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Two-way tables



Read data

> X <- data.frame(y=c(178, 138, 108, 570, 648,

+ 442, 138, 252, 252),

+ belief=rep(c("1-Fundam", "2-Moder", "3-Liber"), 3),

+ degree=rep(c("1-<HS", "2-HS", "3-BS/grad"), 1, each=3)

+ )

> X

y belief degree

1 178 1-Fundam 1-<HS

2 138 2-Moder 1-<HS

3 108 3-Liber 1-<HS

4 570 1-Fundam 2-HS

5 648 2-Moder 2-HS

6 442 3-Liber 2-HS

7 138 1-Fundam 3-BS/grad

8 252 2-Moder 3-BS/grad

9 252 3-Liber 3-BS/grad



Reformat data

> ov <- xtabs(y ~ degree+belief, data=X)

> ov

belief

degree 1-Fundam 2-Moder 3-Liber

1-<HS 178 138 108

2-HS 570 648 442

3-BS/grad 138 252 252



Export data in latex

> library(xtable)

> xtable(ov)

% latex table generated in R 3.2.2 by xtable 1.7-4 package

% Thu Oct 22 14:15:54 2015

\begin{table}[ht]

\centering

\begin{tabular}{rrrr}

\hline

& 1-Fundam & 2-Moder & 3-Liber \\

\hline

1-$<$HS & 178.00 & 138.00 & 108.00 \\

2-HS & 570.00 & 648.00 & 442.00 \\

3-BS/grad & 138.00 & 252.00 & 252.00 \\

\hline

\end{tabular}

\end{table}



Data visualization

> dotchart(t(ov), xlab="Observed counts")
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Data visualization

> mosaicplot(ov, color=TRUE)
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Compare proportions

> prop.test(ov[1:2,1:2])

2-sample test for equality of proportions with continuity correction

data: ov[1:2, 1:2]

X-squared = 8.7451, df = 1, p-value = 0.003104

alternative hypothesis: two.sided

95 percent confidence interval:

0.03187153 0.15875016

sample estimates:

prop 1 prop 2

0.5632911 0.4679803

> # ---Double-check the proportions---

> 178/(178+138)

[1] 0.5632911

> 570/(570+648)

[1] 0.4679803



Pearson χ2

> summary(ov)

Call: xtabs(formula = y ~ degree + belief, data = X)

Number of cases in table: 2726

Number of factors: 2

Test for independence of all factors:

Chisq = 69.16, df = 4, p-value = 3.42e-14



Grouped logistic regression



Read the data

> library(faraway)

> data(orings)

> ?orings

> head(orings)

temp damage

1 53 5

2 57 1

3 58 1

4 63 1

5 66 0

6 67 0



Explore graphically
Specify 2 responses: 1s and 0s
> plot(damage/6 ~ temp, orings, xlim=c(25,85),ylim=c(0,1),

+ xlab="Temperature",ylab="Proportion of damage")
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Fit simple logistic regression
Specify 2 responses: 1s and 0s
> library(MASS)

> fit <- glm(cbind(damage, 6-damage) ~ temp, family=binomial, data=orings)

> summary(fit)

Call:

glm(formula = cbind(damage, 6 - damage) ~ temp, family = binomial,

data = orings)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.9529 -0.7345 -0.4393 -0.2079 1.9565

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 38.898 on 22 degrees of freedom

Residual deviance: 16.912 on 21 degrees of freedom

AIC: 33.675

Number of Fisher Scoring iterations: 6



Inference
Specify 2 responses: 1s and 0s

> # Confidence intervals for parameters

> library(MASS)

> confint(fit)

2.5 % 97.5 %

(Intercept) 5.575195 18.737598

temp -0.332657 -0.120179

> # Prediction

> newOrings <- data.frame(temp=seq(from=10, to=100, length=10))

> head(predict(fit, newdata=newOrings, se.fit=T, type="response"))

$fit

1 2 3 4 5 6

9.999252e-01 9.993503e-01 9.943811e-01 9.531867e-01 7.008411e-01 2.123145e-01

7 8 9 10

3.007960e-02 3.555480e-03 4.103703e-04 4.723271e-05

$se.fit

1 2 3 4 5 6

2.070437e-04 1.455768e-03 9.606204e-03 5.374194e-02 1.498385e-01 6.178761e-02

7 8 9 10

1.670415e-02 3.689817e-03 6.364251e-04 9.788363e-05

$residual.scale

[1] 1



Overlay predicted values

> plot(damage/6 ~ temp, orings, xlim=c(25,85),ylim=c(0,1),

+ xlab="Temperature",ylab="Proportion of damage")

