Basic notation

- Graph G = (V, E)
- V the set of vertices
- Edges $e_{ij} \in E$ between vertices $i, j \in V$
- Number of vertices n = |V|
- Number of edges m = |E|

Graph layout

- ▶ *d*-dimensional embedding of *G*, typically $d \in \{2, 3\}$
- vertex coordinates $X \in \mathbb{R}^{n \times d}$

Graph layouts

Introduction

Data: Graph G = (V, E) **Result:** $X \in \mathbb{R}^{n \times 2}$ init X; for $v \in V$ do $\begin{vmatrix} X[v][0] \leftarrow 0; \\ X[v][1] \leftarrow 0; \end{vmatrix}$ end

Algorithm 1: Silly layout

Graph layouts

Introduction

Data: Graph G = (V, E) **Result**: $X \in \mathbb{R}^{n \times 2}$ init X; for $v \in V$ do $\begin{vmatrix} X[v][0] \leftarrow random(); \\ X[v][1] \leftarrow random(); \end{vmatrix}$ end

Algorithm 2: Random layout

Can you predict the *partitioning*?

Random layout of the Karate club network

What can you see? $n \approx 30$, *density* is low, *degree* ≈ 2 to 15

A heuristic for graph drawing⁵ Spring embedding

To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system. The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state. Two practical adjustments are made to this idea: firstly, logarithmic strength springs are used; that is, the force exerted by a spring is: $c_1 \cdot \log \frac{d}{c_1}$, where d is the length of the spring, and c_1 and c_2 are constants. Experience shows that Hookes Law (linear) springs are too strong when the vertices are far apart; the logarithmic force solves this problem. Note that the springs exert no force when $d = c_2$. Secondly, we make nonadjacent vertices repel each other. An inverse square law force, $\frac{c_3}{\sqrt{d}}$, where c_3 is constant and d is the distance between the vertices, is suitable.

⁵Eades: A heuristics for graph drawing (1984).

A heuristic for graph drawing Spring embedding⁶

Illustration of a generic spring embedder: starting from random positions, treat the graph as spring system and look for a stable configuration.

⁶Kobourov: Spring embedders and force directed graph drawing algorithms (2012).

A heuristic for graph drawing Spring embedding

```
Data: Graph G = (V, E), c_1, c_2, c_3, c_4, k
Result X \in \mathbb{R}^{n \times 2}
X \leftarrow randomLayout(G);
                                                     // see Algorithm 2
for i \leftarrow 0 to k do
    for v \in V do
for u \in V do

| move(u, force(u, v));

end
                                                    // Vector calculus
    end
end
```

Algorithm 3: Spring embedder

Originally $c_1 = 2, c_2 = 1, c_3 = 1, c_4 = 0.1$ and k = 100.

Can you predict the *partitioning*?

Spring embedding of the Karate club network

Can you predict the *partitioning*?

Spring embedding of the Karate club network

Summary Overview

- Basic notation
- Graph layout problem
- Spring embedding

Layout readability

Readability Metrics⁷

Layout readability

Basic idea

- ▶ Set of *fast*, *little measures* $m \in M$ to measure readability
- Evaluate various aesthetic criteria of a graph layout
- Map scores into common range $m: (G, X) \mapsto [0, 1]$

⁷Dunne et al.: Readability metric feedback for aiding node-link visualization designers (2015).

Avoid divisions by zero

Layout Readability

divOrZero
$$(a, b) = \begin{cases} rac{a}{b} & ext{if } b > 0 \\ 0 & ext{otherwise} \end{cases}$$

Node Overlap \mathfrak{N}_{G}

Layout Readability

Global:

$$a = \operatorname{area}(\bigcup_{v \in V} \operatorname{bounds}(v))$$

 $a_{max} = \operatorname{area}(\sum_{v \in V} \operatorname{bounds}(v))$

$$a_\Delta = rgmax rea(ext{bounds}(v))$$

 $v \in V$

$$\mathfrak{N}_{G} = \mathsf{divOrZero}(a - a_{\Delta}, a_{max} - a_{\Delta})$$

Node Overlap \mathfrak{N}_V Layout Readability

Local (vertex):

$$a(v) = \operatorname{area}(\bigcup_{v_i \in Vn\{v\}} \operatorname{bounds}(v) \cap \operatorname{bounds}(v_i))$$

$$a_{max}(v) = area(bounds(v))$$

$$\mathfrak{N}_V(v) = 1 - \mathsf{divOrZero}(a(v), a_{max}(v))$$

Edge Crossings \mathfrak{E}_G

Layout Readability

Global:

$$egin{aligned} c_{all} &= \sum_{i=1}^m (i-1) = rac{m(m-1)}{2} \ c_{impossible} &= rac{1}{2} \sum_{v \in V} d(v) (d(v)-1) \end{aligned}$$

$$c_{max} = c_{all} - c_{impossible}$$

$$\mathfrak{E}_{G} = 1 - \mathsf{divOrZero}(c, c_{max})$$

Edge Crossings \mathfrak{E}_E

Layout Readability

Local (edge):

$$egin{aligned} c_{all}(e) &= m-1 \ c_{impossible}(e) &= d(ext{source}(e)) + d(ext{target}(e)) - 2 \ c_{max}(e) &= c_{all}(e) - c_{impossible}(e) \ \mathfrak{E}_E(e) &= 1 - ext{divOrZero}(c(e), c_{max}(e)) \end{aligned}$$

Edge Crossings \mathfrak{E}_V

Layout Readability

Local (vertex):

$$c(v) = \sum_{e \in edges(v)} c(e)$$

$$c_{max}(v) = \sum_{e \in edges(v)} c_{max}(e)$$

$$\mathfrak{E}_V(v) = 1 - \mathsf{divOrZero}(c(v), c_{max}(v))$$

Edge Crossing Angle \mathfrak{A}_G Layout Readability

Global:

$$egin{aligned} d &= \sum_{e \in E} \sum_{e_i \in c(e)} |\measuredangle - \measuredangle(e, e_i)| \ d_{max} &= c \measuredangle \ \mathfrak{A}_G &= 1 - \mathsf{divOrZero}(d, d_{max}) \end{aligned}$$

Edge Crossing Angle \mathfrak{A}_E Layout Readability

Local (edge):

Angular Resolution $\mathfrak{R}_{\mathcal{G}}$

Layout Readability

Global:

Angular Resolution \mathfrak{R}_V

Layout Readability

Local (vertex):

$$egin{aligned} &\measuredangle(v) = rac{360^\circ}{d(v)} \ &d(v) = |rac{\measuredangle(v) - \measuredangle^{min}(v)}{\measuredangle(v)}| \ &\Re_V(v) = 1 - d(v) \end{aligned}$$

Distance Coherence \mathfrak{D}_V , \mathfrak{D}_G

Layout Readability

Local (vertex):

 $d_{u,v}$:= distance between u,v in embedding

d(u, v) := graph-theoretic distance between u,v

$$\mathfrak{D}_{V}(u) = \frac{1}{|V|-1} \sum_{v \in V \setminus \{u\}} \frac{2 - \min(2, \frac{\frac{d_{u,v}}{d(u,v)} - \overline{E}}{\sigma(\overline{E})})}{2}$$

Global:

$$\mathfrak{D}_G = \frac{1}{n \times (n-1)} \sum_{u \in V} \mathfrak{D}_V(u)$$

Distance Coherence \mathfrak{D}_E

Layout Readability

Local (edge):

$$\mathfrak{D}_E(e) = \frac{2 - \min(2, \frac{\overline{e} - \overline{E}}{\sigma(\overline{E})})}{2}$$

Example 1: Airports, node overlap, crossing angle Layout Readability

Example 2: Drug network, distance coherence Layout Readability

Black box layout of drug network

Distance coherence

Alternative layout

Summary

Layout Readability

We have seen

- Node Overlap $\mathfrak{N}_{G}, \mathfrak{N}_{V}$
- Edge Crossings \mathfrak{E}_G , \mathfrak{E}_E , \mathfrak{E}_V
- Crossing Angle $\mathfrak{A}_G, \mathfrak{A}_E$
- Angular Resolution \mathfrak{R}_G , \mathfrak{R}_V
- Distance Coherence \mathfrak{D}_{G} , \mathfrak{D}_{V} , \mathfrak{D}_{E}

and there is more!

- Area coverage
- Group / cluster overlap
- Shape
- Symmetry

Layout algorithmics

Layout algorithmics

Spring embedding...

...is slow

- Naïve spring embedders are not practical for large networks (with complexity in O(n²))
- ... is not deterministic
 - Random initialization leads to *different results*, every time we run the algorithm

... results in a local optimum

The system can reach *local convergence* before some lower energy state is found.

Layout algorithmics

Spring embedding...

... is slow Barnes-Hut

- ► Naïve spring embedders are not practical for large networks (complexity in O(n²)).
- ... is not deterministic Pseudorandom
 - Random initialization leads to different results, every time we run the algorithm.

