
Data Mining Techniques
CS 6220 - Section 3 - Fall 2016

Lecture 9
Jan-Willem van de Meent
(credit: Yijun Zhao, Carla Brodley, Eamon  
 Keogh, Tan + Steinbach + Kumar)

Two Types of Clustering
Hierarchical Partitional

Construct partitions and
evaluate them using
“some criterion”

Create a hierarchical
decomposition using
“some criterion”

Two Four Types of Clustering
1. Connectivity-based (Hierarchical)

Notion of Clusters: Cut off dendrogram at some depth

Two Four Types of Clustering
2. Centroid-based (K-means, K-medoids)

Notion of Clusters: Voronoi tesselation

Two Four Types of Clustering
3. Density-based (DBSCAN, OPTICS)

Notion of Clusters: Connected regions of high density

Two Four Types of Clustering
4. Distribution-based (Mixture Models)

Notion of Clusters: Distributions on features

K-Means Clustering

K-means Clustering

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Idea: Minimize Sum of Squares
μ1

μ2

μ3 Brute force search: NP-hard
How many partitions?

K-means Clustering

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Idea: Minimize Sum of Squares
μ1

μ2

μ3 Use heuristic search
(as in hierarchical case)

K-means Clustering

0

1

2

3

4

5

0 1 2 3 4 5

Algorithm: K-means, Distance Metric: Euclidean Distance

μ1

μ2

μ3

Yijun Zhao DATA MINING TECHNIQUES Clustering AlgorithmsRandomly initialize K centroids μk

0

1

2

3

4

5

0 1 2 3 4 5

μ1

μ2

μ3

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Assign each point to closest centroid,
then update centroids to average of points

0

1

2

3

4

5

0 1 2 3 4 5

μ1

μ2
μ3

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Assign each point to closest centroid,
then update centroids to average of points

0

1

2

3

4

5

0 1 2 3 4 5

μ1

μ2
μ3

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Repeat until convergence  
(no points reassigned, means unchanged)

0

1

2

3

4

5

0 1 2 3 4 5

μ1

μ2 μ3

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Repeat until convergence  
(no points reassigned, means unchanged)

K-means AlgorithmK-means Algorithm

Input: X = {x1, x2, . . . , xN}
Number of clusters K

Initialize: K random centroids µ1, µ2, . . . , µK

Repeat Until Convergence

1 For i = 1, . . . ,K do
Ci = {x 2 X |i = arg min

1jK
k x� µj k2}

2 For i = 1, . . . ,K do
µi = argmin

z

P
x2Ci

k z� x k2}

Output: C1,C2, . . . ,CK

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means AlgorithmK-means Algorithm

Input: X = {x1, x2, . . . , xN}
Number of clusters K

Initialize: K random centroids µ1, µ2, . . . , µK

Repeat Until Convergence

1 For i = 1, . . . ,K do
Ci = {x 2 X |i = arg min

1jK
k x� µj k2}

2 For i = 1, . . . ,K do
µi = argmin

z

P
x2Ci

k z� x k2}

Output: C1,C2, . . . ,CK

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

• K-means: Set μ to mean of points in C
• K-medoids: Set μ=x for point in C with minimum SSE

K-means Complexity
Convergence of K-means

The Cost of clustering:

Cost =
KX

1

X

x2Ci

k x� µi k2

The Cost decreases in step 1

The Cost descreases in step 2

The Cost is bounded below by 0

Hence the K-means algorithm converges in
finite steps

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

What is the computational complexity (per iteration)
for N points with D features and K clusters?

Cost function

K-means Complexity
Convergence of K-means

The Cost of clustering:

Cost =
KX

1

X

x2Ci

k x� µi k2

The Cost decreases in step 1

The Cost descreases in step 2

The Cost is bounded below by 0

Hence the K-means algorithm converges in
finite steps

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Complexity: O(N K D #iterations)

Cost function

Mini-batch K-means

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation

Keywords
unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1177

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=3

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=10

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=50

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS
We modify mini-batch k-means to find sparse cluster cen-

ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point c′ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an L1-ball of radius λ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ϵ-L1: an ϵ-Accurate Projection to L1 Ball.

