3-Des and Hash Functions and Long messages

Des – 56bit Key

64-bit input \rightarrow Des \rightarrow 64 Output

Takes 2^{56} Attempts to brute force. Major issue, with cpu speeds today we can crack 2^{56} items easily so it is not secure enough.

2Des

Input \rightarrow Des(key) \rightarrow Des(key) \rightarrow Output

It is easy to see that this can also be cracked by 2^{56} attempts and so is not secure enough.

2Des using 2 different keys

Input \rightarrow Des (key1) \rightarrow Des (key2) \rightarrow Output

As a warmup let us estimate the number of functions that map 64 bits to 64 bits \((2^{64}) \rightarrow (2^{64}) \)

This is the same as the number of attempts to discover the function by brute force which is: \((2^{64})! \approx ((2^{64})/e)^{(2^{64})} \). Taking logs, the number of bits needed to represent such a function is \(\sim 62 \cdot 2^{64} \)

Idea: Encrypt m with k1 and decrypt c with k2 and check if the two results, I1 and I2, match

\[E_{k1}(m) \rightarrow D_{k2}(c) \]

Algorithm for cracking this

Given(m1,c)

Have to get k1 k2

1. Compute for all k1, I1 = \(E_{k1}(m) \) \([2^{56}] \)
2. Compute for all k2, I2 = \(D_{k2}(c) \) \([2^{56}] \)
3. Sort I1 and I2 and match them

This narrows it down to at most 2^{56} possibilities. In fact, we will show that in an expected sense it narrows down to at most 2^{48} possibilities – this may seem counter-intuitive since it indicates that we have less security with two keys as compared to one.
Theorem: With high probability (>= 1 - (1/2^80)) 2-des can be cracked in O(2^56) steps using no more than 3 plaintext-ciphertext pairs

Proof:
E(# key pairs that survive)= 2^64 * (2^56/2^64) * (2^56/2^64) = 2^48
With one message-ciphertext pair (m1c1) we reduce from 2^112 → 2^48, i.e. a drop by 2^(-64).
With 3 message-ciphertext pairs P(wrong key pair survives) = (1/(2^64))^3 = 2^(-192)
Hence P((# wrong key pairs) > 1) <= 2^112 * 2^(-192) = (1/(2^80))
With probability >= 1-2^80 you are left with the right k1 k2

3-Des

Input → E_{k1} → D_{k2} → E_{k1} → Output

3-Des uses 2 56 bit keys but unlike 2-des achieves security that needs 2^112 attempts to break.

AES

Developed in 2001, AES is patented and therefore not as widely used because of the legal ramifications of using a patented technology.

Hash Functions – One way function

h(512 – bits) → 128 bits
Hard to invert: given a Y it is hard to find an X such that h(X) = Y
Collision-free: It is hard to find collisions, i.e., X1, X2 such that h(X1) = h(X2)

Theorem
Hash functions + key = Secret key cryptography
Applications
Authentication
Storage
Encryption

Example of authentication with hash function:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi I’m A</td>
<td></td>
</tr>
<tr>
<td><-------- Challenge -------</td>
<td></td>
</tr>
<tr>
<td>h(Challenge</td>
<td>Secret) <-- -------</td>
</tr>
</tbody>
</table>

Example of storage/encryption with hash function – same idea as encrypting long messages

\[M = m_1 | m_2 | m_3 \ldots \]

\[IV_0 \]

\[IV_i = h(IV_0 + i|Secret) \]

\[C= IV_0 | (IV_1 XOR m_1) | (IV_2 XOR m_2)\ldots \]

What to do with a long message?

1. Electronic code block (ecb)
 \[M = m_1 | m_2 | m_3 \ldots \]
 \[C = E_k(m_1) | E_k(m_2) | E_k(m_3)\ldots \]
 Problems: Frequency analysis
 Also, pieces may be reordered to create new messages

2. Cipher block chaining (cbc)
 \[M = m_1 | m_2 | m_3 \ldots \]
 \[R = r_1 | r_2 | r_3 \ldots \]
 \[C = r_1| E_k(m_1 XOR r_1) | r_2 | E_k(m_2 XOR r_2) | r_3 | E_k(m_3 XOR r_3)\ldots \]
 Problem – Uses twice as many bits to transmit the data and is inefficient.

3. IV based schemes
Output feedback mode (WEP is IV based)
IV₀ \rightarrow (E_k) \rightarrow IV₁ \rightarrow (E_k) \rightarrow IV₂ \ldots
C = IV₀ | (m₁ XOR IV₁) | (m₂ XOR IV₂) | …

Cipher Feedback mode
IV₀ \rightarrow E_k \rightarrow IV₁
(IV₁ XOR m₁) \rightarrow E_k \rightarrow IV₂
(IV₂ XOR m₂) \rightarrow E_k \rightarrow IV₃
…

C = IV₀ | (M₁ XOR IV₁) | (M₂ XOR IV₂) | …

Counter Mode
IV₀
IV₁ = E_k(IV₀ + i)

C = IV₀ | (IV₁ XOR M₁) | (IV₂ XOR M₂) | …