
Graph Layout Algorithmics
Special Topics on Visualization in Network Science

CS 7280-03

Daniel K. Weidele

September 22, 2016

2

Graph Layout Algorithmics
Special Topics on Visualization in Network Science

Overview
Introduction
Spring embedding

Layout readability
Defintions
Examples

Layout algorithmics
Barnes-Hut optimization
Classical MDS
Pivot MDS
Stress Majorization

Archaeological case study
Introduction
Replication
Refining the method

3

Overview

4

What is Network Science?1

Introduction

We view network science as the study of the collection,
management, analysis, interpretation, and presentation of
relational data.

1Brandes et al.: What is network science? (2013).

5

What is Network Science?2

Introduction

I Network Model

phenomena
abstraction→ network concept

representation→ network data

I Network Science is the study of Network Models

2Brandes et al.: What is network science? (2013).

6

What is Network Science?3

Introduction

Network abstraction

A network is a mapping x : S → W assigning values in a range W
to dyads from a finite domain S ⊆ N ×A comprised of ordered
pairs of nodes N and affiliations A.

3Brandes et al.: What is network science? (2013).

7

Karate club4

Introduction

I Karate club will split into two groups

I Can you predict the partitioning?

Visualization of the Karate club network

I This silly graph layout is not useful for the task!

4Zachary: An information flow model for conflict and fission in small groups
(1977).

8

Graph layouts
Introduction

Basic notation

I Graph G = (V ,E)

I V the set of vertices

I Edges eij ∈ E between vertices i , j ∈ V

I Number of vertices n = |V |
I Number of edges m = |E |

Graph layout

I d-dimensional embedding of G , typically d ∈ {2, 3}
I vertex coordinates X ∈ Rn×d

9

Graph layouts
Introduction

Data: Graph G = (V ,E)
Result: X ∈ Rn×2

init X ;
for v ∈ V do

X [v][0]← 0;
X [v][1]← 0;

end
Algorithm 1: Silly layout

10

Graph layouts
Introduction

Data: Graph G = (V ,E)
Result: X ∈ Rn×2

init X ;
for v ∈ V do

X [v][0]← random();
X [v][1]← random();

end
Algorithm 2: Random layout

11

Karate club
Can you predict the partitioning?

Random layout of the Karate club network

What can you see? n ≈ 30, density is low, degree ≈ 2 to 15

12

A heuristic for graph drawing5

Spring embedding

To embed a graph we replace the vertices by steel rings and
replace each edge with a spring to form a mechanical system. The
vertices are placed in some initial layout and let go so that the
spring forces on the rings move the system to a minimal energy
state. Two practical adjustments are made to this idea: firstly,
logarithmic strength springs are used; that is, the force exerted by
a spring is: c1 · log d

c2
, where d is the length of the spring, and c1

and c2 are constants. Experience shows that Hookes Law (linear)
springs are too strong when the vertices are far apart; the
logarithmic force solves this problem. Note that the springs exert
no force when d = c2. Secondly, we make nonadjacent vertices
repel each other. An inverse square law force, c3√

d
, where c3 is

constant and d is the distance between the vertices, is suitable.

5Eades: A heuristics for graph drawing (1984).

13

A heuristic for graph drawing
Spring embedding6

Illustration of a generic spring embedder: starting from random positions,
treat the graph as spring system and look for a stable configuration.

6Kobourov: Spring embedders and force directed graph drawing algorithms
(2012).

14

A heuristic for graph drawing
Spring embedding

Data: Graph G = (V ,E), c1, c2, c3, c4, k
Result: X ∈ Rn×2

X ← randomLayout(G); // see Algorithm 2

for i ← 0 to k do
for v ∈ V do

for u ∈ V do
move(u, force(u, v)); // Vector calculus

end

end

end
Algorithm 3: Spring embedder

Originally c1 = 2, c2 = 1, c3 = 1, c4 = 0.1 and k = 100.

15

Karate club
Can you predict the partitioning?

Spring embedding of the Karate club network

16

Karate club
Can you predict the partitioning?

Spring embedding of the Karate club network

17

Summary
Overview

I Basic notation

I Graph layout problem

I Spring embedding

18

Layout readability

19

Readability Metrics7

Layout readability

Basic idea

I Set of fast, little measures m ∈ M to measure readability

I Evaluate various aesthetic criteria of a graph layout

I Map scores into common range m : (G ,X) 7→ [0, 1]

7Dunne et al.: Readability metric feedback for aiding node-link visualization
designers (2015).