> newOrings.predict <- predict(fit, newdata=newOrings, se.fit=T,type="response")

> lines(newOrings$temp, newOrings.predict$fit)
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Overlay CI for the predicted values
> plot(damage/6 ~ temp, orings, xlim=c(25,85),ylim=c(0,1),

+ xlab="Temperature",ylab="Proportion of damage")

> newOrings.predict <- predict(fit, newdata=newOrings, se.fit=T,type="response")

> lines(newOrings$temp, newOrings.predict$fit)

> lines(newOrings$temp,

+ newOrings.predict$fit-qnorm(1-0.05/2)*newOrings.predict$se.fit, lty=2)

> lines(newOrings$temp,

+ newOrings.predict$fit+qnorm(1-0.05/2)*newOrings.predict$se.fit, lty=2)
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Per-subject logistic regression



Read Individual data

> setwd('/Users/ovitek/Dropbox/Olga/Teaching/CS6220/Fall15/LectureNotes/4-logistic')
> X <- read.table("smokingAndObesity.txt", sep=" ", as.is=TRUE, header=TRUE)

> X <- X[order(X$age),]

> # factor for 'smoking status'
> X$smokeF <- factor(X$smoke)

> head(X)

personid wt age smoke over_wt smokeF

1 82109491 3402 0 1 -999 1

3 5115721 2523 0 3 -999 3

6 15123981 3799 0 1 -999 1

11 10110381 2637 0 3 -999 3

17 45115281 3090 0 3 -999 3

23 10110071 3118 0 2 -999 2



Format data

> # Create a proper binary response for 'overweight'
> table(X$over_wt)

-999 1 2

3298 201 3674

> X$over_wtF <- factor(abs(X$over_wt - 2), levels=c(0,1))

> table(X$over_wtF)

0 1

3674 201

> head(X)

personid wt age smoke over_wt smokeF over_wtF

1 82109491 3402 0 1 -999 1 <NA>

3 5115721 2523 0 3 -999 3 <NA>

6 15123981 3799 0 1 -999 1 <NA>

11 10110381 2637 0 3 -999 3 <NA>

17 45115281 3090 0 3 -999 3 <NA>

23 10110071 3118 0 2 -999 2 <NA>



Display continuous response

> plot(X$wt~X$age, pch=16, sex=.5, col='blue')
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Display binary response

> plot(I(abs(X$over_wt - 2))~X$age, pch=16, sex=.5, col='blue', ylim=c(0,1))
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Fit simple logistic regression
> fit<- glm(over_wtF ~ age, family=binomial, data=X)

> summary(fit)

Call:

glm(formula = over_wtF ~ age, family = binomial, data = X)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.3619 -0.3464 -0.3076 -0.3045 2.5224

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.45573 0.21145 -11.614 <2e-16 ***

age -0.08366 0.03790 -2.207 0.0273 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1580.9 on 3874 degrees of freedom

Residual deviance: 1576.0 on 3873 degrees of freedom

(3298 observations deleted due to missingness)

AIC: 1580

Number of Fisher Scoring iterations: 5



Display binary response
> plot(I(abs(X$over_wt - 2))~X$age, pch=16, sex=.5, col='blue', ylim=c(0,1))

> lines(X$age, predict(fit, newdata=data.frame(age=X$age), type='response'))
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Fit logistic regression
> fit<- glm(over_wtF ~ age + smokeF + age*smokeF, family=binomial, data=X)

> summary(fit)

Call:

glm(formula = over_wtF ~ age + smokeF + age * smokeF, family = binomial,

data = X)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.3780 -0.3470 -0.3240 -0.2924 2.5582

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.43131 0.32271 -7.534 4.92e-14 ***

age -0.07075 0.05750 -1.230 0.219

smokeF2 0.16174 0.71087 0.228 0.820

smokeF3 -0.08464 0.44866 -0.189 0.850

age:smokeF2 -0.04348 0.12874 -0.338 0.736

age:smokeF3 -0.01712 0.08024 -0.213 0.831

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1580.9 on 3874 degrees of freedom

Residual deviance: 1574.6 on 3869 degrees of freedom

(3298 observations deleted due to missingness)

AIC: 1586.6

Number of Fisher Scoring iterations: 5



Prediction



Summaries of classification

the actual class and the predicted class we use the labels
{Y,N} for the class predictions produced by a model.

