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Making sense of the terms

e Data mining

— Analysis of (often large) observational datasets
to find unexpected relationships

— Often secondary, exploratory analysis of conve-
nience (opportunity) datasets

e Machine learning

— Specific tasks associated with class discovery
(unsupervised learning), class prediction (super-
vised learning), and class comparison (testing)

e Statistics

— Collection and analysis of data, to make infer-
ence beyond the current dataset.

— Characterized by measures of uncertainty , and
of decision making in presence of uncertainty

— Often primary, confirmatory analysis of designed
experiments or ad-hoc datasets

e Data science

— Often used interchangeably with data mining

— Often used in 'data-driven decision making’
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Large observational datasets
are increasingly common

e Physics: Large Hadron Collider
— 150 million sensors, 600 million collisions/sec

e Astronomy: Sloan Digital Sky Survey

— In 2000, collected more data in its first few
weeks than all data in the history of astronomy

— Now 200 GB per night, over 140 terabytes

— In 2016, the Large Synoptic Survey Telescope
will acquire that amount every five days

e Genomics: Sequencing human genome
— First took 10 years, now in less than a day

e Climate: NASA Center

— 32 petabytes of climate data & simulations

e E-commerce: Amazon
— Millions of back-end operations / day

— Queries from 1/2 million third-party sellers.
— In 2005, databases of 7.8, 18.5, & 24.7 TB

en.wikipedia.org/wiki/Big_data
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Mining big data: a great
promise

Example: big data success stories (IBM marketing)
e Applies emerging technologies to deliver instanta-
neous people searches

e Analyzing huge volumes of customer comments in
real time delivers competitive edge

e Analyzes real-time data streams to identify traffic
patterns

e Putting real-time data to work and providing a plat-
form for technology development

e Helping companies deliver the web experience their
customers want.

e Streaming data technology supports covert intelli-
gence and surveillance sensor systems

e Leveraging key data to provide proactive patient
care

e Streaming real-time data supports large scale study
of space weather

e Turning climate into capital with big data

public.dhe.ibm.com/software/data/sw-library/big-data/ibm-
big-data-success.pdf
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A great excitement

Google trends: 'Big Data’ (01/11/2015)
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Are big data
the end of theory?

WIRED MAGAZINE 16 07

MEREEEES
The End of Theory: The Data Deluge Makes the
Scientific Method Obsolete

By Chris Anderson 06.23.08

Chris Anderson. Wired Magazine: 16.07

archive.wired.com/science/discoveries/magazine/16-07 /pb_theory
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Are big data
the end of theory?

e OIld science: models

— All models are wrong, but some are useful
(George Box)

e New science: just data
— Do not need to know culture and conventions

— Do not need to know underlying mechanisms

— Do not need to settle for wrong models. We
can succeed without them

e \What is the new scientific method?
— The information is readable, reachable and queryable

— Statistical tools will crunch the numbers and of-
fer a new way of understanding the world

— “There’'s no reason to cling to our old ways.
It's time to ask: What can science learn from
Google?”
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Case study: Google Flu

BIG DATA

The Parable of Google Flu:
Traps in Big Data Analysis

David Lazer,"?* Ryan Kennedy,'3* Gary King,? Alessandro Vespignani®®3

Science Vol 343, March 2014

1-7



Google Flu Trends

e Promising concept

— Find best matches among 50 million searchers
to explain 1152 flu cases

e Poor performance
— 2009: missed nonseasonal 2009 H1IN1 influenza

— 2013: overestimated the % of doctor visits

e Later versions
— 2009: One predictor is basketball season

— Confounding between flu and winter

— 2013: Eliminated basketball and other seasonal
trends

— Not better than simpler predictions
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Google Flu Trends
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Conclusion: we would have ran away with a
wrong prediction

- overestimated the prevalence of flu in the 2012-
2013 season

- overshot the actual level in 2011-2012 by > 50%
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Sources of challenges

e Statistical challenges
— Overfitting

— Confounding

— Lack subject matter info

e Algorithm dynamics
— Changes to queries in real time

— Changes to algorithms in real time

e Cannot easily replicate the results
— Proprietary methods are poorly documented
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Formally show the dangers

Open access, freely available online

John P. A.loannidis

John P. A. Ioannidis.
PL0oS Medicine, Volume 2, Issue 8, €124, 2005

Model: framework for false positive findings

Table 1. Research Findings and True Relationships

Research True Relationship

Finding Yes No Total

Yes c(1=PB)R/(R+1) co/(R+1) cR+o—BR/R+1)
No cBR/(R+ 1) c(1-—o)/(R+1) c1—o+BR/(R+1)
Total cR/(R+1) c/(R+1) c

c=number of relationships being probed

R= "number of true relationship to no relationship’
a=Type 1 error
B=Type 2 error

Repeat a similar analysis in presence of bias
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Conclusions

e [rue for small data:

— The smaller the study, the less likely the re-
search findings are to be true

— The smaller the effect size, the less likely the
research findings are to be true

e [rue for big data:

— The greater the number and the lesser the se-
lection of tested relationships, the less likely the
research findings are to be true

— The greater the flexibility in designs, definitions,
outcomes, and analytical modes, the less likely
the research findings are to be true

— The greater the financial and other interests and
prejudices, the less likely the research findings
are to be true