20

Avoid divisions by zero
Layout Readability

divOrZero(a, b) =

{
a
b if b > 0

0 otherwise

21

Node Overlap NG
Layout Readability

Global:
a = area(

⋃
v∈V

bounds(v))

amax = area(
∑
v∈V

bounds(v))

a∆ = argmax
v∈V

area(bounds(v))

NG = divOrZero(a− a∆, amax − a∆)

22

Node Overlap NV
Layout Readability

Local (vertex):

a(v) = area(
⋃

vi∈Vn{v}

bounds(v) ∩ bounds(vi))

amax(v) = area(bounds(v))

NV (v) = 1− divOrZero(a(v), amax(v))

23

Edge Crossings EG
Layout Readability

Global:

call =
m∑
i=1

(i − 1) =
m(m − 1)

2

cimpossible =
1

2

∑
v∈V

d(v)(d(v)− 1)

cmax = call − cimpossible

EG = 1− divOrZero(c, cmax)

24

Edge Crossings EE
Layout Readability

Local (edge):
call(e) = m − 1

cimpossible(e) = d(source(e)) + d(target(e))− 2

cmax(e) = call(e)− cimpossible(e)

EE (e) = 1− divOrZero(c(e), cmax(e))

25

Edge Crossings EV
Layout Readability

Local (vertex):

c(v) =
∑

e∈edges(v)

c(e)

cmax(v) =
∑

e∈edges(v)

cmax(e)

EV (v) = 1− divOrZero(c(v), cmax(v))

26

Edge Crossing Angle AG
Layout Readability

Global:
d =

∑
e∈E

∑
ei∈c(e)

|]− ∠(e, ei)|

dmax = c]

AG = 1− divOrZero(d , dmax)

27

Edge Crossing Angle AE
Layout Readability

Local (edge):

d(e) =
∑

ei∈c(e)

|]− ∠(e, ei)|

dmax(e) = c(e)]

AE (e) = 1− divOrZero(d(e), dmax(e))

28

Angular Resolution RG
Layout Readability

Global:

](v) =
360◦

d(v)

d =
1

n

∑
v∈V
|](v)− ∠min(v)

](v)
|

RG = 1− d

29

Angular Resolution RV
Layout Readability

Local (vertex):

](v) =
360◦

d(v)

d(v) = |](v)− ∠min(v)

](v)
|

RV (v) = 1− d(v)

30

Distance Coherence DV , DG
Layout Readability

Local (vertex):

du,v := distance between u,v in embedding

d(u, v) := graph-theoretic distance between u,v

DV (u) =
1

|V | − 1

∑
v∈V \{u}

2−min(2,
du,v
d(u,v)

−E
σ(E)

)

2

Global:

DG =
1

n × (n − 1)

∑
u∈V

DV (u)

31

Distance Coherence DE
Layout Readability

Local (edge):

DE (e) =
2−min(2, e−E

σ(E)
)

2

32

Example 1: Airports, node overlap, crossing angle
Layout Readability

33

Example 2: Drug network, distance coherence
Layout Readability

Black box layout of
drug network

Distance
coherence

Alternative layout

34

Summary
Layout Readability

We have seen

I Node Overlap NG , NV

I Edge Crossings EG , EE , EV

I Crossing Angle AG , AE

I Angular Resolution RG , RV

I Distance Coherence DG , DV , DE

and there is more!

I Area coverage

I Group / cluster overlap

I Shape

I Symmetry

35

Layout algorithmics

36

Layout algorithmics
Spring embedding...

...is slow

I Näıve spring embedders are not practical for large networks
(with complexity in O(n2))

...is not deterministic

I Random initialization leads to different results, every time we
run the algorithm

...results in a local optimum

I The system can reach local convergence before some lower
energy state is found.

37

Layout algorithmics
Spring embedding...

...is slow Barnes-Hut

I Näıve spring embedders are not practical for large networks
(complexity in O(n2)).

...is not deterministic Pseudorandom

I Random initialization leads to different results, every time we
run the algorithm.

