
Introduction

CS 6220

’Data mining’

Professor Olga Vitek

September 10, 2015

1



Making sense of the terms

• Data mining

– Analysis of (often large) observational datasets
to find unexpected relationships

– Often secondary, exploratory analysis of conve-
nience (opportunity) datasets

• Machine learning

– Specific tasks associated with class discovery
(unsupervised learning), class prediction (super-
vised learning), and class comparison (testing)

• Statistics

– Collection and analysis of data, to make infer-
ence beyond the current dataset.

– Characterized by measures of uncertainty , and
of decision making in presence of uncertainty

– Often primary, confirmatory analysis of designed
experiments or ad-hoc datasets

• Data science

– Often used interchangeably with data mining

– Often used in ’data-driven decision making’
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Large observational datasets

are increasingly common

• Physics: Large Hadron Collider
– 150 million sensors, 600 million collisions/sec

• Astronomy: Sloan Digital Sky Survey
– In 2000, collected more data in its first few

weeks than all data in the history of astronomy

– Now 200 GB per night, over 140 terabytes

– In 2016, the Large Synoptic Survey Telescope
will acquire that amount every five days

• Genomics: Sequencing human genome
– First took 10 years, now in less than a day

• Climate: NASA Center
– 32 petabytes of climate data & simulations

• E-commerce: Amazon
– Millions of back-end operations / day

– Queries from 1/2 million third-party sellers.

– In 2005, databases of 7.8, 18.5, & 24.7 TB

en.wikipedia.org/wiki/Big data
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Mining big data: a great

promise
Example: big data success stories (IBM marketing)

• Applies emerging technologies to deliver instanta-
neous people searches

• Analyzing huge volumes of customer comments in
real time delivers competitive edge

• Analyzes real-time data streams to identify traffic
patterns

• Putting real-time data to work and providing a plat-
form for technology development

• Helping companies deliver the web experience their
customers want.

• Streaming data technology supports covert intelli-
gence and surveillance sensor systems

• Leveraging key data to provide proactive patient
care

• Streaming real-time data supports large scale study
of space weather

• Turning climate into capital with big data

public.dhe.ibm.com/software/data/sw-library/big-data/ibm-
big-data-success.pdf

1-3



A great excitement

Google trends: ’Big Data’ (01/11/2015)
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Are big data
the end of theory?

Chris Anderson. Wired Magazine: 16.07

archive.wired.com/science/discoveries/magazine/16-07/pb theory
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Are big data
the end of theory?

• Old science: models

– All models are wrong, but some are useful
(George Box)

• New science: just data

– Do not need to know culture and conventions

– Do not need to know underlying mechanisms

– Do not need to settle for wrong models. We
can succeed without them

• What is the new scientific method?

– The information is readable, reachable and queryable

– Statistical tools will crunch the numbers and of-
fer a new way of understanding the world

– “There’s no reason to cling to our old ways.
It’s time to ask: What can science learn from
Google?”
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Case study: Google Flu
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           I
n February 2013, Google Flu 
Trends (GFT) made headlines 
but not for a reason that Google 

executives or the creators of the fl u 
tracking system would have hoped. 
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from 
laboratories across the United States 
( 1,  2). This happened despite the fact 
that GFT was built to predict CDC 
reports. Given that GFT is often held 
up as an exemplary use of big data 
( 3,  4), what lessons can we draw 
from this error?

The problems we identify are 
not limited to GFT. Research on 
whether search or social media can 
predict x has become common-
place ( 5– 7) and is often put in sharp contrast 
with traditional methods and hypotheses. 
Although these studies have shown the 
value of these data, we are far from a place 
where they can supplant more traditional 
methods or theories ( 8). We explore two 
issues that contributed to GFT’s mistakes—
big data hubris and algorithm dynamics—
and offer lessons for moving forward in the 
big data age.

