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PROJECT  
GUIDELINES 

(updated)



Project Goals

• Select a dataset / prediction problem 
• Perform exploratory analysis  

and preprocesssing 
• Apply one or more algorithms 
• Critically evaluate results 
• Submit a report and present project



Proposals

• Due: 28 October 
• Presentation:10+5 mins 
• Proposal: 1-2 pages 
• Describe 

• Dataset 
• Prediction task 
• Proposed methods



Presentation and Report

• Due: 2 December 
• Presentation 

• 20 mins + 10  discussion 
• Report 

• 8-10 pages, 11 pts 
• Code



Presentation and Report

• Due: 2 December 
• Presentation 

• 20 mins + 10  discussion 
• Report 

• 8-10 pages, 11 pts 
• Code



Grading

• Proposal: 15% 
• Problem and Results: 20% 
• Data and Code: 15% 
• Report: 35% 
• Presentation: 15%



Grading

• Problem and Results: 20% 
• Novelty of task 
• Own dataset vs UCI dataset 
• Number of algorithms tested 
• Novelty of algorithms



Grading

• Data and Code: 15% 
• Documentation and Readability 
• TAs should be able to run code  
• Reproducibility  

(can figures and tables be   
generated by running code?)



Grading
• Report: 35% 

• Exploratory analysis of data 
• Explain how properties of data  

relate to choice of algorithm 
• Description of algorithms  

and methodology  
• Discussion of results 

• Which methods work well, 
which do not, and why? 

• Comparison to state of art?



Example: Minimum Viable Project

• Get 2-3 datasets  
from UCI repository 

• Figure out what pre-processing  
(if any) is needed  

• Run every applicable  
algorithm in scikit learn 

• Explain which algorithms work well  
on which datasets and why



Example: More Ambitious Projects

• Find a new dataset or define a novel task  
(i.e. not classification or clustering) 

• Attack a problem from a Kaggle competition 
• Implement a recently published method  

(talk to me for suggestions)



Homework Updates

• HW3 now due on 2 November  
(after midterm and proposals) 

• Removed HW5 to give more  
time to work on projects  



MIDTERM 
REVIEW



List of Topics for Midterm

• Everything up until last Friday  
(expect final to emphasize later topics) 

• Open book, focus on understanding

http://www.ccs.neu.edu/course/cs6220f16/sec3/midterm-topics.html 

http://www.ccs.neu.edu/course/cs6220f16/sec3/midterm-topics.html


BINOMIAL MIXTURES



Mixture of Binomials
Mixture of Bernoulli distributions

Suppose we have two coins A and B (weighted).
We want to estimate the bias of the two coins. i.e.

 
p
A

(head) = µ
A

 
p
B

(head) = µ
B

Pick a coin at random
(simplified version, a equal mixture)

Flip 10 times and record ’H’ and ’T’

repeat the process until we have a good size of
training data

Yijun Zhao
DATA MINING TECHNIQUES Mixture Models and EM Algorithm
39 / 48



Mixture of BinomialsMixture of Bernoulli distributions

Maximum Likelihood estimates:

µ
A

=
24

24 + 6
= 0.8 µ

B

=
9

9 + 11
= 0.45

Yijun Zhao
DATA MINING TECHNIQUES Mixture Models and EM Algorithm
40 / 48



Gaussian Mixture Model
Generative Model Expectation Maximization

Initialize θ  

Repeat until convergence 

1. Expectation Step 

    

2. Maximization Step 

  



Binomial Mixture Model
Generative Model Expectation Maximization

Initialize θ  

Repeat until convergence 

1. Expectation Step 

    

2. Maximization Step 

  

Mixture of Bernoulli distributions

Maximum Likelihood estimates:

µ
A

=
24

24 + 6
= 0.8 µ

B

=
9

9 + 11
= 0.45
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Binomial Mixture Model
Generative Model Expectation Maximization

Initialize θ  

Repeat until convergence 

1. Expectation Step 

    

2. Maximization Step 

  

Mixture of Bernoulli distributions

Maximum Likelihood estimates:

µ
A

=
24

24 + 6
= 0.8 µ

B

=
9

9 + 11
= 0.45
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TOPIC MODELS
Borrowing from: 
David Blei 
(Columbia)



Review: Naive Bayes

Labels: Spam or not Spam

n

8

almost always do better than GDA. For this reason, in practice logistic re-
gression is used more often than GDA. (Some related considerations about
discriminative vs. generative models also apply for the Naive Bayes algo-
rithm that we discuss next, but the Naive Bayes algorithm is still considered
a very good, and is certainly also a very popular, classification algorithm.)