Given a classifier and an instance, there are four possible
outcomes. If the instance is positive and it is classified as
positive, it is counted as a true positive; if it is classified
as negative, it is counted as a false negative. If the instance
is negative and it is classified as negative, it is counted as a
true negative; if it is classified as positive, it is counted as a
false positive. Given a classifier and a set of instances (the
test set), a two-by-two confusion matrix (also called a con-
tingency table) can be constructed representing the disposi-
tions of the set of instances. This matrix forms the basis for
many common metrics.

Fig. 1 shows a confusion matrix and equations of several
common metrics that can be calculated from it. The num-
bers along the major diagonal represent the correct deci-
sions made, and the numbers of this diagonal represent
the errors—the confusion—between the various classes.
The true positive rate1 (also called hit rate and recall) of a
classifier is estimated as

tp rate ! Positives correctly classified

Total positives

The false positive rate (also called false alarm rate) of the
classifier is

fp rate ! Negatives incorrectly classified

Total negatives

Additional terms associated with ROC curves are

sensitivity ¼ recall

specificity ¼ True negatives

False positives þ True negatives

¼ 1$ fp rate

positive predictive value ¼ precision

3. ROC space

ROC graphs are two-dimensional graphs in which tp
rate is plotted on the Y axis and fp rate is plotted on the
X axis. An ROC graph depicts relative tradeoffs between
benefits (true positives) and costs (false positives). Fig. 2
shows an ROC graph with five classifiers labeled A through
E.

A discrete classifier is one that outputs only a class label.
Each discrete classifier produces an (fp rate, tp rate) pair
corresponding to a single point in ROC space. The classifi-
ers in Fig. 2 are all discrete classifiers.

Several points in ROC space are important to note. The
lower left point (0,0) represents the strategy of never issu-
ing a positive classification; such a classifier commits no
false positive errors but also gains no true positives. The
opposite strategy, of unconditionally issuing positive classi-
fications, is represented by the upper right point (1, 1).

The point (0,1) represents perfect classification. D!s per-
formance is perfect as shown.

Informally, one point in ROC space is better than
another if it is to the northwest (tp rate is higher, fp rate
is lower, or both) of the first. Classifiers appearing on the
left-hand side of an ROC graph, near the X axis, may be

Hypothesized
class

Y

N

p n

P NColumn totals:

True class

False
Positives

True
Positives

True
Negatives

False
Negatives

Fig. 1. Confusion matrix and common performance metrics calculated from it.

1 For clarity, counts such as TP and FP will be denoted with upper-case
letters and rates such as tp rate will be denoted with lower-case.
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Fig. 2. A basic ROC graph showing five discrete classifiers.

862 T. Fawcett / Pattern Recognition Letters 27 (2006) 861–874

I Results over multiple score cutoffs are summarized in a Receiver Operating
Characteristic (ROC) curve

I Vary the cut-off c ∈ (0, 1), and choose c to optimize sensitivity and specificity.

I Vary c, and for all c plot sensitivity vs 1-specificity.
Evaluate models by area under the curve.

Fawcett, “An introduction to ROC analysis”. Pattern Recognition Letters, 2005



ROC curve

instance scores. A classifier need not produce accurate, cal-
ibrated probability estimates; it need only produce relative
accurate scores that serve to discriminate positive and neg-
ative instances.

Consider the simple instance scores shown in Fig. 4,
which came from a Naive Bayes classifier. Comparing the
hypothesized class (which is Y if score > 0.5, else N) against
the true classes, we can see that the classifier gets instances
7 and 8 wrong, yielding 80% accuracy. However, consider
the ROC curve on the left side of the figure. The curve rises
vertically from (0, 0) to (0,1), then horizontally to (1, 1).
This indicates perfect classification performance on this test
set. Why is there a discrepancy?