1: Given: ϵ tolerance, L1-ball radius λ, vector c ∈ R
m

2: if ||c||i ≤ λ + ϵ then exit
3: upper← ||c||∞ ; lower ← 0 ; current← ||c||1
4: while current > λ(1 + ϵ) or current < λ do
5: θ ← upper+lower

2.0 // Get L1 value for this θ
6: current←

P

ci ̸=0 max(0, |ci|− θ)
7: if current ≤ λ then upper← θ else lower ← θ
8: end while
9: for i = 1 to m do

10: ci ← sign(ci) ∗max(0, |ci|− θ) // Do the projection
11: end for

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value θ that
projects c to an L1 ball with radius between λ and (1+ ϵ)λ.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

method λ #non-zero’s test objective CPUs
full batch - 200,319 0 (baseline) 133.96
LTL1P 5.0 46,446 .004 (.002-.006) 0.51
ϵ-L1 5.0 44,060 .007 (.005-.008) 0.27
LTL1P 1.0 3,181 .018 (.016-.019) 0.48
ϵ-L1 1.0 2,547 .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our ϵ-accurate projection
for mini-batch k-means, with a range of λ values. The value
of ϵ was arbitrarily set to 0.01. We report values for k = 10,
b = 1000, and t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES
[1] L. Bottou and Y. Bengio. Convergence properties of the

kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

[2] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the l1-ball for learning in high
dimensions. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, 2008.

[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1178(2-page abstract)

Mini-batch K-means

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation

Keywords
unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1177

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=3

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=10

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.0001 0.001 0.01 0.1 1 10 100 1000

Er
ro

r f
ro

m
 B

es
t K

-M
ea

ns
 O

bje
cti

ve
 F

un
cti

on
 V

alu
e

Training CPU secs

K=50

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS
We modify mini-batch k-means to find sparse cluster cen-

ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point c′ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an L1-ball of radius λ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ϵ-L1: an ϵ-Accurate Projection to L1 Ball.

1: Given: ϵ tolerance, L1-ball radius λ, vector c ∈ R
m

2: if ||c||i ≤ λ + ϵ then exit
3: upper← ||c||∞ ; lower ← 0 ; current← ||c||1
4: while current > λ(1 + ϵ) or current < λ do
5: θ ← upper+lower

2.0 // Get L1 value for this θ
6: current←

P

ci ̸=0 max(0, |ci|− θ)
7: if current ≤ λ then upper← θ else lower ← θ
8: end while
9: for i = 1 to m do

10: ci ← sign(ci) ∗max(0, |ci|− θ) // Do the projection
11: end for

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value θ that
projects c to an L1 ball with radius between λ and (1+ ϵ)λ.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

method λ #non-zero’s test objective CPUs
full batch - 200,319 0 (baseline) 133.96
LTL1P 5.0 46,446 .004 (.002-.006) 0.51
ϵ-L1 5.0 44,060 .007 (.005-.008) 0.27
LTL1P 1.0 3,181 .018 (.016-.019) 0.48
ϵ-L1 1.0 2,547 .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our ϵ-accurate projection
for mini-batch k-means, with a range of λ values. The value
of ϵ was arbitrarily set to 0.01. We report values for k = 10,
b = 1000, and t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES
[1] L. Bottou and Y. Bengio. Convergence properties of the

kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

[2] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the l1-ball for learning in high
dimensions. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, 2008.

[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1178(2-page abstract)

Mini-batch K-means

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ϵ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation

Keywords
unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THEWEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c] // Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1177

Complexity: O(N M K D t)

Mini-batch K-means

Mini-batch K-means

Importance of Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x
y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x
y

Iteration 6

“Good” initial choice

Importance of Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x
y

Iteration 5

“Bad” initial choice

Importance of Initial Centroids
What is the chance of randomly selecting

one point from each of K clusters?

(assume each cluster has size n = N/K)

Importance of Initial Centroids

What is the chance of randomly selecting
one point from each of K clusters?

(assume each cluster has size n = N/K)

Implication: We will almost always have  
multiple initial centroids in same cluster.

Importance of Initial Centroids

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 29

10 Clusters Example

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 4

Starting with two initial centroids in one cluster of each pair of clusters

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 30

10 Clusters Example

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y
Ite ration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 4

Starting with two initial centroids in one cluster of each pair of clusters
5 pairs of clusters, two initial points in each pair

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 31

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 4

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 32

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y
Ite ration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 4

Importance of Initial Centroids

Some pairs have 3 initial centroids, some have 1

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 31

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 4

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 32

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y
Ite ration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Ite ration 4