2 Naive Bayes

In GDA, the feature vectors x were continuous, real-valued vectors. Let’s
now talk about a different learning algorithm in which the xi’s are discrete-
valued.

For our motivating example, consider building an email spam filter using
machine learning. Here, we wish to classify messages according to whether
they are unsolicited commercial (spam) email, or non-spam email. After
learning to do this, we can then have our mail reader automatically filter
out the spam messages and perhaps place them in a separate mail folder.
Classifying emails is one example of a broader set of problems called text
classification.

Let’s say we have a training set (a set of emails labeled as spam or non-
spam). We’ll begin our construction of our spam filter by specifying the
features xi used to represent an email.

We will represent an email via a feature vector whose length is equal to
the number of words in the dictionary. Specifically, if an email contains the
i-th word of the dictionary, then we will set xi = 1; otherwise, we let xi = 0.
For instance, the vector

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
0
0
...
1
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

a
aardvark
aardwolf
...
buy
...
zygmurgy

is used to represent an email that contains the words “a” and “buy,” but not
“aardvark,” “aardwolf” or “zygmurgy.”2 The set of words encoded into the

2Actually, rather than looking through an english dictionary for the list of all english
words, in practice it is more common to look through our training set and encode in our
feature vector only the words that occur at least once there. Apart from reducing the

Features: Words in E-mail Generative Model

Maximum Likelihood
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Features: Words in E-mail Generative Model (with prior)

Maximum Likelihood

Posterior Mean for Parameters



Mixtures of Documents

n

8

almost always do better than GDA. For this reason, in practice logistic re-
gression is used more often than GDA. (Some related considerations about
discriminative vs. generative models also apply for the Naive Bayes algo-
rithm that we discuss next, but the Naive Bayes algorithm is still considered
a very good, and is certainly also a very popular, classification algorithm.)

2 Naive Bayes

In GDA, the feature vectors x were continuous, real-valued vectors. Let’s
now talk about a different learning algorithm in which the xi’s are discrete-
valued.

For our motivating example, consider building an email spam filter using
machine learning. Here, we wish to classify messages according to whether
they are unsolicited commercial (spam) email, or non-spam email. After
learning to do this, we can then have our mail reader automatically filter
out the spam messages and perhaps place them in a separate mail folder.
Classifying emails is one example of a broader set of problems called text
classification.

Let’s say we have a training set (a set of emails labeled as spam or non-
spam). We’ll begin our construction of our spam filter by specifying the
features xi used to represent an email.

We will represent an email via a feature vector whose length is equal to
the number of words in the dictionary. Specifically, if an email contains the
i-th word of the dictionary, then we will set xi = 1; otherwise, we let xi = 0.
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is used to represent an email that contains the words “a” and “buy,” but not
“aardvark,” “aardwolf” or “zygmurgy.”2 The set of words encoded into the

2Actually, rather than looking through an english dictionary for the list of all english
words, in practice it is more common to look through our training set and encode in our
feature vector only the words that occur at least once there. Apart from reducing the

Observations: Bag of Words

24
1

4

Clusters: Types of Documents
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How should we modify 
the generative model?

Clusters: Types of Documents



Mixtures of Documents

Clusters: Types of Documents
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Topic ModelingGenerative model for LDA
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...
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number   0.02

computer 0.01

.,,

Topics Documents
Topic proportions and

assignments

• Each topic is a distribution over words
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of those topics

• Naive Bayes: Documents belong a class 
• Topic Models: Words belong to a class



Latent Dirichlet AllocationLDA as a graphical model

�d Zd,n Wd,n
N

D K
�k

↵ η

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

• Encodes our assumptions about the data
• Connects to algorithms for computing with data
• See Pattern Recognition and Machine Learning (Bishop, 2006).



PLSI/PLSA: EM for LDA
Generative Model (no priors) Expectation Step

Maximization Step

Generative model for LDA
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• Each topic is a distribution over words
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Variational Inference for LDA (sketch)

CS598JHM: Advanced NLP

LDA:

The variational approximation:

A graphical model

5
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✓d Zd,n Wd,n
N

D K
�k

↵ η

FIGURE 2. A graphical model representation of the la-
tent Dirichlet allocation (LDA). Nodes denote random vari-
ables; edges denote dependence between random variables.
Shaded nodes denote observed random variables; unshaded
nodes denote hidden random variables. The rectangular
boxes are “plate notation,” which denote replication.