The explanation lies in what each is measuring. The
ROC curve shows the ability of the classifier to rank the
positive instances relative to the negative instances, and it

is indeed perfect in this ability. The accuracy metric
imposes a threshold (score > 0.5) and measures the result-
ing classifications with respect to the scores. The accuracy
measure would be appropriate if the scores were proper
probabilities, but they are not. Another way of saying this
is that the scores are not properly calibrated, as true prob-
abilities are. In ROC space, the imposition of a 0.5 thres-
hold results in the performance designated by the circled
‘‘accuracy point’’ in Fig. 4. This operating point is subop-
timal. We could use the training set to estimate a prior for
p(p) = 6/10 = 0.6 and use this as a threshold, but it would
still produce suboptimal performance (90% accuracy).

One way to eliminate this phenomenon is to calibrate
the classifier scores. There are some methods for doing this
(Zadrozny and Elkan, 2001). Another approach is to use
an ROC method that chooses operating points based on
their relative performance, and there are methods for doing
this as well (Provost and Fawcett, 1998, 2001). These latter
methods are discussed briefly in Section 6.

A consequence of relative scoring is that classifier scores
should not be compared across model classes. One model
class may be designed to produce scores in the range
[0,1] while another produces scores in [!1,+1] or [1,100].
Comparing model performance at a common threshold will
be meaningless.

4.2. Class skew

ROC curves have an attractive property: they are insen-
sitive to changes in class distribution. If the proportion of
positive to negative instances changes in a test set, the
ROC curves will not change. To see why this is so, consider
the confusion matrix in Fig. 1. Note that the class distribu-
tion—the proportion of positive to negative instances—is
the relationship of the left (+) column to the right (!) col-
umn. Any performance metric that uses values from both
columns will be inherently sensitive to class skews. Metrics
such as accuracy, precision, lift and F score use values from
both columns of the confusion matrix. As a class distribu-
tion changes these measures will change as well, even if the
fundamental classifier performance does not. ROC graphs
are based upon tp rate and fp rate, in which each dimension
is a strict columnar ratio, so do not depend on class
distributions.

To some researchers, large class skews and large changes
in class distributions may seem contrived and unrealistic.
However, class skews of 101 and 102 are very common in
real world domains, and skews up to 106 have been
observed in some domains (Clearwater and Stern, 1991;
Fawcett and Provost, 1996; Kubat et al., 1998; Saitta and
Neri, 1998). Substantial changes in class distributions are
not unrealistic either. For example, in medical decision
making epidemics may cause the incidence of a disease to
increase over time. In fraud detection, proportions of fraud
varied significantly from month to month and place to
place (Fawcett and Provost, 1997). Changes in a manufac-
turing practice may cause the proportion of defective units
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Fig. 3. The ROC ‘‘curve’’ created by thresholding a test set. The table
shows 20 data and the score assigned to each by a scoring classifier. The
graph shows the corresponding ROC curve with each point labeled by the
threshold that produces it.
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Fawcett, “An introduction to ROC analysis”. Pattern Recognition Letters, 2005



Example

> library(faraway)

> data(pima)

> ?pima

> head(pima)

pregnant glucose diastolic triceps insulin bmi diabetes age test

1 6 148 72 35 0 33.6 0.627 50 1

2 1 85 66 29 0 26.6 0.351 31 0

3 8 183 64 0 0 23.3 0.672 32 1

4 1 89 66 23 94 28.1 0.167 21 0

5 0 137 40 35 168 43.1 2.288 33 1

6 5 116 74 0 0 25.6 0.201 30 0



Fit full model on the training set
> library(ROCR)

> # as example, here use 1/4 of the data to build the model

> train <- sample(x=1:nrow(pima), size=nrow(pima)/4)

> # fit the full model on the training dataset

> fit.train <- glm(test ~., family=binomial, data=pima[train,])

> summary(fit.train)

Call:

glm(formula = test ~ ., family = binomial, data = pima[train,

])

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1120 -0.6944 -0.4096 0.7077 2.3549

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.059396 1.185801 -5.953 2.63e-09 ***

pregnant 0.128331 0.066353 1.934 0.0531 .

glucose 0.042004 0.008042 5.223 1.76e-07 ***

diastolic -0.015280 0.009087 -1.682 0.0927 .

triceps 0.020472 0.014155 1.446 0.1481

insulin -0.003293 0.001988 -1.656 0.0977 .