...results in a local optimum Stress Majorization

I The system can reach local convergence before some lower
energy state is found.

38

Barnes-Hut optimization8

Layout algorithmics

I Quad-tree data structure
I Inner tree-nodes accumulate center of and total mass

Quad-tree representation of a graph layout

8Barnes/Hut: A hierarchical O (N log N) force-calculation algorithm (1986).

39

Barnes-Hut optimization
Layout algorithmics

Data: Quad-tree Q, Tree-node ∇,Vertex v , Threshold θ
Result: force vector ~f for v
~f ← (0, 0) ;
if ∇ is null then

return ~f ;
end

if ∇ is leaf || ∇.widthd(∇,v) < θ then
~f ← ~f + force(∇, v);

end
else

~f ← ~f + self (Q,∇.NW , v , θ); ~f ← ~f + self (Q,∇.NE , v , θ);
~f ← ~f + self (Q,∇.SW , v , θ); ~f ← ~f + self (Q,∇.SW , v , θ);

end

return ~f ;
Algorithm 4: Barnes-Hut optimization

40

Barnes-Hut optimization
Layout algorithmics

Data: Graph G = (V ,E), k , Threshold θ
Result: X ∈ Rn×2

X ← randomLayout(G) init Q;
for i ← 0 to k do

for v ∈ V do
temp ← v ;
v ← move(v , BarnesHut(Q,Q.root, v , θ));
update(Q, v , temp); // O(logn)

end

end
Algorithm 5: Force-layout with Barnes-Hut optimization

41

Classical MDS9

Layout algorithmics

I δij : graph-theoretic distance between nodes i and j

I Find coordinates X ∈ Rn×d , such that δij ≈ ||xi − xj ||.
I Consider matrix B = XXT of inner products bij = x i

T xj .

I Can be shown that

bij = −1
2 (δ2

ij −
1
n

n∑
r=1

δ2
rj −

n∑
s=1

δ2
is + 1

n2

n∑
r=1

n∑
s=1

δ2
rs)

I From B = UλUT we can derive coordinates X = U(d)λ
1/2
(d) ,

with λ(d) the diagonal matrix of d largest Eigenvalues.

→ Global optimal solution
→ Problem: Eigendecomposition of B in O(n3)

9Torgerson: Multidimensional scaling: I. Theory and method (1952).

42

Pivot MDS10

Layout algorithmics

I Idea: Base decomposition on selected n × k-submatrix C :

cij = −1
2 (δ2

ij −
1
n

n∑
r=1

δ2
rj −

k∑
s=1

δ2
is + 1

nk

n∑
r=1

n∑
s=1

δ2
rs)

→ In O(k3 + k2n)

10Brandes/Pich: Eigensolver methods for progressive multidimensional
scaling of large data (2007).

43

Karate club
Can you predict the partitioning?

Classical MDS of the Karate club network

44

Karate club
Can you predict the partitioning?

Classical MDS of the Karate club network

45

Karate club
Can you predict the partitioning?

Classical MDS of the Karate club network

46

Karate club
Can you predict the partitioning?

Vertex 9 is overlapped - squared effect of Classical MDS

47

Stress Majorization12

Layout algorithmics

I Classical MDS fits squared distances d2
ij which overemphasizes

large distances:

strain(X) =
∑
i ,j

(bij − xTi xj)
2

I Idea: Postprocessing step to minimize stress

stress(X) =
∑
i ,j

wij(dij − ||xi − xj ||)2, usually wij = 1
dij

→ In O(n2)
→ But hope is near11

(Graph Drawing 2016, September 19-21 in Athens, Greece)

11Ortmann/Klimenta/Brandes: A Sparse Stress Model (2016).
12Gansner/Koren/North: Graph drawing by stress majorization (2005).

48

Karate club
Can you predict the partitioning?

Stress layout of the Karate club network

49

Karate club
Can you predict the partitioning?

Stress layout of the Karate club network

50

Archaeological case study

51

A Case Study on Network Visualization
Mark Golitko, James Meierhoff, Gary M. Feinman and Patrick Ryan Williams.
Complexities of collapse: the evidence of Maya obsidian as revealed by social network
graphical analysis. Antiquity, Cambridge University Press (2012).