(ii) Draw a word Wd,n ⌅ Mult( ⇤⇤zd,n), Wd,n ⇥ {1, . . . , V }.
This is illustrated as a directed graphical model in Figure 2.

The hidden topical structure of a collection is represented in the hidden
random variables: the topics ⇤⇤1:K , the per-document topic proportions ⇤⌅1:D,
and the per-word topic assignments z1:D,1:N . With these variables, LDA
is a type of mixed-membership model (Erosheva et al., 2004). These are
distinguished from classical mixture models (McLachlan and Peel, 2000;
Nigam et al., 2000), where each document is limited to exhibit one topic.
This additional structure is important because, as we have noted, documents
often exhibit multiple topics; LDA can model this heterogeneity while clas-
sical mixtures cannot. Advantages of LDA over classical mixtures has been
quantified by measuring document generalization (Blei et al., 2003).

LDA makes central use of the Dirichlet distribution, the exponential fam-
ily distribution over the simplex of positive vectors that sum to one. The
Dirichlet has density

(1) p(⌅ | ⇤⇥) = �
⌅�

i ⇥i
⇧

⇥
i � (⇥i )

⇤

i

⌅⇥i�1
i .

The parameter ⇤⇥ is a positive K -vector, and � denotes the Gamma func-
tion, which can be thought of as a real-valued extension of the factorial
function. A symmetric Dirichlet is a Dirichlet where each component of the
parameter is equal to the same value. The Dirichlet is used as a distribu-
tion over discrete distributions; each component in the random vector is the
probability of drawing the item associated with that component.

LDA contains two Dirichlet random variables: the topic proportions ⇤⌅
are distributions over topic indices {1, . . . , K }; the topics ⇤⇤ are distributions
over the vocabulary. In Section 4.2 and Section 4.1, we will examine some

D
N

K
"d !d

%d,n !d,n #k $k

CS598JHM: Advanced NLP

The variational posterior

Inference = minimizing KL divergence: 

The objective function L turns out to be

6
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
K⇥

k=1

q( ��k | �⌅k)
D⇥

d=1

⇤

q( �⇤d d | �⇥d)
N⇥

n=1

q(zd,n | �⇧d,n)

�

Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)

TOPIC MODELS 9

Specifically, the objective function is

L =
K�

k=1

E[log p( ⇥⇥k | ⇤)] +
D�

d=1

E[log p(⇥⌅d | ⇥�)] +
D�

d=1

N�

n=1

E[log p(Zd,n | ⇥⌅d)]

+
D�

d=1

N�

n=1

E[log p(wd,n | Zd,n, ⇥⇥1:K )] + H(q),

(6)

where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters ⇤ + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | ⇥⌅d, wd,n, ⇥⇥1:K ) � exp{log ⌅d,k + log ⇥k,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note

8 D. M. BLEI AND J. D. LAFFERTY
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tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
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Inference
Inference = minimizing KL divergence: 

7
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where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters ⇤ + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | ⇥⌅d, wd,n, ⇥⇥1:K ) � exp{log ⌅d,k + log ⇥k,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note

8 D. M. BLEI AND J. D. LAFFERTY

and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
K⇥

k=1

q( ��k | �⌅k)
D⇥

d=1

⇤

q( �⇤d d | �⇥d)
N⇥

n=1

q(zd,n | �⇧d,n)

�

Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)

The objective function L turns out to be the sum of the 
expectation of the log probabilities of the posterior under 
the variational parameters and the entropy of q
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FIGURE 2. A graphical model representation of the la-
tent Dirichlet allocation (LDA). Nodes denote random vari-
ables; edges denote dependence between random variables.
Shaded nodes denote observed random variables; unshaded
nodes denote hidden random variables. The rectangular
boxes are “plate notation,” which denote replication.

(ii) Draw a word Wd,n ⌅ Mult( ⇤⇤zd,n), Wd,n ⇥ {1, . . . , V }.
This is illustrated as a directed graphical model in Figure 2.