Importance of Initial Centroids

Conclusion: Heuristic search leads to local optima

Importance of Initial Centroids

Initialization tricks
• Use multiple restarts
• Initialize with hierarchical clustering
• Select more than K points,  

keep most widely separated points  

Choosing K

1 2 3 4 5 6 7 8 9 10

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=1, SSE=873

1 2 3 4 5 6 7 8 9 10

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=2, SSE=173

1 2 3 4 5 6 7 8 9 10

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=3, SSE=134

Choosing K

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

8.00E+02

9.00E+02

1.00E+03

1 2 3 4 5 6K

C
os

t
Fu

nc
tio

n

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms
“Elbow finding” (a.k.a. “knee finding”)  

Set K to value just above “abrupt” increase

K-means Limitations: Differing Sizes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 39

Limitations of K-means

O K-means has problems when clusters are of
differing
– Sizes
– Densities
– Non-globular shapes

O K-means has problems when the data contains
outliers.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 40

Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)

K-means Limitations: Differing Sizes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 39

Limitations of K-means

O K-means has problems when clusters are of
differing
– Sizes
– Densities
– Non-globular shapes

O K-means has problems when the data contains
outliers.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 40

Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 39

Limitations of K-means

O K-means has problems when clusters are of
differing
– Sizes
– Densities
– Non-globular shapes

O K-means has problems when the data contains
outliers.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 40

Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 41

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 42

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

K-means Limitations: Differing Densities

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 41

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 42

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

K-means Limitations: Differing Densities

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 41

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 42

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

K-means Limitations: Non-globular Shapes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 41

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 42

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 41

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 42

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

K-means Limitations: Non-globular Shapes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 41

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 42

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

Overcoming K-means Limitations

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 45

Overcoming K-means Limitations

Original Points K-means Clusters

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 46

Hierarchical Clustering

O Produces a set of nested clusters organized as a
hierarchical tree

O Can be visualized as a dendrogram
– A tree like diagram that records the sequences of

merges or splits

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 43

Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 44

Overcoming K-means Limitations

Original Points K-means Clusters

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 43

Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 44

Overcoming K-means Limitations

Original Points K-means Clusters

Intuition: “Combine” smaller clusters into larger clusters

• One Solution: Hierarchical Clustering
• Another Solution: Density-based Clustering

Density-based
Clustering

DBSCAN

DBSCAN

Density based spatial clustering of applications with noise

 arbitrarily shaped clusters

noise

(one of the most-cited clustering methods)

DBSCAN

Intuition
• A cluster is a region of high density
• Noise points lie in regions of low density

DBSCAN

Density based spatial clustering of applications with noise

 arbitrarily shaped clusters

noise

Defining “High Density”

Naïve approach

For each point in a cluster there are at least a minimum number (MinPts)

of points in an Eps-neighborhood of that point.

DBSCAN

cluster

Eps-neighborhood of a point p

 NEps(p) = { q ∈ D | dist (p, q) ≤ Eps }

 Eps

p

Neighborhood of a Point

Defining “High Density”

Defining “High Density”

Problem

• In each cluster there are two kinds of points:

 ̶ points inside the cluster (core points)

 ̶ points on the border (border points)

An Eps-neighborhood of a border point contains significantly less points than

an Eps-neighborhood of a core point.

DBSCAN ‒ Data

cluster

Problem

• In each cluster there are two kinds of points:

 ̶ points inside the cluster (core points)

 ̶ points on the border (border points)

An Eps-neighborhood of a border point contains significantly less points than

an Eps-neighborhood of a core point.

DBSCAN ‒ Data

cluster

Problem

• In each cluster there are two kinds of points:

 ̶ points inside the cluster (core points)

 ̶ points on the border (border points)

An Eps-neighborhood of a border point contains significantly less points than

an Eps-neighborhood of a core point.

DBSCAN ‒ Data

cluster

Defining “High Density”
Better idea

For every point p in a cluster C there is a point q ∈ C,
so that

(1) p is inside of the Eps-neighborhood of q

and

(2) NEps(q) contains at least MinPts points.

p

q

core points = high density

border points are connected to core points

Remark

Directly density-reachable is symmetric for pairs of core points.

It is not symmetric if one core point and one border point are involved.

p

Parameter: MinPts = 5

q

p directly density reachable from q

 p ∈ NEps(q)

 | NEps(q) | = 6 ≥ 5 = MinPts (core point condition)

q not directly density reachable from p

 | NEps (p) | = 4 < 5 = MinPts (core point condition)

Better idea

For every point p in a cluster C there is a point q ∈ C,
so that

(1) p is inside of the Eps-neighborhood of q

and

(2) NEps(q) contains at least MinPts points.

p

q

core points = high density

border points are connected to core points

Better idea

For every point p in a cluster C there is a point q ∈ C,
so that

(1) p is inside of the Eps-neighborhood of q

and

(2) NEps(q) contains at least MinPts points.

p

q

core points = high density

border points are connected to core points

Better notion of cluster

Density Reachability
Definition

A point p is directly density-reachable from a point q

with regard to the parameters Eps and MinPts, if

1) p ∈ NEps(q)

2) | NEps(q) | ≥ MinPts

(core point condition)

p

MinPts = 5
q

| NEps(q) | = 6 ≥ 5 = MinPts (core point condition)

(reachability)

Remark

Directly density-reachable is symmetric for pairs of core points.

