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Sentiment

Maybe not so good if 
found in a camera review



Sentiment



Advertising

• Search engines sell customer clicks from

• Sponsored search

• Content match

• Just retrieve ads topically like other docs?

• Ads are very short and targeted

• Build specialized classifiers



Advertising



Advertising
Example of 

semantic clustering to 
mitigate sparse term 

matches.
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Person Classification

I don’t have a Scientific 
American article coming out.



Classification

• Mapping from inputs to a finite output space

• Contrast: regression and ranking

• Usually evaluated by accuracy

• Evaluated precision and recall if classes are very 
asymmetric in numbers or costliness (e.g., spam)

• Example: Naive Bayes

• Simple, effective, similar to BM25

• Lots more: see book for SVM, nearest-neighbor



Axioms of Probability

�
i Fi = �• Define event space

• Probability function, s.t.

• Disjoint events sum

• All events sum to one

• Show that:

P : F � [0, 1]

A ⌅B = ⇥ � P (A ⇤B) = P (A) + P (B)

P (�) = 1

P (Ā) = 1� P (A)



Conditional Probability

P (A | B) =
P (A,B)
P (B)

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A1, A2, . . . , An) = P (A1)P (A2 | A1)P (A3 | A1, A2)
· · · P (An | A1, . . . , An�1)Chain rule

A

BA
�B



Independence

P (A,B) = P (A)P (B)
�

P (A | B) = P (A) ⇥ P (B | A) = P (B)

In coding terms, knowing B doesn’t 
help in decoding A, and vice versa.
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Movie Reviews
there ' s some movies i enjoy even though i know i probably shouldn '
t and have a difficult time trying to explain why i did . " lucky
numbers " is a perfect example of this because it ' s such a blatant
rip - off of " fargo " and every movie based on an elmore leonard
novel and yet it somehow still works for me . i know i ' m in the
minority here but let me explain . the film takes place in harrisburg
, pa in 1988 during an unseasonably warm winter . ...
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Setting up a Classifier

• What we want: 
p(☺ | w1, w2, ..., wn) > p(☹ | w1, w2, ..., wn) ?

• What we know how to build:

• A language model for each class

• p(w1, w2, ..., wn | ☺)

• p(w1, w2, ..., wn | ☹)



Bayes’ Theorem

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A | B) =
P (B | A)P (A)

P (B)

By the definition of conditional probability:

we can show:

Seemingly trivial result from 1763; 
interesting consequences...



A “Bayesian” Classifier

Prior
Likelihood

max
R�{⇤̈,⌅̈}

p(R | w1, w2, . . . , wn) = max
R�{⇤̈,⌅̈}

p(R)p(w1, w2, . . . , wn | R)

Posterior

p(R | w1, w2, . . . , wn) =
p(R)p(w1, w2, . . . , wn | R)

p(w1, w2, . . . , wn)



Naive Bayes Classifier

w1 w2 w3 w4

R

No dependencies among words!



NB on Movie Reviews

>>> classifier.show_most_informative_features(5)

classifier.show_most_informative_features(5)
Most Informative Features
   contains(outstanding) = True              pos : neg    =     14.1 : 1.0
         contains(mulan) = True              pos : neg    =      8.3 : 1.0
        contains(seagal) = True              neg : pos    =      7.8 : 1.0
   contains(wonderfully) = True              pos : neg    =      6.6 : 1.0
         contains(damon) = True              pos : neg    =      6.1 : 1.0

• Train models for positive, negative

• For each review, find higher posterior

• Which word probability ratios are highest?



What’s Wrong With 
NB?

• What happens for word dependencies are 
strong?

• What happens when some words occur 
only once?

• What happens when the classifier sees a 
new word?



ML for Naive Bayes
• Recall: p(+ | Damon movie) 

           = p(Damon | +) p(movie | +) p(+)

• If corpus of positive reviews has 1000 
words, and “Damon” occurs 50 times, 
pML(Damon | +) = ?

• If pos. corpus has “Affleck” 0 times, 
p(+ | Affleck Damon movie) = ?
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Will the Sun Rise Tomorrow?
Laplace’s Rule of Succession:
On day n+1, we’ve observed that 
the sun has risen s times before.

pLap(Sn+1 = 1 | S1 + · · · + Sn = s) =
s + 1
n + 2

What’s the probability on day 0?
On day 1?
On day 106?
Start with prior assumption of equal rise/not-rise 
probabilities; update after every observation.