The hidden topical structure of a collection is represented in the hidden
random variables: the topics ⇤⇤1:K , the per-document topic proportions ⇤⌅1:D,
and the per-word topic assignments z1:D,1:N . With these variables, LDA
is a type of mixed-membership model (Erosheva et al., 2004). These are
distinguished from classical mixture models (McLachlan and Peel, 2000;
Nigam et al., 2000), where each document is limited to exhibit one topic.
This additional structure is important because, as we have noted, documents
often exhibit multiple topics; LDA can model this heterogeneity while clas-
sical mixtures cannot. Advantages of LDA over classical mixtures has been
quantified by measuring document generalization (Blei et al., 2003).

LDA makes central use of the Dirichlet distribution, the exponential fam-
ily distribution over the simplex of positive vectors that sum to one. The
Dirichlet has density

(1) p(⌅ | ⇤⇥) = �
⌅�

i ⇥i
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⇥
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⇤
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The parameter ⇤⇥ is a positive K -vector, and � denotes the Gamma func-
tion, which can be thought of as a real-valued extension of the factorial
function. A symmetric Dirichlet is a Dirichlet where each component of the
parameter is equal to the same value. The Dirichlet is used as a distribu-
tion over discrete distributions; each component in the random vector is the
probability of drawing the item associated with that component.

LDA contains two Dirichlet random variables: the topic proportions ⇤⌅
are distributions over topic indices {1, . . . , K }; the topics ⇤⇤ are distributions
over the vocabulary. In Section 4.2 and Section 4.1, we will examine some

D
N

K
"d !d

%d,n !d,n #k $k

CS598JHM: Advanced NLP

The variational posterior

Inference = minimizing KL divergence: 

The objective function L turns out to be

6

8 D. M. BLEI AND J. D. LAFFERTY

and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
K⇥

k=1

q( ��k | �⌅k)
D⇥

d=1

⇤

q( �⇤d d | �⇥d)
N⇥

n=1

q(zd,n | �⇧d,n)

�

Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)
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Specifically, the objective function is

L =
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k=1

E[log p( ⇥⇥k | ⇤)] +
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+
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n=1

E[log p(wd,n | Zd,n, ⇥⇥1:K )] + H(q),

(6)

where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters ⇤ + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | ⇥⌅d, wd,n, ⇥⇥1:K ) � exp{log ⌅d,k + log ⇥k,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
K⇥

k=1

q( ��k | �⌅k)
D⇥

d=1

⇤

q( �⇤d d | �⇥d)
N⇥

n=1

q(zd,n | �⇧d,n)

�

Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)
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Specifically, the objective function is

L =
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E[log p(wd,n | Zd,n, ⇥⇥1:K )] + H(q),

(6)

where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters ⇤ + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | ⇥⌅d, wd,n, ⇥⇥1:K ) � exp{log ⌅d,k + log ⇥k,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
K⇥

k=1

q( ��k | �⌅k)
D⇥

d=1

⇤

q( �⇤d d | �⇥d)
N⇥

n=1

q(zd,n | �⇧d,n)

�

Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)

The objective function L turns out to be the sum of the 
expectation of the log probabilities of the posterior under 
the variational parameters and the entropy of q
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FIGURE 2. A graphical model representation of the la-
tent Dirichlet allocation (LDA). Nodes denote random vari-
ables; edges denote dependence between random variables.
Shaded nodes denote observed random variables; unshaded
nodes denote hidden random variables. The rectangular
boxes are “plate notation,” which denote replication.

(ii) Draw a word Wd,n ⌅ Mult( ⇤⇤zd,n), Wd,n ⇥ {1, . . . , V }.
This is illustrated as a directed graphical model in Figure 2.

The hidden topical structure of a collection is represented in the hidden
random variables: the topics ⇤⇤1:K , the per-document topic proportions ⇤⌅1:D,
and the per-word topic assignments z1:D,1:N . With these variables, LDA
is a type of mixed-membership model (Erosheva et al., 2004). These are
distinguished from classical mixture models (McLachlan and Peel, 2000;
Nigam et al., 2000), where each document is limited to exhibit one topic.
This additional structure is important because, as we have noted, documents
often exhibit multiple topics; LDA can model this heterogeneity while clas-
sical mixtures cannot. Advantages of LDA over classical mixtures has been
quantified by measuring document generalization (Blei et al., 2003).

