

schedule

WEEK 1

Introduction and Applications

September 12

- Topics
 - A Course Overview
 - Data Vocabulary
- Suggested Reading
- Assignment 1 is assigned Review & Exploring Data

WEEK 2

Mining for Association Rules

September 19

- Topics
 - Definitions of Frequent Itemsets
 - Determining Frequent Itemsets
 - Creating Association Rules
- Suggested Reading
- Submissions
 - Assignment 1 is due
 - Assignment 2 is assigned Association Rules

WEEK 3

Accessing, Storing, and Computing with "Big" Data

September 26

- Topics
 - Distributed Filesystems and Storage
 - Introducing the MapReduce Paradigm
 - Distributed Computation
- o Suggested Reading Chapter 2, Sections 2.1-2.4
- Submissions
 - Assignment 2 is due
 - Assignment 3 is assigned Map Reduce Problem

WEEK 4

Large Scale Data (Pre)-Processing

October 3

- Topics
 - Basics of Linear Algebra and Probability Theory
 - The Multiple Places Where Data Lives & Multi-source Joins
 - Covariance, Correlation, and Cosine Similarity
 - Dimensionality Reduction and Feature Selection
- Suggested Reading
 - Linear Algebra Review
 - Dimensionality Reduction

Map Reduce, Sections 2.5-2.7

WEEK 5

Mining Data without Labels

October 10

- Topics
 - Introducing the Gaussian Distribution
 - Parameter Estimation of a Distribution
 - Anomaly and Outlier Detection
 - Unsupervised Modeling with k-Means and Clustering
- Commeted Danding

- Maximum Likelihood
- Unsupervised Clustering, Chapter 7 7.2
- Submissions
 - Assignment 3 is due
 - Assignment 4 is assigned Parameter Estimation & Clustering

WEEK 6

Mining Small-ish Data - Statistical Learning

October 17

- Topics
 - The Bayesian Framework
 - Naive Bayes Classification
 - Tree-based Algorithms Random Forests
- Suggested Reading
 - Naïve Bayes
 - Tree Algorithms Chapters 3.1 3.3
- Submissions
 - Assignment 4 is due
 - Assignment 5 is assigned Bayesian Framework & ML Libraries

WEEK 7

Midterm Exam

October 24

- Topics
 - Linear Algebra Review
 - MapReduce Problems
 - Principle Component Analysis
 - Parameter Estimation
 - Unsupervised Clustering
 - Bayesian Framework

WEEK 8

No Instruction This Week

October 31

Happy Halloween

WEEK 9

Mining Big Data - Foundations of Machine Learning

November 7

- Topics
 - The Classification Framework
 - The Objective Function, Regularization, and Constraints
 - Logistic Regression Precursor to Modern Data Mining
 - Batch Data Processing Gradient Descent
 - The Bias and Variance Tradeoff
- In-Class Colabs: Logistic Regression with MNIST
- Suggested Reading
 - Evaluation Metrics
 - Logistic Regression ([1], [2])
- Submissions
 - Assignment 5 is due
 - Assignment 6 is assigned Gradient Descent

WEEK 10

Mining Images with Deep Learning

November 14

- Topics
 - Working with Tensors Reviewing Multivariate Calculus
 - Deep Learning A Historical Perspective
 - The Backpropation Algorithm
 - Convolutional Neural Networks
- Suggested Reading

WEEK 11

Mining Text with Self Supervision

November 21

- Some Basic Approaches
- Semi-Supervised Learning
- The Concept of an Embedding Space
- The Attention Mechanism
- Large Language Models From BERT to ChatGPT
- Suggested Reading
- Submissions
 - Assignment 6 is due
 - Project proposals are due

WEEK 12

Data Mining Applications

November 28

- Topics
 - Social Network Data Mining
 - Recommendation Sciences
 - Time Series Analysis
- Suggested Reading

WEEK 13

Project Presentations and Industry Day

December 5

- Data Mining in Industry
 - Mining for Anomalous Behavior
 - Mining in Operational Logistics
 - Mining to Notify and Alert
- Submissions
 - <u>Final projects</u> are <u>due</u>, including <u>presentation slides</u> and <u>writeup</u>

WEEK 14

Final Exam

December 12

- Topics
 - Objective Functions
 - Logistic Regression
 - Association Rule Mining
 - Evaluation Metrics
 - Backpropagation
 - Convolutions and Recurrence

grading criterion

Labs & Participation 10%

Data Mining Project 10%

Assignments 20%

Midterm Exam 30%

Final Exam 30%

course meeting times

Lectures

- Tues, 6pm-9:20pm
- Room TBD

Office Hours

- Professor, Thurs, 8:30-9:30pm
- TA, Date/Time TBD

suggested textbooks

Introduction to Data Mining, 2nd Edition Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, 2018

Mining of Massive Data Sets, 3rd Edition Jure Leskovec, Anand Rajaraman, and Jeff Ullman, 2014

<u>Deep Learning</u> Ian Goodfellow, Yoshua Bengio, and Aaron Courville, 2016