bmi 0.052463 0.024665 2.127 0.0334 *

diabetes 0.313715 0.594159 0.528 0.5975

age -0.009847 0.021957 -0.448 0.6538

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 245.78 on 191 degrees of freedom

Residual deviance: 178.72 on 183 degrees of freedom

AIC: 196.72

Number of Fisher Scoring iterations: 5

> summary(fit)

Call:

glm(formula = over_wtF ~ age + smokeF + age * smokeF, family = binomial,

data = X)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.3780 -0.3470 -0.3240 -0.2924 2.5582

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.43131 0.32271 -7.534 4.92e-14 ***

age -0.07075 0.05750 -1.230 0.219

smokeF2 0.16174 0.71087 0.228 0.820

smokeF3 -0.08464 0.44866 -0.189 0.850

age:smokeF2 -0.04348 0.12874 -0.338 0.736

age:smokeF3 -0.01712 0.08024 -0.213 0.831

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1580.9 on 3874 degrees of freedom

Residual deviance: 1574.6 on 3869 degrees of freedom

(3298 observations deleted due to missingness)

AIC: 1586.6

Number of Fisher Scoring iterations: 5



Predicted probabilities on the same training set

> scores <- predict(fit.train, newdata=pima[train,], type="response")

> # compare predicted probabilities to labels, for varying probability cutoffs

> pred <- prediction(scores, labels=pima[train,]$test )

> perfTrain <- performance(pred, "tpr", "fpr")



ROC curve
> # plot the ROC curve

> plot(perfTrain, colorize=F, main="In-sample ROC curve")

> # print out the area under the curve

> unlist(attributes(performance(pred, "auc"))$y.values)

[1] 0.8408237
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Evaluate on the validation set

> scores <- predict(fit.train, newdata=pima[-train,], type="response")

> pred <- prediction( scores, labels=pima[-train,]$test )

> perfValid <- performance(pred, "tpr", "fpr")



ROC curve
> # overlay the line for the ROC curve

> plot(perfTrain, colorize=F, main="In-sample ROC curve")

> plot(perfValid, colorize=T, add=TRUE)

> # print out the area under the curve

> unlist(attributes(performance(pred, "auc"))$y.values)

[1] 0.8145908
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Visualizing prediction



Simulate data

Example from http://www.r-bloggers.com/choosing-a-classifier/

> n = 500

> set.seed(1)

> X = rnorm(n)

> ma = 10-(X+1.5)^2*2

> mb = -10+(X-1.5)^2*2

> M = cbind(ma,mb)

> set.seed(1)

> Z = sample(1:2,size=n,replace=TRUE)

> # define value of Y according to the class of Z, and add noise

> Y = ma*(Z==1)+mb*(Z==2)+rnorm(n)*5

> df = data.frame(Z=as.factor(Z),X,Y)

http://www.r-bloggers.com/choosing-a-classifier/


Split into training and validation set

> df1 = training = df[1:300,]

> df2 = testing = df[301:500,]



Visualize training set

> plot(df1$X,df1$Y,pch=19,col=c(rgb(1,0,0,.4),

+ rgb(0,0,1,.4))[df1$Z])
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Fit logistic regression
> fit=glm(Z~X+Y,data=df1,family=binomial)

> pred=function(x,y)

+ predict(fit,newdata=data.frame(X=x,Y=y),

+ type="response")

> summary(fit)

Call:

glm(formula = Z ~ X + Y, family = binomial, data = df1)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3373 -0.7906 -0.3616 0.7792 2.3781

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.13626 0.14311 -0.952 0.341

X -1.00156 0.20281 -4.938 7.88e-07 ***

Y -0.22813 0.02706 -8.431 < 2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 414.55 on 299 degrees of freedom

Residual deviance: 297.17 on 297 degrees of freedom

AIC: 303.17

Number of Fisher Scoring iterations: 4



Visualize prediction
> vx=seq(-3,3,length=101)

> vy=seq(-25,25,length=101)

> z=matrix(NA,length(vx),length(vy))

> for(i in 1:length(vx)){

+ for(j in 1:length(vy))

+ {z[i,j]=pred(vx[i],vy[j])}

+ }

> image(vx,vy,z,axes=FALSE,xlab="",ylab="")

> points(df1$X,df1$Y,pch=19,col=c(rgb(1,0,0,.4),

+ rgb(0,0,1,.4))[df1$Z])