LDA makes central use of the Dirichlet distribution, the exponential fam-
ily distribution over the simplex of positive vectors that sum to one. The
Dirichlet has density

(1) p(⌅ | ⇤⇥) = �
⌅�
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The parameter ⇤⇥ is a positive K -vector, and � denotes the Gamma func-
tion, which can be thought of as a real-valued extension of the factorial
function. A symmetric Dirichlet is a Dirichlet where each component of the
parameter is equal to the same value. The Dirichlet is used as a distribu-
tion over discrete distributions; each component in the random vector is the
probability of drawing the item associated with that component.

LDA contains two Dirichlet random variables: the topic proportions ⇤⌅
are distributions over topic indices {1, . . . , K }; the topics ⇤⇤ are distributions
over the vocabulary. In Section 4.2 and Section 4.1, we will examine some
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
K⇥

k=1

q( ��k | �⌅k)
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Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)
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Specifically, the objective function is
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(6)

where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters ⇤ + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | ⇥⌅d, wd,n, ⇥⇥1:K ) � exp{log ⌅d,k + log ⇥k,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
K⇥

k=1

q( ��k | �⌅k)
D⇥

d=1

⇤

q( �⇤d d | �⇥d)
N⇥

n=1

q(zd,n | �⇧d,n)

�

Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)
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Specifically, the objective function is
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where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters ⇤ + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | ⇥⌅d, wd,n, ⇥⇥1:K ) � exp{log ⌅d,k + log ⇥k,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
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Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)

The objective function L turns out to be the sum of the 
expectation of the log probabilities of the posterior under 
the variational parameters and the entropy of q
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N
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FIGURE 2. A graphical model representation of the la-
tent Dirichlet allocation (LDA). Nodes denote random vari-
ables; edges denote dependence between random variables.
Shaded nodes denote observed random variables; unshaded
nodes denote hidden random variables. The rectangular
boxes are “plate notation,” which denote replication.

(ii) Draw a word Wd,n ⌅ Mult( ⇤⇤zd,n), Wd,n ⇥ {1, . . . , V }.
This is illustrated as a directed graphical model in Figure 2.

The hidden topical structure of a collection is represented in the hidden
random variables: the topics ⇤⇤1:K , the per-document topic proportions ⇤⌅1:D,
and the per-word topic assignments z1:D,1:N . With these variables, LDA
is a type of mixed-membership model (Erosheva et al., 2004). These are
distinguished from classical mixture models (McLachlan and Peel, 2000;
Nigam et al., 2000), where each document is limited to exhibit one topic.
This additional structure is important because, as we have noted, documents
often exhibit multiple topics; LDA can model this heterogeneity while clas-
sical mixtures cannot. Advantages of LDA over classical mixtures has been
quantified by measuring document generalization (Blei et al., 2003).

LDA makes central use of the Dirichlet distribution, the exponential fam-
ily distribution over the simplex of positive vectors that sum to one. The
Dirichlet has density

(1) p(⌅ | ⇤⇥) = �
⌅�

i ⇥i
⇧

⇥
i � (⇥i )

⇤

i

⌅⇥i�1
i .

The parameter ⇤⇥ is a positive K -vector, and � denotes the Gamma func-
tion, which can be thought of as a real-valued extension of the factorial
function. A symmetric Dirichlet is a Dirichlet where each component of the
parameter is equal to the same value. The Dirichlet is used as a distribu-
tion over discrete distributions; each component in the random vector is the
probability of drawing the item associated with that component.

LDA contains two Dirichlet random variables: the topic proportions ⇤⌅
are distributions over topic indices {1, . . . , K }; the topics ⇤⇤ are distributions
over the vocabulary. In Section 4.2 and Section 4.1, we will examine some

D
N

K
"d !d

%d,n !d,n #k $k
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
K⇥

k=1

q( ��k | �⌅k)
D⇥

d=1

⇤

q( �⇤d d | �⇥d)
N⇥

n=1

q(zd,n | �⇧d,n)

�

Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)
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Specifically, the objective function is

L =
K�

k=1

E[log p( ⇥⇥k | ⇤)] +
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E[log p(⇥⌅d | ⇥�)] +
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+
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d=1

N�

n=1

E[log p(wd,n | Zd,n, ⇥⇥1:K )] + H(q),

(6)

where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters ⇤ + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | ⇥⌅d, wd,n, ⇥⇥1:K ) � exp{log ⌅d,k + log ⇥k,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note