Big Data Hubris

“Big data hubris” is the often implicit 
assumption that big data are a substitute 
for, rather than a supplement to, traditional 
data collection and analysis. Elsewhere, we 
have asserted that there are enormous scien-
tifi c possibilities in big data ( 9– 11). How-
ever, quantity of data does not mean that 
one can ignore foundational issues of mea-
surement and construct validity and reli-

ability and dependencies among data (12). 
The core challenge is that most big data that 
have received popular attention are not the 
output of instruments designed to produce 
valid and reliable data amenable for scien-
tifi c analysis.

The initial version of GFT was a par-
ticularly problematic marriage of big and 
small data. Essentially, the methodology 
was to fi nd the best matches among 50 mil-
lion search terms to fit 1152 data points 
( 13). The odds of fi nding search terms that 
match the propensity of the fl u but are struc-
turally unrelated, and so do not predict the 
future, were quite high. GFT developers, 
in fact, report weeding out seasonal search 
terms unrelated to the fl u but strongly corre-
lated to the CDC data, such as those regard-
ing high school basketball ( 13). This should 
have been a warning that the big data were 
overfi tting the small number of cases—a 
standard concern in data analysis. This ad 
hoc method of throwing out peculiar search 
terms failed when GFT completely missed 
the nonseasonal 2009 infl uenza A–H1N1 
pandemic ( 2,  14). In short, the initial ver-
sion of GFT was part flu detector, part 
winter detector. GFT engineers updated 
the algorithm in 2009, and this model has 

run ever since, with a few changes 
announced in October 2013 ( 10, 
 15).

Although not widely reported 
until 2013, the new GFT has been 
persistently overestimating flu 
prevalence for a much longer time. 
GFT also missed by a very large 
margin in the 2011–2012 fl u sea-
son and has missed high for 100 out 
of 108 weeks starting with August 
2011 (see the graph ). These errors 
are not randomly distributed. For 
example, last week’s errors predict 
this week’s errors (temporal auto-
correlation), and the direction and 
magnitude of error varies with the 
time of year (seasonality). These 
patterns mean that GFT overlooks 
considerable information that 
could be extracted by traditional 
statistical methods. 

Even after GFT was updated 
in 2009, the comparative value of the algo-
rithm as a stand-alone fl u monitor is ques-
tionable. A study in 2010 demonstrated that 
GFT accuracy was not much better than 
a fairly simple projection forward using 
already available (typically on a 2-week lag) 
CDC data ( 4). The comparison has become 
even worse since that time, with lagged 
models significantly outperforming GFT 
(see the graph). Even 3-week-old CDC data 
do a better job of projecting current fl u prev-
alence than GFT [see supplementary mate-
rials (SM)].

Considering the large number of 
approaches that provide inference on infl u-
enza activity ( 16– 19), does this mean that 
the current version of GFT is not useful? 
No, greater value can be obtained by com-
bining GFT with other near–real-time 
health data ( 2,  20). For example, by com-
bining GFT and lagged CDC data, as well 
as dynamically recalibrating GFT, we can 
substantially improve on the performance 
of GFT or the CDC alone (see the chart). 
This is no substitute for ongoing evaluation 
and improvement, but, by incorporating this 
information, GFT could have largely healed 
itself and would have likely remained out of 
the headlines.

The Parable of Google Flu: 

Traps in Big Data Analysis

BIG DATA
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Large errors in fl u prediction were largely 

avoidable, which offers lessons for the use 
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Google Flu Trends

• Promising concept

– Find best matches among 50 million searchers
to explain 1152 flu cases

• Poor performance

– 2009: missed nonseasonal 2009 H1N1 influenza

– 2013: overestimated the % of doctor visits

• Later versions

– 2009: One predictor is basketball season

– Confounding between flu and winter

– 2013: Eliminated basketball and other seasonal
trends

– Not better than simpler predictions
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Google Flu Trends
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Algorithm Dynamics