Evaluate the predictive ability

> Y1=as.numeric(df1$Z)-1

> Y2=as.numeric(df2$Z)-1

> library(ROCR)

> S1 = predict(fit,newdata=df1)

> S2 = predict(fit,newdata=df2)

> pred <- prediction( S2, Y2 )

> perfValid <- performance( pred, "tpr", "fpr" )



Evaluate the predictive ability

> pred <- prediction( S1, Y1 )

> perfTrain <- performance( pred, "tpr", "fpr" )

> plot( perfValid, colorize=TRUE )

> plot( perfTrain ,add=TRUE,col="grey")
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Variable selection



Automatic Variable Selection

I Exhaustive search. Minimize:

−2 loge L(b)

AICp = −2 loge L(b) + 2p

BICp = −2 loge L(b) + p loge(n)

I Heuristic search
I forward selection; backward elimination; stepwise selection
I based on Wald statistic and Normal distribution



Stepwise variable selection based on AIC

> # 'k' distinguishes AIC and BIC

> fit <- glm(test ~., family=binomial, data=pima)

> step.aic <- step(fit, k=2, trace=F)

> step.aic$anova

Step Df Deviance Resid. Df Resid. Dev AIC

1 NA NA 759 723.4454 741.4454

2 - triceps 1 0.008051802 760 723.4534 739.4534



Stepwise variable selection based on BIC

> # 'k' distinguishes AIC and BIC

> step.bic <- step(fit, k=log(nrow(pima)), trace=F)

> step.bic$anova

Step Df Deviance Resid. Df Resid. Dev AIC

1 NA NA 759 723.4454 783.2395

2 - triceps 1 0.008051802 760 723.4534 776.6037

3 - insulin 1 2.008267852 761 725.4617 771.9682

4 - age 1 3.097908342 762 728.5596 768.4223

5 - diastolic 1 5.746278627 763 734.3059 767.5248



Variable selection based on lasso
> library(glmnet)

> lasso.mod <- glmnet(x=as.matrix(pima[,-9]), y=pima[,9],

+ family='binomial', alpha=1, lambda=10^seq(10,-2,length=100))

> names(lasso.mod)

[1] "a0" "beta" "df" "dim" "lambda"

[6] "dev.ratio" "nulldev" "npasses" "jerr" "offset"

[11] "classnames" "call" "nobs"

> lasso.mod$lambda[40]

[1] 187381.7

> coef(lasso.mod)[,40]

(Intercept) pregnant glucose diastolic triceps insulin

-0.6236211 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

bmi diabetes age

0.0000000 0.0000000 0.0000000

> lasso.mod$lambda[95]

[1] 0.04037017

> coef(lasso.mod)[,95]

(Intercept) pregnant glucose diastolic triceps insulin

-5.58534068 0.06052017 0.02531610 0.00000000 0.00000000 0.00000000

bmi diabetes age

0.04261398 0.18673245 0.00291996



Variable selection based on lasso

> plot(lasso.mod, label=TRUE, xvar='lambda')
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Variable selection based on lasso
> cv.out <- cv.glmnet(x=as.matrix(pima[,-c(9)]), y=pima[,9], alpha=1)

> plot(cv.out)

> bestlam <- cv.out$lambda.min

> bestlam

[1] 0.006482836
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Variable Selection Should be Done as Part of
Cross-Validation

I Example from Simon et al., JNCI, 2003.
I Simulated data with no structure

I 20 observations with random labels
I 6,000 possible but unrelated predictors
I Repeated 200 times

I Estimated predictive accuracy using
I no cross-validation
I selecting features on full dataset,

then using cross-validation
I selecting features at each step of cross-validation



Variable Selection Should be Done as Part of
Cross-Validation

Example from Simon et al., JNCI, 2003.
Feature selection in logistic regression

! Simulated 20 samples with random labels + 6,000 genes
" repeated 200 times

! Estimated predictive accuracy using
" no cross-validation; set aside validation set after gene selection