...results in a local optimum Stress Majorization

The system can reach local convergence before some lower energy state is found.

Barnes-Hut optimization⁸

Layout algorithmics

- Quad-tree data structure
- Inner tree-nodes accumulate center of and total mass

Quad-tree representation of a graph layout

38

⁸Barnes/Hut: A hierarchical O (N log N) force-calculation algorithm (1986).

Barnes-Hut optimization

Layout algorithmics

Data: Quad-tree Q, Tree-node ∇ , Vertex v, Threshold θ **Result**: force vector \vec{f} for v $\vec{f} \leftarrow (0,0)$: if ∇ is null then return \vec{f} ; end if ∇ is leaf $|| \frac{\nabla width}{d(\nabla, y)} < \theta$ then $\vec{f} \leftarrow \vec{f} + force(\nabla, v);$ end else $\vec{f} \leftarrow \vec{f} + self(Q, \nabla.NW, v, \theta); \ \vec{f} \leftarrow \vec{f} + self(Q, \nabla.NE, v, \theta); \\ \vec{f} \leftarrow \vec{f} + self(Q, \nabla.SW, v, \theta); \ \vec{f} \leftarrow \vec{f} + self(Q, \nabla.SW, v, \theta);$ end

return \vec{f} ;

Algorithm 4: Barnes-Hut optimization

Barnes-Hut optimization

Layout algorithmics

```
Data: Graph G = (V, E), k, Threshold \theta

Result: X \in \mathbb{R}^{n \times 2}

X \leftarrow randomLayout(G) init Q;

for i \leftarrow 0 to k do

for v \in V do

temp \leftarrow v;

v \leftarrow move(v, BarnesHut(Q, Q.root, v, \theta));

update(Q, v, temp); // O(logn)

end
```

end

Algorithm 5: Force-layout with Barnes-Hut optimization

Classical MDS⁹

Layout algorithmics

- δ_{ij} : graph-theoretic distance between nodes i and j
- Find coordinates $X \in \mathbb{R}^{n \times d}$, such that $\delta_{ij} \approx ||x_i x_j||$.
- Consider matrix $B = XX^T$ of inner products $b_{ij} = x_i^T x_j$.
- Can be shown that

$$b_{ij} = -\frac{1}{2} \left(\delta_{ij}^2 - \frac{1}{n} \sum_{r=1}^n \delta_{rj}^2 - \sum_{s=1}^n \delta_{is}^2 + \frac{1}{n^2} \sum_{r=1}^n \sum_{s=1}^n \delta_{rs}^2 \right)$$

From B = UλU^T we can derive coordinates X = U(d)λ^{1/2}_(d), with λ_(d) the diagonal matrix of d largest Eigenvalues.

\rightarrow Global optimal solution

 \rightarrow Problem: Eigendecomposition of *B* in $O(n^3)$

⁹Torgerson: Multidimensional scaling: I. Theory and method (1952).

Pivot MDS¹⁰ Layout algorithmics

► Idea: Base decomposition on selected $n \times k$ -submatrix C: $c_{ij} = -\frac{1}{2} \left(\delta_{ij}^2 - \frac{1}{n} \sum_{r=1}^n \delta_{rj}^2 - \sum_{s=1}^k \delta_{is}^2 + \frac{1}{nk} \sum_{r=1}^n \sum_{s=1}^n \delta_{rs}^2 \right)$ $\rightarrow \ln O(k^3 + k^2 n)$

¹⁰Brandes/Pich: Eigensolver methods for progressive multidimensional scaling of large data (2007).

Can you predict the *partitioning*?

Classical MDS of the Karate club network

Can you predict the *partitioning*?

Classical MDS of the Karate club network

Can you predict the *partitioning*?

Classical MDS of the Karate club network

Can you predict the *partitioning*?

Vertex 9 is overlapped - squared effect of Classical MDS

Stress Majorization¹²

Layout algorithmics

 Classical MDS fits squared distances d²_{ij} which overemphasizes large distances:

$$strain(X) = \sum_{i,j} (b_{ij} - x_i^T x_j)^2$$

Idea: Postprocessing step to minimize stress

$$stress(X) = \sum_{i,j} w_{ij} (d_{ij} - ||x_i - x_j||)^2$$
, usually $w_{ij} = \frac{1}{d_{ij}}$

 \rightarrow In $O(n^2)$

 \rightarrow But hope is near¹¹ (Graph Drawing 2016, September 19-21 in Athens, Greece)

¹¹Ortmann/Klimenta/Brandes: A Sparse Stress Model (2016).

¹²Gansner/Koren/North: Graph drawing by stress majorization (2005).