All empirical research stands on a founda-
tion of measurement. Is the instrumentation 
actually capturing the theoretical construct of 
interest? Is measurement stable and compa-
rable across cases and over time? Are mea-
surement errors systematic? At a minimum, 
it is quite likely that GFT was an unstable 
refl ection of the prevalence of the fl u because 
of algorithm dynamics affecting Google’s 
search algorithm. Algorithm dynamics are 
the changes made by engineers to improve 
the commercial service and by consum-
ers in using that service. Several changes in 
Google’s search algorithm and user behav-
ior likely affected GFT’s tracking. The most 
common explanation for GFT’s error is a 
media-stoked panic last fl u season ( 1,  15). 
Although this may have been a factor, it can-
not explain why GFT has been missing high 
by wide margins for more than 2 years. The 
2009 version of GFT has weathered other 
media panics related to the fl u, including the 
2005–2006 influenza A/H5N1 (“bird flu”) 
outbreak and the 2009 A/H1N1 (“swine fl u”) 
pandemic. A more likely culprit is changes 
made by Google’s search algorithm itself.

The Google search algorithm is not a 
static entity—the company is constantly 
testing and improving search. For example, 
the offi cial Google search blog reported 86 
changes in June and July 2012 alone (SM). 
Search patterns are the result of thousands of 
decisions made by the company’s program-
mers in various subunits and by millions of 
consumers worldwide.

There are multiple challenges to replicat-
ing GFT’s original algorithm. GFT has never 
documented the 45 search terms used, and 
the examples that have been released appear 
misleading ( 14) (SM). Google does provide 
a service, Google Correlate, which allows 
the user to identify search data that correlate 
with a given time series; however, it is lim-
ited to national level data, whereas GFT was 
developed using correlations at the regional 
level ( 13). The service also fails to return any 
of the sample search terms reported in GFT-
related publications ( 13,  14).

Nonetheless, using Google Correlate to 
compare correlated search terms for the GFT 
time series to those returned by the CDC’s 
data revealed some interesting differences. In 
particular, searches for treatments for the fl u 
and searches for information on differentiat-
ing the cold from the fl u track closely with 
GFT’s errors (SM). This points to the possi-
bility that the explanation for changes in rela-
tive search behavior is “blue team” dynam-
ics—where the algorithm producing the data 
(and thus user utilization) has been modi-

fi ed by the service provider in accordance 
with their business model. Google reported 
in June 2011 that it had modifi ed its search 
results to provide suggested additional search 
terms and reported again in February 2012 
that it was now returning potential diagnoses 
for searches including physical symptoms 
like “fever” and “cough” ( 21,  22). The for-
mer recommends searching for treatments 
of the fl u in response to general fl u inqui-
ries, and the latter may explain the increase 
in some searches to distinguish the fl u from 
the common cold. We document several other 
changes that may have affected GFT (SM).

In improving its service to customers, 
Google is also changing the data-generating 
process. Modifications to the search algo-
rithm are presumably implemented so as to 
support Google’s business model—for exam-
ple, in part, by providing users useful infor-
mation quickly and, in part, to promote more 
advertising revenue. Recommended searches, 
usually based on what others have searched, 
will increase the relative magnitude of certain 
searches. Because GFT uses the relative prev-
alence of search terms in its model, improve-
ments in the search algorithm can adversely 
affect GFT’s estimates. Oddly, GFT bakes in 
an assumption that relative search volume for 
certain terms is statically related to external 

events, but search behavior is not just exog-
enously determined, it is also endogenously 
cultivated by the service provider.

Blue team issues are not limited to 
Google. Platforms such as Twitter and Face-
book are always being re-engineered, and 
whether studies conducted even a year ago 
on data collected from these platforms can 
be replicated in later or earlier periods is an 
open question.

Although it does not appear to be an issue 
in GFT, scholars should also be aware of the 
potential for “red team” attacks on the sys-
tems we monitor. Red team dynamics occur 
when research subjects (in this case Web 
searchers) attempt to manipulate the data-
generating process to meet their own goals, 
such as economic or political gain. Twitter 
polling is a clear example of these tactics. 
Campaigns and companies, aware that news 
media are monitoring Twitter, have used 
numerous tactics to make sure their candidate 
or product is trending ( 23,  24).