It is not symmetric if one core point and one border point are involved.

p

Parameter: MinPts = 5

q

p directly density reachable from q

 p ∈ NEps(q)

 | NEps(q) | = 6 ≥ 5 = MinPts (core point condition)

q not directly density reachable from p

 | NEps (p) | = 4 < 5 = MinPts (core point condition)

Note: This is an asymmetric relationship

Remark

Directly density-reachable is symmetric for pairs of core points.

It is not symmetric if one core point and one border point are involved.

p

Parameter: MinPts = 5

q

p directly density reachable from q

 p ∈ NEps(q)

 | NEps(q) | = 6 ≥ 5 = MinPts (core point condition)

q not directly density reachable from p

 | NEps (p) | = 4 < 5 = MinPts (core point condition)

Density Reachability
Definition

A point p is density-reachable from a point q

with regard to the parameters Eps and MinPts

if there is a chain of points p1, p2, . . . ,ps with p1 = q and ps = p

such that pi+1 is directly density-reachable from pi for all 1 < i < s-1.

p
MinPts = 5

q
| NEps(q) | = 5 = MinPts (core point condition)

p1

| NEps(p1) | = 6 ≥ 5 = MinPts (core point condition)

Definition

A point p is density-reachable from a point q

with regard to the parameters Eps and MinPts

if there is a chain of points p1, p2, . . . ,ps with p1 = q and ps = p

such that pi+1 is directly density-reachable from pi for all 1 < i < s-1.

p
MinPts = 5

q
| NEps(q) | = 5 = MinPts (core point condition)

p1

| NEps(p1) | = 6 ≥ 5 = MinPts (core point condition)

Density Connectivity

Definition (density-connected)

A point p is density-connected to a point q

with regard to the parameters Eps and MinPts

if there is a point v such that both p and q are density-reachable from v.

p

MinPts = 5

q

v

Remark: Density-connectivity is a symmetric relation.

Note: This is a symmetric relationship

Definition of a Cluster
Definition (cluster)

A cluster with regard to the parameters Eps and MinPts

is a non-empty subset C of the database D with

 1) For all p, q ∈ D:

If p ∈ C and q is density-reachable from p

with regard to the parameters Eps and MinPts,

then q ∈ C.

2) For all p, q ∈ C:

The point p is density-connected to q

with regard to the parameters Eps and MinPts.

(Maximality)

(Connectivity)

Definition (cluster)

A cluster with regard to the parameters Eps and MinPts

is a non-empty subset C of the database D with

 1) For all p, q ∈ D:

If p ∈ C and q is density-reachable from p

with regard to the parameters Eps and MinPts,

then q ∈ C.

2) For all p, q ∈ C:

The point p is density-connected to q

with regard to the parameters Eps and MinPts.

(Maximality)

(Connectivity)

Definition of Noise

DBSCAN

Density based spatial clustering of applications with noise

 arbitrarily shaped clusters

noise Noise

Cluster

Definition (noise)

Let C1,...,Ck be the clusters of the database D
with regard to the parameters Eps i and MinPts I (i=1,...,k).

The set of points in the database D not belonging to any cluster C1,...,Ck
is called noise:

Noise = { p ∈ D | p ∉ Ci for all i = 1,...,k}

noise

DBSCAN Algorithm
DBSCAN (algorithm)

(1) Start with an arbitrary point p from the database and

retrieve all points density-reachable from p

with regard to Eps and MinPts.

(2) If p is a core point, the procedure yields a cluster

with regard to Eps and MinPts

and the point is classified.

(3) If p is a border point, no points are density-reachable from p

and DBSCAN visits the next unclassified point in the database.

DBSCAN (algorithm)

(1) Start with an arbitrary point p from the database and

retrieve all points density-reachable from p

with regard to Eps and MinPts.

(2) If p is a core point, the procedure yields a cluster

with regard to Eps and MinPts

and the point is classified.

(3) If p is a border point, no points are density-reachable from p

and DBSCAN visits the next unclassified point in the database.

and all points in the cluster are classified.

