CS 7180: Behavioral Modeling and Decision-making in AI

Learning Probabilistic Graphical Models

Prof. Amy Sliva
October 31, 2012
Hidden Markov model

- Stochastic system represented by three matrices

<table>
<thead>
<tr>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N) = number of states</td>
<td>(Q = {q_1, \ldots, q_T})</td>
</tr>
<tr>
<td>(M) = number of observations</td>
<td>(O = {o_1, \ldots, o_T})</td>
</tr>
<tr>
<td>(A) = transition model</td>
<td>(a_{ij} = P(q_{t+1} = j \mid q_t = i))</td>
</tr>
<tr>
<td>(B) = observation model</td>
<td>(b_j(k) = P(o_1 = k \mid q_t = j))</td>
</tr>
<tr>
<td>(\pi) = prior state probabilities</td>
<td>Probability distribution that state (q) is the start state</td>
</tr>
</tbody>
</table>

Environmental context—sequence of states from times \(1-T\)
Sequence of evidence the agent observes at times \(1-T\)
State transition probability matrix
Probability distribution over observations (probability of seeing observation \(o\) in state \(q\))

- Full HMM is a triple \(\lambda = (A,B,\pi)\)
- **First-order Markov** transition model
- **Stationary** transition and observation model
Graphical representation of HMMs

- Assume each state is represented by a **single random variable**
 - Same as Bayesian networks
 - If states have more than one variable, use state space representation
 - Megavariable for state equal to tuple of all values of the individual variables
Matrix representation of HMM

- HMM is a triple $\lambda = (A, B, \pi)$
Three basic HMM problems

Evaluation
- Given observation sequence $O = \{o_1, \ldots, o_T\}$ and an HMM $\lambda = (A, B, \pi)$ how do we compute the probability of O given the model
- $P(O \mid \lambda)$—**Forward** and **Backward** algorithms

Decoding
- Given observation sequence $O = \{o_1, \ldots, o_T\}$ and an HMM $\lambda = (A, B, \pi)$ how do we find the state sequence $Q = \{q_1, \ldots, q_T\}$ that best explains the observations
- $\arg\max_Q P(Q \mid O, \lambda)$—**Viterbi** algorithm

Learning
- How do we adjust the model parameters $\lambda = (A, B, \pi)$ to best fit the sequence
- $\arg\max_{\lambda} P(O \mid \lambda)$
Learning the parameters of an HMM

- Previously assumed underlying model $\lambda = (A,B,\pi)$

- Where do these parameters come from?
 - Estimate transition, observation, and prior probabilities from annotated training data

- Drawbacks of this parameter estimation?
Learning the parameters of an HMM

- Previously assumed underlying model $\lambda = (A,B,\pi)$

- Where do these parameters come from?
 - Estimate transition, observation, and prior probabilities from annotated training data

- Drawbacks of this parameter estimation?
 - Annotation is difficult and/or expensive
 - Training data is different from the current data
Learning the parameters of an HMM

• Previously assumed underlying model $\lambda = (A,B,\pi)$

• Where do these parameters come from?
 • Estimate transition, observation, and prior probabilities from annotated training data

• Drawbacks of this parameter estimation?
 • Annotation is difficult and/or expensive
 • Training data is different from the current data

• Want to maximize the parameters w.r.t. the current data,
 • i.e., Looking for model λ', such that $\lambda' = \arg\max_\lambda P(O \mid \lambda)$
 • Want to train HMM to encode observation sequence O s.t. similar sequence will be identified in the future
How can we find the maximal model?

• Unfortunately, no known way to analytically find a **global maximum**
 • i.e., The model λ', such that $\lambda' = \arg\max_\lambda P(O | \lambda)$

• But it is possible to find a **local maximum**

• Given initial model λ, we can always find a model λ', s.t.

\[P(O | \lambda') \geq P(O | \lambda) \]

• Process called **parameter re-estimation**
Parameter re-estimation in HMMs

• Three parameters need to be re-estimated:
 • Initial state distribution: π_i
 • Transition probabilities: a_{ij}
 • Emission (observation) probabilities: $b_i(o_t)$

• Use **forward-backward** (or **Baum-Welch**) algorithm
 • Hill-climbing algorithm
Parameter re-estimation in HMMs

• Three parameters need to be re-estimated:
 • Initial state distribution: π_i
 • Transition probabilities: a_{ij}
 • Emission (observation) probabilities: $b_i(o_t)$

• Use **forward-backward** (or **Baum-Welch**) algorithm
 • Hill-climbing algorithm

• Choose arbitrary **initial parameter instantiation**
 • Forward-backward algorithm **iteratively** re-estimates parameters
 • **Improves probability** that the given observations are generated by the new parameters
General Baum-Welch algorithm