Similar use has been made of Twitter 
and Facebook to spread rumors about stock 
prices and markets. Ironically, the more suc-
cessful we become at monitoring the behav-
ior of people using these open sources of 
information, the more tempting it will be to 
manipulate those signals.
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GFT overestimation. GFT overestimated the prevalence of fl u in the 2012–2013 season and overshot the 

actual level in 2011–2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly 

high fl u prevalence 100 out of 108 weeks. (Top) Estimates of doctor visits for ILI. “Lagged CDC” incorporates 

52-week seasonality variables with lagged CDC data. “Google Flu + CDC” combines GFT, lagged CDC estimates, 

lagged error of GFT estimates, and 52-week seasonality variables. (Bottom) Error [as a percentage {[Non-CDC 

estmate)�(CDC estimate)]/(CDC) estimate)}. Both alternative models have much less error than GFT alone. 

Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232 

for combined GFT and CDC. All of these differences are statistically signifi cant at P < 0.05. See SM.

Published by AAAS

Conclusion: we would have ran away with a
wrong prediction

- overestimated the prevalence of flu in the 2012-
2013 season

- overshot the actual level in 2011-2012 by > 50%
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Sources of challenges

• Statistical challenges

– Overfitting

– Confounding

– Lack subject matter info

• Algorithm dynamics

– Changes to queries in real time

– Changes to algorithms in real time

• Cannot easily replicate the results

– Proprietary methods are poorly documented
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Formally show the dangers

PLoS Medicine  |  www.plosmedicine.org 0696

Essay

Open access, freely available online

August 2005  |  Volume 2  |  Issue 8  |  e124

Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 

The Essay section contains opinion pieces on topics 
of broad interest to a general medical audience. 
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Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.

John P. A. Ioannidis.
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more likely true than false if (1 − β)R 
> α. Since usually the vast majority of 
investigators depend on α = 0.05, this 
means that a research fi nding is more 
likely true than false if (1 − β)R > 0.05.

What is less well appreciated is 
that bias and the extent of repeated 
independent testing by different teams 
of investigators around the globe may 
further distort this picture and may 
lead to even smaller probabilities of the 
research fi ndings being indeed true. 
We will try to model these two factors in 
the context of similar 2 × 2 tables.

Bias
First, let us defi ne bias as the 
combination of various design, data, 
analysis, and presentation factors that 
tend to produce research fi ndings 
when they should not be produced. 
Let u be the proportion of probed 
analyses that would not have been 
“research fi ndings,” but nevertheless 
end up presented and reported as 
such, because of bias. Bias should not 
be confused with chance variability 
that causes some fi ndings to be false by 
chance even though the study design, 
data, analysis, and presentation are 
perfect. Bias can entail manipulation 
in the analysis or reporting of fi ndings. 
Selective or distorted reporting is a 
typical form of such bias. We may 
assume that u does not depend on 
whether a true relationship exists 
or not. This is not an unreasonable 
assumption, since typically it is 
impossible to know which relationships 
are indeed true. In the presence of bias 
(Table 2), one gets PPV = ([1 − β]R + 
uβR)⁄(R + α − βR + u − uα + uβR), and 
PPV decreases with increasing u, unless 
1 − β ≤ α, i.e., 1 − β ≤ 0.05 for most 
situations. Thus, with increasing bias, 
the chances that a research fi nding 
is true diminish considerably. This is 
shown for different levels of power and 
for different pre-study odds in Figure 1. 