— The hotter a scientific field (with more scien-
tific teams involved), the less likely the research
findings are to be true
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The Gartnher Hype Cycle

Big data passed its peak of inflated
expectations

AVISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME

www.wikipedia.org
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The Gartner Hype Cycle

Big data passed its peak of
inflated expectations
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Task at hand:

Understand the strengths

and the limitations of the

methods to move to the
productivity stage
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Challenges of modern data

e Many datasets form an array
with n observations, and p variables

— Large and complex in p
x Large p
x Complex dependencies between predictors

— Large and complex in n
x Large n
x Heterogeneity of observations

— Hard to compute, visualize, summarize

e Many datasets are not arrays
— Networks, sequences, time series
— Even more complex dependencies

e Often the mechanism underlying the asso-
Ciations is unknown
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Challenge:

Large data generate spurious
associations
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Spurious correlations

Dimension
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A simulation study
e Simulate n = 60 independent observations
e Each observation is in d = 800, 6400 dimensions

e Left: max absolute correlation between the first
dimension and any other dimensions

e Right: max absolute correlation between the first
dimension and a linear combination of any 4 other

Conclusion: If we look hard enough,

we end up finding associations
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Challenge:

Not to mistake a newly
discovered association for
causality
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Example 1: Random

Divorce rate in Maine
correlates with

Per capita consumption of margarine

Correlation: 99.26% (r=0.992558)
2000 2001 2002 2003 2004 2005 2006 2007
4.95 per 1,000

4.62 per 1,000

4.29 per 1,000

Divorce rate in Maine

2008

3.96 per 1,000
2000 2001 2002 2003 2004 2005 2006 2007

-8~ Margarine consumed -+- Divorce rate in Maine

Total revenue generated by arcades
correlates with

2008

Computer science doctorates awarded in the US

Correlation: 98.51% (r=0.985065)
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Example 2: Medicine (?7)
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.

Correlation between Countries’ Annual Per Capita Choco-
late Consumption and the Number of Nobel Laureates
per 10 Million Population

New England Journal of Medicine, 367:1562 (2012)
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Example 2: Medicine (?7)

e Premier journal of medical research

e EXplains the association
— Nobel prize is related to cognitive ability

— Flavanols (organic molecules present in choco-
late) are related to cognitive ability

e Technical flaws:
— Nobel prize winners between 1900-2011
— Chocolate consumption after 2002

— Countries with many Nobel prizes have high Hu-
man Development Index (HDI) and high per
capita income.

e Conclusion: The study is easy to dismiss,
because we understand the context
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Example 3: Sociology?

Innovation (Residual)
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After controlling for education and income levels, cor-
relations between religion in the region, and number of
patents per capita

Bénabou et al., Princeton Univ., 2013
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Example 3: Sociology?
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As before, for US states

‘Correlation doesn't imply causation, but it does wag-
gle its eyebrows suggestively and gesture furtively while
mouthing 7?look over there' - xkcd

Conclusion: the more complex the phenomenon, the
more likely we are to mistake correlations for causality
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Challenge:
Large data hide true
quantitative signal
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Noise accumulation
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A simulation study

Simulate n = 100 observations from 2 classes

Each observation is a point in m = 2,40, 200, 1000
dimensions

Only first 10 dimensions are informative
Plot first 2 principle components (i.e., eigenvectors)

Informative data should show a good separation be-
tween the two classes
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Noise accumulation

(c) m=200 (d) m=1,000
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Conclusion: As we add new unrelated
variables, we lose information

1-27



Challenge:
Large datasets amplify bias
and confounding
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Case study: Diamonds

> library(ggplot2); data(diamonds); head(diamonds)
carat color price

0.23 E 326
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0.29 I 334
50 diamonds 53,940 diamonds
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| e § | '
o \ © A
0.5 10 15 20 1 2 3 4
Carat Carat

Large data amplifies true signal

e Heavier and pricier diamonds exist
e Large and expensive diamonds are rare
e Price increases exponentially with carat

e Not just a curve: also increase in variance
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Case study: Diamonds

50 diamonds 53,940 diamonds
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Large data amplifies wrong signal too

e 50 diamonds: no apparent trend in color
e T he differences in price are consistent with variation
e All diamonds: discovered a new trend!

e L ater colors are more expensivel

Contradiction

e Diamonds expert: later colors are cheaper
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Case study: Diamonds

53,940 diamonds 53,940 diamonds
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A closer look:

e Confounding between color and carat
e L ater colors are heavier

e Carat is likely contributing to the price more than
the color

e The right way to look at the problem is to stratify
by range of carat
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Case study: Diamonds
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Color, per carat group

Conclusion: We would have ran away with a
wrong discovery

- if we did not have the domain knowledge

- if we did not measure the right variables

Context and human insight is key
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Summary of the challenges

e Due to observational nature
(not designed / controlled experiments)

— Confounding
Diamonds dataset: color & carat confound price

— Latent variables
Google flu: seasons affect both flu & basketball

— Heterogeneity
Aggregating data from distinct subpopulations
Google flu: changing searches and algos

e Due to high dimensionality

— Noise accumulation

— Spurious associations

e Poorly defined, unstructured problems

Statistical methods aim at distinguishing the
artifacts from the systematic signals

J. Fan, F. Han, H. Liu, 'Challenges in big data analysis’,
National Science Review, 1:293, 2014
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