DBSCAN Algorithm

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 79

DBSCAN: Core, Border and Noise Points

Original Points Point types: core,
border and noise

Eps = 10, MinPts = 4

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 80

When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes

DBSCAN Complexity

• Time complexity: O(N2) if done naively,  
O(N log N) when using a spatial index  
(works in relatively low dimensions)

• Space complexity: O(N)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 79

DBSCAN: Core, Border and Noise Points

Original Points Point types: core,
border and noise

Eps = 10, MinPts = 4

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 80

When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes

DBSCAN strengths

+ Resistant to noise
+ Can handle arbitrary shapes

DBSCAN Weaknesses

- Varying densities
- High dimensional data
- Overlapping clusters

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 81

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 82

DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther
distance

O So, plot sorted distance of every point to its kth

nearest neighbor

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 81

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 82

DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther
distance

O So, plot sorted distance of every point to its kth

nearest neighbor

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 81

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 82

DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther
distance

O So, plot sorted distance of every point to its kth

nearest neighbor

Ground Truth MinPts = 4, Eps=9.92 MinPts = 4, Eps=9.75

Determining EPS and MINPTS

Determining the parameters Eps and MinPts

• Find threshold point with the maximal k-dist value in the “thinnest cluster” of D

• Set parameters Eps = k-dist(p) and MinPts = k.

Eps

noise cluster 1 cluster 2

• Calculate distance of k-th nearest  
neighbor for each point

• Plot in ascending / descending order
• Set EPS to max distance before “jump”

K-means vs DBSCANK-means vs. DBSCAN

K-means

DBSCAN

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Evaluation of
Clustering

Clusters in Random Data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 83

Cluster Validity

O For supervised classification we have a variety of
measures to evaluate how good our model is

– Accuracy, precision, recall

O For cluster analysis, the analogous question is how to
evaluate the “goodness” of the resulting clusters?

O But “clusters are in the eye of the beholder”!

O Then why do we want to evaluate them?
– To avoid finding patterns in noise
– To compare clustering algorithms
– To compare two sets of clusters
– To compare two clusters

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 84

Clusters found in Random Data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Random
Points

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

K-means

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

DBSCAN

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y
Complete
Link

Clustering Criteria
• External Quality Criteria

• Precision-Recall Measure
• Mutual Information

• Internal Quality Criteria  
Measure compactness of clusters
• Sum of Squared Error (SSE)
• Scatter Criteria

Mutual Information (External)

Mutual Information (External)

Uncorrelated Variables

Mutual Information (External)

Uncorrelated Variables

Perfectly Correlated Variables

Mutual Information (External)

Mutual Information (External)

Perfectly Correlated Variables

Mutual Information (External)

Perfectly Correlated Variables

Mutual Information (External)

Perfectly Correlated Variables

Mutual Information (External)

Perfectly Correlated Variables

Mutual Information (External)

Perfectly Correlated Variables

Mutual Information (External)

yn: True class label for example n
 zn: Clustering label for example n

Mutual Information (External)

yn: True class label for example n
 zn: Clustering label for example n

Mutual Information (External)

Mutual Information (External)

What happens to I(Y;Z) if we swap cluster labels?

Mutual Information (External)

What happens to I(Y;Z) if we swap cluster labels?

Mutual Information (External)

Mutual Information is invariant under label permutations

Scatter Criteria (Internal)Scatter Criteria (Internal)

Let x = (x1, . . . , xd)T

C1, . . . ,CK be a clustering of {x1, . . . , xN}
Define

Size of each cluster:

Ni = |Ci | i = 1, 2, . . . ,K

Mean for each cluster:

µi =
1
Ni

P
x2Ci

x i = 1, 2, . . . ,K

Total mean :

µ = 1
N

NP
i=1

xi OR µ = 1
N

KP
i=1

Niµi

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Scatter Criteria (Internal)

Scatter matrix for the i

th cluster:

Si =
P
x2Ci

(x� µi)(x� µi)T (outer product)

Within cluster scatter matrix :

SW =
KP
i=1

Si

Between cluster scatter matrix :

SB =
KP
i=1

Ni(µi �µ)(µi �µ)T (outer product)

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

Scatter Criteria (Internal)

Scatter Criteria (Internal)Scatter Criteria (Internal)

The trace criteria: sum of the diagonal
elements of a matrix

A good partition of the data should have:

Low tr(SW): similar to minimizing SSE

High tr(SB)

High
tr(S

B

)
tr(S

W

)

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