Conversely, true research fi ndings 
may occasionally be annulled because 
of reverse bias. For example, with large 
measurement errors relationships 

are lost in noise [12], or investigators 
use data ineffi ciently or fail to notice 
statistically signifi cant relationships, or 
there may be confl icts of interest that 
tend to “bury” signifi cant fi ndings [13]. 
There is no good large-scale empirical 
evidence on how frequently such 
reverse bias may occur across diverse 
research fi elds. However, it is probably 
fair to say that reverse bias is not as 
common. Moreover measurement 
errors and ineffi cient use of data are 
probably becoming less frequent 
problems, since measurement error has 
decreased with technological advances 
in the molecular era and investigators 
are becoming increasingly sophisticated 
about their data. Regardless, reverse 
bias may be modeled in the same way as 
bias above. Also reverse bias should not 
be confused with chance variability that 
may lead to missing a true relationship 
because of chance.

Testing by Several Independent 
Teams
Several independent teams may be 
addressing the same sets of research 
questions. As research efforts are 
globalized, it is practically the rule 
that several research teams, often 
dozens of them, may probe the same 
or similar questions. Unfortunately, in 
some areas, the prevailing mentality 
until now has been to focus on 
isolated discoveries by single teams 
and interpret research experiments 
in isolation. An increasing number 
of questions have at least one study 
claiming a research fi nding, and 
this receives unilateral attention. 
The probability that at least one 
study, among several done on the 

same question, claims a statistically 
signifi cant research fi nding is easy to 
estimate. For n independent studies of 
equal power, the 2 × 2 table is shown in 
Table 3: PPV = R(1 − βn)⁄(R + 1 − [1 − 
α]n − Rβn) (not considering bias). With 
increasing number of independent 
studies, PPV tends to decrease, unless 
1 − β < α, i.e., typically 1 − β < 0.05. 
This is shown for different levels of 
power and for different pre-study odds 
in Figure 2. For n studies of different 
power, the term βn is replaced by the 
product of the terms βi for i = 1 to n, 
but inferences are similar.

Corollaries
A practical example is shown in Box 
1. Based on the above considerations, 
one may deduce several interesting 
corollaries about the probability that a 
research fi nding is indeed true. 

Corollary 1: The smaller the studies 
conducted in a scientifi c fi eld, the less 
likely the research fi ndings are to be 
true. Small sample size means smaller 
power and, for all functions above, 
the PPV for a true research fi nding 
decreases as power decreases towards 
1 − β = 0.05. Thus, other factors being 
equal, research fi ndings are more likely 
true in scientifi c fi elds that undertake 
large studies, such as randomized 
controlled trials in cardiology (several 
thousand subjects randomized) [14] 
than in scientifi c fi elds with small 
studies, such as most research of 
molecular predictors (sample sizes 100-
fold smaller) [15]. 

Corollary 2: The smaller the effect 
sizes in a scientifi c fi eld, the less likely 
the research fi ndings are to be true. 
Power is also related to the effect 
size. Thus research fi ndings are more 
likely true in scientifi c fi elds with large 
effects, such as the impact of smoking 
on cancer or cardiovascular disease 
(relative risks 3–20), than in scientifi c 
fi elds where postulated effects are 
small, such as genetic risk factors for 
multigenetic diseases (relative risks 
1.1–1.5) [7]. Modern epidemiology is 
increasingly obliged to target smaller 

Table 1. Research Findings and True Relationships 
Research 
Finding

True Relationship
Yes No Total

Yes c(1 − β)R/(R + 1) cα/(R + 1) c(R + α − βR)/(R + 1)
No cβR/(R + 1) c(1 − α)/(R + 1) c(1 − α + βR)/(R + 1)
Total cR/(R + 1) c/(R + 1) c

DOI: 10.1371/journal.pmed.0020124.t001 

Table 2. Research Findings and True Relationships in the Presence of Bias
Research 
Finding

True Relationship
Yes No Total

Yes (c[1 − β]R + ucβR)/(R + 1) cα + uc(1 − α)/(R + 1) c(R + α − βR + u − uα + uβR)/(R + 1)
No (1 − u)cβR/(R + 1) (1 − u)c(1 − α)/(R + 1) c(1 − u)(1 − α + βR)/(R + 1)
Total cR/(R + 1) c/(R + 1) c