! Conclusion: cross-validation at all steps of feature selection is key

4

the samples are placed in the training set. The sample in
the test set is placed aside and not utilized at all in the de-
velopment of the class prediction model. Using only the
training set, the informative genes are selected and the pa-
rameters of the model are fit to the data. Let us call M1 the
model developed with sample 1 in the test set. When this
model is fully developed, it is used to predict the class of
sample 1. This prediction is made using the expression
profile of sample 1, but obviously without using knowl-
edge of the true class of sample 1. This predicted class is
compared to the true class label of sample 1. If they dis-
agree, then the prediction is in error. Then a new training
set–test set partition is created. This time sample 2 is
placed in the test set and all of the other samples, including
sample 1, are placed in the training set. A new model is
constructed from scratch using the samples in the new
training set. Call this model M2 . Although the same algo-
rithm for gene selection and parameter estimation is used,
since model M2 is constructed from scratch on the new
training set, it will in general not contain exactly the same
gene set asM1. After creatingM2, it is applied to the expres-
sionprofile of sample 2,whichwas omitted. If this predicted
class does not agree with the true class label of the second
sample, then the prediction is in error. The process is re-
peated leaving each of the n biologically independent sam-
ples out of the training set, one at a time. During the steps, n
differentmodels are created and each one is used to predict
the class of the omitted sample. The number of prediction
errors is totaled and reported as the leave-one-out cross-
validated estimate of the prediction error.

At the end of the LOOCV procedure, you have con-
structed n different models. They were constructed in or-
der only to estimate the prediction error associated with
the type of model constructed. The model that would
be used for future predictions is one constructed using
all n samples. That is the best model for future prediction
and the one that should be reported in the publication.
The cross-validated error rate is an estimate of the error
rate to be expected in use of this model for future samples,
assuming that the relationship between class and expres-
sion profile is the same for future samples as for the cur-
rently available samples. With two classes, one can use a
similar approach to obtain cross-validated estimates of the
sensitivity, specificity, and the negative and positive predic-
tive values of the classification procedure. One could even
estimate an entire receiver operating characteristics curve.

The cross-validated prediction error is an estimate of
the prediction error associated with application of the al-
gorithm for model building to the entire dataset. A com-
monly used invalid estimate is called the re-substitution
estimate. You use all the samples to develop a model.
Then you predict the class of each sample using that
model. The predicted class labels are compared to the
true class labels and the errors are totaled.

Simon et al15 performed a simulation to examine the
bias in estimated error rates for class prediction. Two types
of LOOCV were studied: one with removal of the left-out
specimen before selection of differentially expressed genes
and one with removal of the left-out specimen before com-
putation of gene weights and the prediction rule but after
gene selection. They also computed the re-substitution
estimate of the error rate. In a simulated dataset, 20 gene
expression profiles of length 6,000 were randomly generated
from the same distribution. Ten profiles were arbitrarily as-
signed to class 1 and the other 10 to class 2, creating an
artificial separation of the profiles into two classes. Since
no true underlying difference exists between the two classes
class prediction will perform no better than a random guess
for future biologically independent samples. Hence, the
estimated error rates for simulated data sets should be
centered around 0.5 (ie, 10 misclassifications of 20).

Figure 1 shows the observed number of misclassifica-
tions resulting from each level of cross validation for 2,000
simulated data sets. It is well known that the re-substitution
estimate of error is biased for small data sets and the
simulation confirms this, with an astounding 98.2% of
the simulated data sets resulting in zero misclassifications
even though no true underlying difference exists between
the two groups. Moreover, the maximum number of mis-
classified profiles using the resubstitution method was
only one.

Cross validating the prediction rule after selection of
differentially expressed genes from the full data set does
little to correct the bias of the re-substitution estimator:
90.2% of simulated data sets still result in zero misclassi-
fications. It is not until gene selection is also subjected
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Fig 1. The effect of various levels of cross validation on the estimated error
rate of a predictor. Two thousand datasets were simulated as described in
the text. Class labels were arbitrarily assigned to the specimens within each
dataset, and so poor classification accuracy is expected. Class prediction
was performed on each dataset as described in the supplemental infor-
mation, varying the level of leave-one-out cross validation used in prediction.
Vertical bars indicate the proportion of simulated data sets (of 2,000)
resulting in a given number of misclassifications for a specified cross-
validation strategy. Reprinted from Simon R, Radmacher MD, Dobbin K, et al:
Pitfalls in the analysis of DNA microarray data: Class prediction methods.
J Natl Cancer Inst 95:14-18, 2003.
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I Conclusion
I Incorporating selection of predictors within the cross-validation

procedure is key
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