Can you predict the *partitioning*?

Stress layout of the Karate club network

Can you predict the *partitioning*?

Stress layout of the Karate club network

Archaeological case study

A Case Study on Network Visualization

Mark Golitko, James Meierhoff, Gary M. Feinman and Patrick Ryan Williams. *Complexities of collapse: the evidence of Maya obsidian as revealed by social network graphical analysis.* Antiquity, Cambridge University Press (2012).

Maya Obsidian data:

- \blacktriangleright pprox 120 Maya sites
- 5 sources of obsidian
- 4 temporal periods:
 - Classic (AD 250/300 800)
 - Terminal Classic (AD 800 1050)
 - Early Postclassic (AD 1050 1300)
 - Late Postclassic (AD 1300 1520)

Geographical Overview

Introduction

Maya sites in Mesoamerica: mountainous / plain / coastal regions

Site Coloring

Introduction

Coloring by Geographic Zones¹³

¹³Adams/Culbert: The origins of civilization in the Maya lowlands (1977).

Chronological Overview

Introduction

Classic [50 sites]

Early Postclassic [10 sites]

Late Postclassic [40 sites]

Obsidian Sources

Introduction

Obsidian Source Location (MEX and OTHER are aggregations)

Generalization of the Data

Introduction

Given

- a set of geographic locations L,
- ► a set of discrete temporal units *T*,
- ▶ a set of classes of artifacts C,

define geo-temporal frequencies as three-dimensional tensor

 $X \in \mathbb{N}^{|L| \times |T| \times |C|}$,

i.e. the number $X_{l,t,c}$ of pottery sherds of a certain ware $c \in C$ found on site $l \in L$ for temporal unit $t \in T$.

Network Abstraction

Replication

Choose nodes ${\mathcal N}$ and affiliations ${\mathcal A}$ from tensor dimensions:

$$\mathcal{N}, \mathcal{A} \in \{L, T, C\}$$

e.g. site-site relations:

$$x: L \times L \to \mathcal{W}$$

But other combinations are possible, too!

(Normalized) Brainerd-Robinson Similarity Replication

Similarity of two sites *a* and *b* according to their relative distribution of obsidian sources¹⁴:

$$\sigma_{BR}(a,b) = 1 - \frac{\sum\limits_{c \in C} |D_{a,c} - D_{b,c}|}{2}$$

with
$$D \in \mathbb{R}^{|L| \times |C|}$$
, $D_{I,c} = \frac{X_{I,c}}{||X_{I,\cdot}||_1}$, $||D_{I,\cdot}||_1 = 1$
and $I, a, b \in L, c \in C$
thus $\sigma_{BR} \in [0, 1]$

¹⁴Brainerd: The place of chronological ordering in archaeological analysis (1951); Robinson: A method for chronologically ordering archaeological deposits (1951); Cowgill: Why Pearson's r is not a good similarity coefficient for comparing collections (1990).

1. Network Abstraction

Edges encode Brainerd-Robinson Similarity between sites.

2. Thresholding

Delete least similar edges as long as network stays connected.

3. Binarization

Set similarity of all remaining edges to 1.

4. Layout

Determine node positions by Spring embedder.

on erd-Robinson Simila edges as long as net

BCDE

C D

Results

Replication

Layout for Valued Networks

Refining the method

1. Network Abstraction

Edges encode Brainerd-Robinson Similarity between sites.

2. Thresholding

Delete least similar edges as long as network stays connected.

3. Binarization

Set similarity of all remaining edges to 1.

4. Layout

Determine node positions by Spring embedder.

Layout for valued networks

Refining the method

1. Network Abstraction

Edges encode Brainerd-Robinson Similarity between sites.

× Thresholding

Delete least similar edges as long as network stays connected.

× Binarization

Set similarity of all remaining edges to 1.

2. Layout for valued networks

Determine node positions by Multidimensional Scaling (MDS).

Classic Period

Refining the method

Copan is not only connected through Quirigua.

Terminal Classic Period

Refining the method

Seibal (yellow) becomes broker for orange cluster, too.

Early Postclassic Period

Refining the method

Overall distances to green sites increase.

Late Postclassic Period

Refining the method

MediaCuesta is dissimilar from the blue cluster.

Including Sources as Reference Points¹⁵ Extending the method

¹⁵Weidele et al.: On graphical representations of similarity in geo-temporal frequency data (2016).

Homework Assignment:

- Implement random layout 10 pts.
- Implement node-local overlap metric 10 pts.

Contact:

Daniel Weidele dkweidel@us.ibm.com