DOI: 10.1371/journal.pmed.0020124.t002
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c=number of relationships being probed

R= ’number of true relationship to no relationship’
α=Type 1 error
β=Type 2 error

Repeat a similar analysis in presence of bias
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Conclusions

• True for small data:

– The smaller the study, the less likely the re-
search findings are to be true

– The smaller the effect size, the less likely the
research findings are to be true

• True for big data:

– The greater the number and the lesser the se-
lection of tested relationships, the less likely the
research findings are to be true

– The greater the flexibility in designs, definitions,
outcomes, and analytical modes, the less likely
the research findings are to be true

– The greater the financial and other interests and
prejudices, the less likely the research findings
are to be true

– The hotter a scientific field (with more scien-
tific teams involved), the less likely the research
findings are to be true
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The Gartner Hype Cycle

Big data passed its peak of inflated

expectations

www.wikipedia.org
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The Gartner Hype Cycle

Big data passed its peak of

inflated expectations

www.gartner.com
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Task at hand:

Understand the strengths

and the limitations of the

methods to move to the

productivity stage

1-15



Challenges of modern data

• Many datasets form an array

with n observations, and p variables

– Large and complex in p

∗ Large p

∗ Complex dependencies between predictors

– Large and complex in n

∗ Large n

∗ Heterogeneity of observations

– Hard to compute, visualize, summarize

• Many datasets are not arrays

– Networks, sequences, time series

– Even more complex dependencies

• Often the mechanism underlying the asso-

ciations is unknown
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Challenge:

Large data generate spurious

associations
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Spurious correlations300 National Science Review, 2014, Vol. 1, No. 2 REVIEW

Figure 2. Illustration of spurious correlation. (a) Distribution of the maximum absolute sample correlation coefficients between X1 and {Xj}j ̸= 1.
(b) Distribution of the maximum absolute sample correlation coefficients between X1 and the closest linear projections of any four members of
{Xj}j ̸= 1 to X1. Here the dimension d is 800 and 6400, the sample size n is 60. The result is based on 1000 simulations.

where Ĉorr
(
X1, X j

)
is the sample correlation

between the variables X1 and Xj. We see that the
maximum absolute sample correlation becomes
higher as dimensionality increases.

Furthermore, we can compute the maximum
absolute multiple correlation between X1 and lin-
ear combinations of several irrelevant spurious
variables:

R̂ = max
|S|=4

max
{β j }4j=1

∣∣∣∣∣∣
Ĉorr

⎛

⎝X1,
∑

j∈S
β j X j

⎞

⎠

∣∣∣∣∣∣
. (5)

Using the same configuration as in Fig. 2 a, Fig. 2 b
plots the empirical distribution of the maximum ab-
solute sample correlation coefficient betweenX1 and∑

j ∈ Sβ jXj, where S is any size four subset of {2, . . . ,
d} and β j is the least-squares regression coefficient
of Xj when regressing X1 on {Xj}j ∈ S. Again, we see
that even thoughX1 is utterly independent ofX2, . . . ,
Xd, the correlation betweenX1 and the closest linear
combination of any four variables of {Xj}j ̸= 1 to X1
can be very high. We refer to [14] and [74] about
more theoretical results on characterizing the orders
of r̂ .

The spurious correlation has significant impact
on variable selection and may lead to false scientific
discoveries. Let XS = (X j ) j∈S be the sub-random
vector indexed by S and let Ŝ be the selected set
that has the higher spurious correlation withX1 as in
Fig. 2. For example, when n= 60 and d= 6400, we
see that X1 is practically indistinguishable from X Ŝ

for a set Ŝ with |Ŝ| = 4. If X1 represents the expres-
sion level of a gene that is responsible for a disease,
we cannot distinguish it from the other four genes in
Ŝ that have a similar predictive power although they
are scientifically irrelevant.