8 D. M. BLEI AND J. D. LAFFERTY

and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
(5)

q(�⇤1:D, z1:D,1:N , ��1:K ) =
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Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)
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where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (5). See Blei et al. (2003) for details on
how to compute this function. Optimization proceeds by coordinate ascent,
iteratively optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (Blei
et al., 2003), and good introductions to variational methods include (Jordan
et al., 1999) and (Wainwright and Jordan, 2005). Here, we will focus on the
variational inference algorithm for the LDA model and try to provide more
intuition for how it learns topics from otherwise unstructured text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the
other hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments
and words is a Dirichlet with parameters ⇤ + nk,w, where nk,w denotes the
number of times word w is assigned to topic k. (This follows from the
conjugacy of the Dirichlet and multinomial. See (Gelman et al., 1995) for
a good introduction to this concept.) The update in Eq. (8) is nearly this
expression, but with nk,w replaced by its expectation under the variational
distribution. The independence of the hidden variables in the variational
distribution guarantees that such an expectation will not depend on the pa-
rameter being updated. The variational update for the topic proportions in
Eq. (9) is analogous.

The variational update for the distribution of zd,n follows a similar for-
mula. Consider the true posterior of zd,n , given the other relevant hidden
variables and observed word wd,n ,

(7) p(zd,n = k | ⇥⌅d, wd,n, ⇥⇥1:K ) � exp{log ⌅d,k + log ⇥k,wd,n}

The update in Eq. (10) is this distribution, with the term inside the expo-
nent replaced by its expectation under the variational distribution. Note
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and Gibbs sampling (Steyvers and Griffiths, 2006). Each has advantages
and disadvantages: choosing an approximate inference algorithm amounts
to trading off speed, complexity, accuracy, and conceptual simplicity. A
thorough comparison of these techniques is not our goal here; we use the
mean field variational approach throughout this chapter.

3.1. Mean field variational inference. The basic idea behind variational
inference is to approximate an intractable posterior distribution over hidden
variables, such as Eq. (2), with a simpler distribution containing free varia-
tional parameters. These parameters are then fit so that the approximation
is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty
in computing the denominator in Eq. (2) because one must sum over all
configurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution for
LDA is one where the variables are independent of each other, with and
each governed by a different variational parameter:
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Each hidden variable is described by a distribution over its type: the topics
��1:K are each described by a V -Dirichlet distribution �⌅k ; the topic propor-
tions �⇤1:D are each described by a K -Dirichlet distribution �⇥d ; and the topic
assignment zd,n is described by a K -multinomial distribution �⇧d,n . We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�⇥1:D,�⌅1:K , �⇧1:D,1:N

KL(q(�⇤1:D, z1:D,1:N , ��1:K )||p(�⇤1:D, z1:D,1:N , ��1:K | w1:D,1:N ))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)

The objective function L turns out to be the sum of the 
expectation of the log probabilities of the posterior under 
the variational parameters and the entropy of q
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Variational Inference for LDA (sketch)
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One iteration of mean field variational inference for LDA
(1) For each topic k and term v:

(8) �(t+1)
k,v = ⌃ +

D⇥

d=1

N⇥

n=1

1(wd,n = v) (t)
n,k .

(2) For each document d:
(a) Update ⇧d :

(9) ⇧ (t+1)
d,k = ⇤k + �N

n=1  
(t)
d,n,k .

(b) For each word n, update ⌅ d,n:

(10)  (t+1)
d,n,k ⇥ exp

⌅
⇥ (⇧ (t+1)

d,k ) + ⇥ (�(t+1)
k,wn

) � ⇥ (
�V

v=1 �
(t+1)
k,v )

⇧
,

where ⇥ is the digamma function, the first derivative of the
log� function.

FIGURE 5. One iteration of mean field variational inference
for LDA. This algorithm is repeated until the objective func-
tion in Eq. (6) converges.

that under the variational Dirichlet distribution, E[log⌅k,w] = ⇥ (�k,w) �
⇥ (

�
v �k,v ), and E[log ⌥d,k] is similarly computed.

This general approach to mean-field variational methods—update each
variational parameter with the parameter given by the expectation of the true
posterior under the variational distribution—is applicable when the condi-
tional distribution of each variable is in the exponential family. This has
been described by several authors (Beal, 2003; Xing et al., 2003; Blei and
Jordan, 2005) and is the backbone of the VIBES framework (Winn and
Bishop, 2005).

Finally, we note that the quantities needed to explore and decompose the
corpus from Section 2.2 are readily computed from the variational distribu-
tion. The per-term topic probabilities are

(11) ⇤⌅k,v = �k,v�V
v ⇤=1 �k,v ⇤

.