1. Initialise: λ_0

2. Compute new model λ, using λ_0 and observed sequence O

3. Set $\lambda_0 \leftarrow \lambda$

4. Repeat steps 2 and 3 until:

$$\log P(O | \lambda) - \log P(O | \lambda_0) < d$$
Re-estimating the transition probabilities

• What is the probability of being in state i at time t and going to state j, given the current model and parameters?

$$\xi(i,j) = P(q_t = i, q_{t+1} = j \mid O, \lambda)$$

• Use the **forward** and **backward** probabilities to compute the re-estimated transition probability
Re-estimating the transition probabilities

- **Estimated** transition probability: \(\xi(i,j) = P(q_t = i, q_{t+1} = j \mid O, \lambda) \)

\[
\xi(i,j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_t(i) a_{ij} b_i(o_{t+1}) \beta_{t+1}(j)}
\]
Re-estimating the transition probabilities

- **Estimated** transition probability: \(\xi(i,j) = P(q_t = i, q_{t+1} = j \mid O, \lambda) \)

\[
\xi(i,j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_t(i) a_{ij} b_i(o_{t+1}) \beta_{t+1}(j)}
\]

Forward probability of seeing observations so far, being in state \(i \), and transitioning to state \(j \)
Re-estimating the transition probabilities

- **Estimated** transition probability: \(\xi(i,j) = P(q_t = i, q_{t+1} = j \mid O, \lambda) \)

\[
\xi(i,j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_t(i) a_{ij} b_i(o_{t+1}) \beta_{t+1}(j)}
\]

Probability of seeing observation \(o_{t+1} \) **in state** \(j \) **and the backward probability of seeing the rest of the sequence from** \(j \) **to the end**
Re-estimating the transition probabilities

- **Estimated** transition probability: \(\xi(i,j) = P(q_t = i, q_{t+1} = j \mid O, \lambda) \)

\[
\xi(i,j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_t(i) a_{ij} b_i(o_{t+1}) \beta_{t+1}(j)}
\]

Sum over all states \(i \) and \(j \) of seeing observations so far, transitioning to \(j \), and seeing rest of observations to the end
Estimating each transition probability

• **Intuition** behind re-estimation of transition probabilities

\[\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to } j}{\text{expected number of transitions from state } i} \]

• **Formally**

\[\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{j'=1}^{N} \xi_t(i,j')} \]
Estimating each transition probability

• Define state probability of being in state i given the complete observation sequence O

$$\gamma_t(i) = \sum_{j=1}^{N} \xi_t(i,j)$$

• Sums over forward probability of i and all possible transitions and backward probabilities

• Simplify transition re-estimation:

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$
Review of probabilities

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward probability</td>
<td>$\alpha_t(i)$ Probability of being in state i, given the partial observation $o_1,...,o_t$</td>
</tr>
<tr>
<td>Backward probability</td>
<td>$\beta_t(i)$ Probability of being in state i, given the partial observation $o_{t+1},...,o_T$</td>
</tr>
<tr>
<td>Transition probability</td>
<td>$\xi_t(i,j)$ Probability of going from state i, to state j, given the complete observation $o_1,...,o_T$</td>
</tr>
<tr>
<td>State probability</td>
<td>$\gamma_t(i)$ Probability of being in state i, given the complete observation $o_1,...,o_T$</td>
</tr>
</tbody>
</table>
Re-estimating the observation probabilities

- **Observation/emission probabilities** re-estimated as

 \[\hat{b}_i(k) = \text{expected number of times in state } i \text{ where observation is } k \]

 \[\text{expected number times in state } i \]

- **Formally**

 \[\hat{b}_i(k) = \frac{\sum_{t=1}^{T} \delta(o_t, k) \gamma_t(i)}{\sum_{t=1}^{T} \gamma_t(i)} \]

- Where \(\delta(o_t, k) = 1 \text{ iff } o_t = k \), and 0 otherwise

- **Note**: \(\delta \) here is the Kronecker delta function and is not related to the \(\delta \) in the discussion of the Viterbi algorithm!!
Re-estimating initial state probabilities

• **Initial state distribution** π_i—probability that i is start state

• Re-estimation is easy and intuitive

 $\hat{\pi}_i = \text{expected number of times in } i \text{ at time } 1$

• **Formally** $\hat{\pi}_i = \gamma_1(i)$
Updating the model

- Coming from $\lambda = (A,B,\pi)$ we get to $\lambda' = (A',B',\pi')$ using the following update rules:

\[
\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}
\]

\[
\hat{b}_i(k) = \frac{\sum_{t=1}^{T} \delta(o_t,k) \gamma_t(i)}{\sum_{t=1}^{T} \gamma_t(i)}
\]

\[
\hat{\pi}_i = \gamma_1(i)
\]
Expectation maximization

• Baum-Welch is example of **expectation maximization (EM)**

• Expectation maximization has two steps:

1. E step—use current λ to estimate the state sequence

 • Compute the expected value for the state at time t: $\gamma_t(i)$
 • Compute the expected value of state transitions from i to j: $\xi_t(i,j)$
 • Both computed using the forward and backward probabilities

2. M step—compute new parameters λ' as expected values given the state sequence estimated in E step

 • Update \hat{a}_{ij}, $\hat{b}_i(k)$, and $\hat{\pi}_i$ using rules
 • Maximum likelihood (ML) estimation—maximizes $P(O \mid \lambda')$
What about the structure of the model?

• Baum-Welch assumes we know the **structure** of the HMM
 • Hidden states
 • Observations
 • Conditional independence relationships

• How can we learn the structure?
 • Fully observable domains—find **maximum likelihood** model for data
 • Partially observable domains—use EM

• Applicable to all **probabilistic graphical** models
Structure learning of graphical models

- Search thru the space of possible network structures!
 - For now, assume we observe all variables

- For each structure, learn parameters using EM

- Pick the one that fits observed data best
 - Caveat—won’t we end up fully connected?
 - Add a penalty for model complexity

- Problems?
Structure learning of graphical models

- Search thru the space of possible network structures!
 - For now, assume we observe all variables

- For each structure, learn parameters using EM

- Pick the one that fits observed data best
 - Caveat—won’t we end up fully connected?
 - Add a penalty for model complexity

- Problems?
 - Exponential number of networks!
 - And we need to learn parameters for each!
 - Exhaustive search out of the question!

- So now what?
Learn structure with local search

- Start with some network structure λ
 - Make a change to the structure i.e., add, delete, or reverse an edge
 - See if the new network is any better, i.e., is $P(O | \lambda') \geq P(O | \lambda)$?

- Same principle as using EM for parameter learning

- What should the initial state be?
Learn structure with local search

• Start with some **network structure** λ

 • Make a change to the structure i.e., add, delete, or reverse an edge

 • See if the new network is any better, i.e., is $P(O | \lambda') \geq P(O | \lambda)$?

• Same principle as using EM for parameter learning

• What should the initial state be?

 • Uniform distribution over initial networks

 • Network that reflects domain expertise
Process of learning network structure

Prior Network

Improved Network(s)

Data
Unknown structure, full observability

- Local search over structures
 - Search space—possible states, connections
 - Scoring—maximum likelihood, but penalize complex models

- **Maximum likelihood** computation using **Bayes rule**

\[
P(G \mid D) = \frac{P(D \mid G)P(G)}{P(D)}
\]

- Give higher priors for **simple models**
- For **parameters** \(\Theta \) (i.e., CPTs in Bayes nets, \(\lambda \) in HMMs)

\[
P(D \mid G) = \int_{\Theta} P(D \mid G, \Theta) P(\Theta \mid G)
\]
Unknown structure, full observability

- **Maximum likelihood** computation using **Bayes rule**

\[
P(G \mid D) = \frac{P(D \mid G)P(G)}{P(D)}
\]

- Give higher priors for **simple models**

- For **parameters** Θ (i.e., CPTs in Bayes nets, λ in HMMs)

\[
P(D \mid G) = \int_\Theta P(D \mid G, \Theta) \, P(\Theta \mid G)
\]

- Conditional **independence** and **Markov** property allow decomposition of parameters

\[
P(D \mid G) = \prod_i \int_\Theta P(X_i \mid \text{Parents}(X_i), \Theta_i) \, P(\Theta_i) \, d\Theta_i
\]
Learning structure with hidden variables

- The disease variable is hidden
- Can we just learn without it?
End up with fully connected network...

- Sure! But not the best network for our domain

- With 708 parameters? Much harder to learn
Chicken or the egg problem

- If we had **fully observable data** (i.e., knew that a training instance (patient) had the disease...)
 - It would be easy to learn $P(\text{symptom} \mid \text{disease})$
 - But we can’t observe disease, so we don’t have this information

- If we knew the **parameters** (i.e., $P(\text{symptom} \mid \text{disease})$) then it would be easy to estimate if a patient had the disease
 - But we don’t know these parameters!
Use EM to learn the parameters

• Assume we DO know the parameters
 • Initialize *randomly*

• E step: ?
• M step: ?

• Iterate until *convergence*!
Use EM to learn the parameters

• Assume we DO know the parameters
 • Initialize randomly

• E step:
 • Compute probability of instance (in data) having each possible value of the hidden variable
 • Approximate likelihood by computing expected value

• M step:
 • Treating each instance as fractionally having both values compute the new parameter values

• Iterate until convergence!