Besides variable selection, spurious correlation
may also lead to wrong statistical inference. We ex-
plain this by considering again the same linearmodel
as in (3). Here we would like to estimate the stan-
dard error σ of the residual, which is prominently
featured in statistical inferences of regression co-
efficients, model selection, goodness-of-fit test and
marginal regression. Let Ŝ be a set of selected vari-
ables and PŜ be the projectionmatrix on the column
space of XŜ . The standard residual variance estima-
tor, based on the selected variables, is

σ̂ 2 = yT(In − PŜ)y
n − |Ŝ|

. (6)

The estimator (6) is unbiased when the variables
are not selected by data and the model is correct.
However, the situation is completely different when
the variables are selected based on data. In particu-
lar, the authors of [14] showed that when there are
many spurious variables, σ 2 is seriously underesti-
mated, which leads further to wrong statistical infer-
ences includingmodel selection or significance tests,
and false scientific discoveries such as finding wrong
genes for molecular mechanisms.They also propose
a refitted cross-validation method to attenuate the
problem.
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A simulation study

• Simulate n = 60 independent observations

• Each observation is in d = 800,6400 dimensions

• Left: max absolute correlation between the first
dimension and any other dimensions

• Right: max absolute correlation between the first
dimension and a linear combination of any 4 other

Conclusion: If we look hard enough,
we end up finding associations
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Challenge:

Not to mistake a newly

discovered association for

causality
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Example 1: RandomSPURIOUS CORRELATIONS ABOUND 11

tylervigen.com/spurious-correlations

SPURIOUS CORRELATIONS ABOUND 12

tylervigen.com/spurious-correlations

tylervigen.com/spurious-correlations
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Example 2: Medicine (?)

Correlation between Countries’ Annual Per Capita Choco-
late Consumption and the Number of Nobel Laureates
per 10 Million Population

New England Journal of Medicine, 367:1562 (2012)
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Example 2: Medicine (?)

• Premier journal of medical research

• Explains the association

– Nobel prize is related to cognitive ability

– Flavanols (organic molecules present in choco-
late) are related to cognitive ability

• Technical flaws:

– Nobel prize winners between 1900-2011

– Chocolate consumption after 2002

– Countries with many Nobel prizes have high Hu-
man Development Index (HDI) and high per
capita income.

• Conclusion: The study is easy to dismiss,

because we understand the context
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Example 3: Sociology?

After controlling for education and income levels, cor-
relations between religion in the region, and number of
patents per capita

Bénabou et al., Princeton Univ., 2013
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Example 3: Sociology?

As before, for US states

‘Correlation doesn’t imply causation, but it does wag-
gle its eyebrows suggestively and gesture furtively while
mouthing ?look over there’ - xkcd

Conclusion: the more complex the phenomenon, the
more likely we are to mistake correlations for causality
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Challenge:

Large data hide true

quantitative signal
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Noise accumulationREVIEW Fan, Han and Liu 299

Figure 1. Scatter plots of projections of the observed data (n= 100 from each class) onto the first two principal components of the bestm-dimensional
selected feature space. A projected data with the filled circle indicates the first class and the filled triangle indicates the second class.

important variables can be highly correlated with
several spurious variables which are scientifically
unrelated.We consider a simple example to illustrate
this phenomenon. Let x1, . . . , xn be n indepen-
dent observations of a d-dimensional Gaussian ran-
dom vector X = (X1, . . . , Xd )T ∼ Nd (0, Id ). We
repeatedly simulate thedatawithn=60 andd=800

and 6400 for 1000 times. Figure 2a shows the em-
pirical distribution of themaximum absolute sample
correlation coefficient between thefirst variablewith
the remaining ones defined as

r̂ = max
j≥2

|Ĉorr
(
X1, X j

)
|, (4)
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A simulation study

• Simulate n = 100 observations from 2 classes

• Each observation is a point in m = 2,40,200,1000
dimensions

• Only first 10 dimensions are informative

• Plot first 2 principle components (i.e., eigenvectors)