The per-document topic proportions are

(12) ⇤⌥d,k = ⇧d,k�K
k⇤=1 ⇧d,k⇤

.

The per-word topic assignment expectation is

(13) ⇤zd,n,k =  d,n,k .
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Figure 9: Perplexity results on the nematode (Top) and AP (Bottom) corpora for LDA, the unigram
model, mixture of unigrams, and pLSI.
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Figure 9: Perplexity results on the nematode (Top) and AP (Bottom) corpora for LDA, the unigram
model, mixture of unigrams, and pLSI.
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Extensions of LDA

• EM inference (PLSA/PLSI) yields similar  
results to Variational inference (LDA) on most data 

• Reason for popularity of LDA:  
can be embedded in more complicated models



Extensions: Correlated Topic Model

Estimate a covariance matrix Σ that parameterizes 
correlations between topics in a document

The correlated topic model (CTM) (Blei and Lafferty, 2007)

Zd,n Wd,n
N

D K

�

µ

�d

�k

Noconjugate prior
on topic proportions

• Draw topic proportions from a logistic normal, where topic
occurrences can exhibit correlation.

• Use for:
• Providing a “map” of topics and how they are related
• Better prediction via correlated topics



Extensions: Dynamic Topic Models

Track changes in word distributions  
associated with a topic over time.

Dynamic topic models (Blei and Lafferty, 2006)

AMONG the vicissitudes incident to life no event could 
have filled me with greater anxieties than that of which 
the notification was transmitted by your order...

1789

My fellow citizens: I stand here today humbled by the task 
before us, grateful for the trust you have bestowed, mindful 
of the sacrifices borne by our ancestors...

2009

Inaugural addresses

• LDA assumes that the order of documents does not matter.
• Not appropriate for corpora that span hundreds of years
• We may want to track how language changes over time.



Extensions: Dynamic Topic ModelsDynamic topic models
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Extensions: Dynamic Topic ModelsDynamic topic models
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Extensions: Dynamic Topic ModelsAnalyzing a topic
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Extensions: Dynamic Topic ModelsVisualizing trends within a topic
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Extensions: Supervised LDASupervised LDA

�d Zd,n Wd,n
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Yd η, σ
2

1 Draw topic proportions ✓ | ↵ ⇠ Dir(↵).
2 For each word

• Draw topic assignment zn | ✓ ⇠ Mult(✓).
• Draw word wn | zn, �1:K ⇠ Mult(�zn).

3 Draw response variable y | z1:N , ⌘, �2 ⇠ N
�
⌘>z̄, �2�, where

z̄ = (1/N)
PN

n=1 zn.



Extensions: Supervised LDA
Example: Movie reviews
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• 10-topic sLDA model on movie reviews (Pang and Lee, 2005).

• Response: number of stars associated with each review

• Each component of coefficient vector ⌘ is associated with a topic.



Extensions: Ideal Point Topic ModelsIdeal point topic models
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Extensions: Ideal Point Topic ModelsIdeal point topics

dod,defense,defense and appropriation,military,subtitle
veteran,veterans,bills,care,injury

people,woman,american,nation,school
producer,eligible,crop,farm,subparagraph

coin,inspector,designee,automobile,lebanon
bills,iran,official,company,sudan

human,vietnam,united nations,call,people
drug,pediatric,product,device,medical

child,fire,attorney,internet,bills
surveillance,director,court,electronic,flood

energy,bills,price,commodity,market
land,site,bills,interior,river

child,center,poison,victim,abuse
coast guard,vessel,space,administrator,requires
science,director,technology,mathematics,bills

computer,alien,bills,user,collection
head,start,child,technology,award

loss,crop,producer,agriculture,trade
bills,tax,subparagraph,loss,taxable

cover,bills,bridge,transaction,following
transportation,rail,railroad,passenger,homeland security

business,administrator,bills,business concern,loan
defense,iraq,transfer,expense,chapter
medicare,medicaid,child,chip,coverage
student,loan,institution,lender,school

energy,fuel,standard,administrator,lamp
housing,mortgage,loan,family,recipient

bank,transfer,requires,holding company,industrial
county,eligible,ballot,election,jurisdiction

tax credit,budget authority,energy,outlays,tax

In addition to senators and bills, IPTM places topics on the spectrum.


