NORTHEASTERN UNIVERSITY, KHOURY COLLEGE OF COMPUTER SCIENCE

CS 6220 Data Mining — Assignment 3
Due: February 8, 2024(100 points)

YOUR NAME
YOUR GIT USERNAME
YOUR E-MAIL

Map Reduce in Spark

Write a Spark program that implements a simple “People You Might Know” social network
friendship recommendation algorithm. The key idea is that if two people have a lot of mutual
friends, then the system should recommend that they connect with each other.

Data

e The data file is soc—-LiveJournallAdj.txt in the homework 3 folder.

e The file contains the adjacency list and has multiple lines in the following format:
<User><TAB><Friends>

e Here, <User> is a unique integer ID corresponding to a unique user and <Friends> is
a comma separated list of unique IDs corresponding to the friends of the user with the
unique ID <User>. Note that the friendships are mutual (i.e., edges are undirected): if
A is friend with B then B is also friend with A. The data provided is consistent with that
rule as there is an explicit entry for each side of each edge.

Algorithm

Let us use a simple algorithm such that, for each user U, the algorithm recommends N = 10
users who are not already friends with U, but have the most number of mutual friends in
common with U.

Output


https://course.ccs.neu.edu/cs6220/fall2023/homework-3/

e The output should contain one line per user in the following format:
<User><TAB><Recommendations>

e Here, <User> is a unique ID corresponding to a user and <Recommendations> is a
comma separated list of unique IDs corresponding to the algorithm’s recommendation of
people that <User> might know, ordered in decreasing number of mutual friends.

e Note: The exact number of recommendations per user could be less than 10. If a user has
less than 10 second-degree friends, output all of them in decreasing order of the number of
mutual friends. If a user has no friends, you can provide an empty list of recommendations.
If there are recommended users with the same number of mutual friends, then output those
user IDs in numerically ascending order.

Pipeline Sketch

Please provide a description of how you used Spark to solve this problem. Don’t write more
than 3 to 4 sentences for this: we only want a very high-level description of your strategy to
tackle this problem.

Tips

Use Google Colab to use Spark seamlessly, e.g., copy and adapt the setup cells from the Colab
done in class in the second lecture.

e Before submitting a complete application to Spark, you may go line by line, checking the
outputs of each step. Command .take(X) should be helpful, if you want to check the first
X elements in the RDD.

e For sanity check, your top 10 recommendations for user ID 11 should be:
27552, 7785, 27573, 27574, 27589, 27590, 27600, 27617, 27620, 27667.

e The execution may take a while. Our implementations took around 10 minutes.

Submission Instructions

Submit your code, output file as a single file (call it output.txt) and PDF write-up via
Gradescope before 4:30pm Thursday, February 8, 2024.

Code legibility is part of our grading criterion, so please make sure it’s readable.

Include a diagram of your pipeline description in your writeup.

Include in your writeup the recommendations for the users with following user IDs: 924,
8941, 8942, 9019, 9020, 9021, 9022, 9990, 9992, 9993.


https://colab.research.google.com/drive/1tXmlcGWm0SXmOn9AJEIVRfXj4yULjoZl?usp=sharing
http://www.gradescope.com