Maya Obsidian data:

I ≈ 120 Maya sites

I 5 sources of obsidian
I 4 temporal periods:

I Classic (AD 250/300 - 800)
I Terminal Classic (AD 800 - 1050)
I Early Postclassic (AD 1050 - 1300)
I Late Postclassic (AD 1300 - 1520)

52

Geographical Overview
Introduction

Maya sites in Mesoamerica: mountainous / plain / coastal regions

53

Site Coloring
Introduction

Coloring by Geographic Zones13

13Adams/Culbert: The origins of civilization in the Maya lowlands (1977).

54

Chronological Overview
Introduction

Classic [50 sites] Early Postclassic [10 sites]

Terminal Classic [20 sites] Late Postclassic [40 sites]

55

Obsidian Sources
Introduction

Obsidian Source Location (MEX and OTHER are aggregations)

56

Generalization of the Data
Introduction

Given

I a set of geographic locations L,

I a set of discrete temporal units T ,

I a set of classes of artifacts C ,

define geo-temporal frequencies as three-dimensional tensor

X ∈ N|L|×|T |×|C | ,

i.e. the number Xl ,t,c of pottery sherds of a certain ware c ∈ C
found on site l ∈ L for temporal unit t ∈ T .

57

Network Abstraction
Replication

Choose nodes N and affiliations A from tensor dimensions:

N ,A ∈ {L,T ,C}

e.g. site-site relations:

x : L× L→W

But other combinations are possible, too!

58

(Normalized) Brainerd-Robinson Similarity
Replication

Similarity of two sites a and b according to their relative
distribution of obsidian sources14:

σBR(a, b) = 1−

∑
c∈C
|Da,c − Db,c |

2

with D ∈ R|L|×|C |,Dl ,c =
Xl,c

||Xl,·||1 , ||Dl ,·||1 = 1

and l , a, b ∈ L, c ∈ C

thus σBR ∈ [0, 1]

14Brainerd: The place of chronological ordering in archaeological analysis
(1951); Robinson: A method for chronologically ordering archaeological
deposits (1951); Cowgill: Why Pearson’s r is not a good similarity coefficient
for comparing collections (1990).

59

Steps
Replication

1. Network Abstraction
Edges encode Brainerd-Robinson Similarity
between sites.

2. Thresholding
Delete least similar edges as long as network
stays connected.

3. Binarization
Set similarity of all remaining edges to 1.

4. Layout
Determine node positions by Spring embedder.

A

A

B

B

C

D

E

C D E

A

A

B

B

C

D

E

C D E

A

A

B

B

C

D

E

C D E

60

Results
Replication

Classic Period

Terminal Classic Early Postclassic Late Postclassic

61

Layout for Valued Networks
Refining the method

1. Network Abstraction
Edges encode Brainerd-Robinson Similarity between sites.

2. Thresholding
Delete least similar edges as long as network stays connected.

3. Binarization
Set similarity of all remaining edges to 1.

4. Layout
Determine node positions by Spring embedder.

62

Layout for valued networks
Refining the method

1. Network Abstraction
Edges encode Brainerd-Robinson Similarity between sites.

× Thresholding
Delete least similar edges as long as network stays connected.

× Binarization
Set similarity of all remaining edges to 1.

2. Layout for valued networks
Determine node positions by Multidimensional Scaling (MDS).

63

Classic Period
Refining the method

Copan is not only connected through Quirigua.

64

Terminal Classic Period
Refining the method

Seibal (yellow) becomes broker for orange cluster, too.

65

Early Postclassic Period
Refining the method

Overall distances to green sites increase.

66

Late Postclassic Period
Refining the method

MediaCuesta is dissimilar from the blue cluster.

67

Including Sources as Reference Points15

Extending the method

Classic Terminal Classic

Early Postclassic Late Postclassic

15Weidele et al.: On graphical representations of similarity in geo-temporal
frequency data (2016).

68

Homework Assignment:

I Implement random layout 10 pts.

I Implement node-local overlap metric 10 pts.

Contact:

Daniel Weidele
dkweidel@us.ibm.com

	Overview
	Introduction
	Spring embedding

	Layout readability
	Defintions
	Examples

	Layout algorithmics
	Barnes-Hut optimization
	Classical MDS
	Pivot MDS
	Stress Majorization

	Archaeological case study
	Introduction
	Replication
	Refining the method