• Informative data should show a good separation be-
tween the two classes
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Noise accumulation

REVIEW Fan, Han and Liu 299

Figure 1. Scatter plots of projections of the observed data (n= 100 from each class) onto the first two principal components of the bestm-dimensional
selected feature space. A projected data with the filled circle indicates the first class and the filled triangle indicates the second class.

important variables can be highly correlated with
several spurious variables which are scientifically
unrelated.We consider a simple example to illustrate
this phenomenon. Let x1, . . . , xn be n indepen-
dent observations of a d-dimensional Gaussian ran-
dom vector X = (X1, . . . , Xd )T ∼ Nd (0, Id ). We
repeatedly simulate thedatawithn=60 andd=800

and 6400 for 1000 times. Figure 2a shows the em-
pirical distribution of themaximum absolute sample
correlation coefficient between thefirst variablewith
the remaining ones defined as

r̂ = max
j≥2

|Ĉorr
(
X1, X j

)
|, (4)
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Conclusion: As we add new unrelated

variables, we lose information
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Challenge:

Large datasets amplify bias

and confounding
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Case study: Diamonds

> library(ggplot2); data(diamonds); head(diamonds)
carat color price
0.23 E 326
0.21 E 326
0.23 E 327
0.29 I 334

..............

Case study: 
All 53,940 diamonds

● Price increases with carat 
◆ different range 
◆ more insight into variance

9
  carat color price 
 0.23     E   326 
 0.21     E   326 
 0.23     E   327 
 0.29     I   334 
 0.31     J   335 

..............
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00
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Carat
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Carat

P
ric

e
50 diamonds 53,940 diamonds

Large data amplifies true signal

• Heavier and pricier diamonds exist

• Large and expensive diamonds are rare

• Price increases exponentially with carat

• Not just a curve: also increase in variance
1-29



Case study: Diamonds

Case study: 
All 53,940 diamonds

● New discovery!  
◆ later colors cost more!

10
  carat color price 
 0.23     E   326 
 0.21     E   326 
 0.23     E   327 
 0.29     I   334 
 0.31     J   335 

..............
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e

50 diamonds 53,940 diamonds

Large data amplifies wrong signal too

• 50 diamonds: no apparent trend in color

• The differences in price are consistent with variation

• All diamonds: discovered a new trend!

• Later colors are more expensive!

Contradiction

• Diamonds expert: later colors are cheaper
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Case study: Diamonds
Case study: 

All 53,940 diamonds

● Subject matter knowledge 
◆ later colors are cheaper 
◆ they also weigh more 
◆ Both color and weight affect price

11
  carat color price 
 0.23     E   326 
 0.21     E   326 
 0.23     E   327 
 0.29     I   334 
 0.31     J   335 

..............
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A closer look:

• Confounding between color and carat

• Later colors are heavier

• Carat is likely contributing to the price more than
the color

• The right way to look at the problem is to stratify
by range of carat
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Case study: Diamonds

Case study: 
All 53,940 diamonds

● The right way to look at the data 
◆ Price increases by carat 
◆ Price decreases by color given carat

12
  carat color price 
 0.23     E   326 
 0.21     E   326 
 0.23     E   327 
 0.29     I   334 
 0.31     J   335 

..............
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Conclusion: We would have ran away with a
wrong discovery

- if we did not have the domain knowledge

- if we did not measure the right variables

Context and human insight is key
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Summary of the challenges

• Due to observational nature
(not designed / controlled experiments)

– Confounding

Diamonds dataset: color & carat confound price

– Latent variables

Google flu: seasons affect both flu & basketball

– Heterogeneity

Aggregating data from distinct subpopulations

Google flu: changing searches and algos

• Due to high dimensionality

– Noise accumulation

– Spurious associations

• Poorly defined, unstructured problems

Statistical methods aim at distinguishing the
artifacts from the systematic signals

J. Fan, F. Han, H. Liu, ’Challenges in big data analysis’,
National Science Review, 1:293, 2014
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