SpamAssassin Features
§ Basic (Naïve) Bayes spam probability

§ Mentions: Generic Viagra

§ Regex: millions of (dollar) ((dollar) NN,NNN,NNN.NN)

§ Phrase: impress ... girl

§ Phrase: ‘Prestigious Non-Accredited Universities’

§ From: starts with many numbers

§ Subject is all capitals

§ HTML has a low ratio of text to image area

§ Relay in RBL, http://www.mail-abuse.com/enduserinfo_rbl.html

§ RCVD line looks faked

§ http://spamassassin.apache.org/tests_3_3_x.html

http://spamassassin.apache.org/tests_3_3_x.html


Naive Bayes is Not So Naive
§Very fast learning and testing (basically just count 
words)

§Low storage requirements

§Very good in domains with many equally important 
features

§More robust to irrelevant features than many learning 
methods

Irrelevant features cancel each other without affecting 
results



Naive Bayes is Not So Naive
§More robust to concept drift (changing class 
definition over time)

§Naive Bayes won 1st and 2nd  place in KDD-CUP 
97 competition out of 16 systems

Goal: Financial services industry direct mail 
response prediction: Predict if the recipient 
of mail will actually respond to the 
advertisement – 750,000 records.

§A good dependable baseline for text 
classification (but not the best)!



Classifica(on	
  Using	
  
Vector	
  Spaces

§ In vector space classification, training set 
corresponds to a labeled set of points 
(equivalently, vectors)

§ Premise 1: Documents in the same class form 
a contiguous region of space

§ Premise 2: Documents from different classes 
don’t overlap (much)

§ Learning a classifier: build surfaces to delineate 
classes in the space



28

Documents	
  in	
  a	
  Vector	
  Space

Government

Science

Arts

Sec.14.1
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Test	
  Document	
  of	
  what	
  class?

Government

Science

Arts

Sec.14.1
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Test	
  Document	
  =	
  Government

Government

Science

Arts

Is this  
similarity 
hypothesis 
true in 
general?

Our focus: how to find good separators

Sec.14.1



Defini(on	
  of	
  centroid

§Where	
  Dc	
  is	
  the	
  set	
  of	
  all	
  documents	
  that	
  belong	
  to	
  class	
  
c	
  and	
  v(d)	
  is	
  the	
  vector	
  space	
  representa(on	
  of	
  d.	
  

§ Note	
  that	
  centroid	
  will	
  in	
  general	
  not	
  be	
  a	
  unit	
  vector	
  
even	
  when	
  the	
  inputs	
  are	
  unit	
  vectors.

31

Sec.14.2



Rocchio	
  classifica(on
§Rocchio	
  forms	
  a	
  simple	
  representa(ve	
  for	
  each	
  
class:	
  the	
  centroid/prototype	
  

§Classifica(on:	
  nearest	
  prototype/centroid	
  
§ It	
  does	
  not	
  guarantee	
  that	
  classifica(ons	
  are	
  
consistent	
  with	
  the	
  given	
  training	
  data	
  

§Remember:	
  Used	
  with	
  two	
  classes	
  for	
  relevance	
  
feedback

32

Sec.14.2



Rocchio	
  classifica(on
§ LiQle	
  used	
  outside	
  text	
  classifica(on	
  
§ It	
  has	
  been	
  used	
  quite	
  effec(vely	
  for	
  text	
  classifica(on	
  
§But	
  in	
  general	
  worse	
  than	
  Naïve	
  Bayes	
  

§Again,	
  cheap	
  to	
  train	
  and	
  test	
  documents

33

Sec.14.2
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k	
  Nearest	
  Neighbor	
  Classifica(on
§ kNN	
  =	
  k	
  Nearest	
  Neighbor	
  

§ To	
  classify	
  a	
  document	
  d:	
  
§Define	
  k-­‐neighborhood	
  as	
  the	
  k	
  nearest	
  
neighbors	
  of	
  d	
  

§Pick	
  the	
  majority	
  class	
  label	
  in	
  the	
  k-­‐
neighborhood

Sec.14.3



35

Example:	
  k=6	
  (6NN)

Government

Science

Arts

P(science|   )?

Sec.14.3
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Nearest-­‐Neighbor	
  Learning

Sec.14.3
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Nearest-­‐Neighbor	
  Learning
§ Learning:	
  just	
  store	
  the	
  labeled	
  training	
  examples	
  D
§ Tes(ng	
  instance	
  x	
  (under	
  1NN):	
  
§Compute	
  similarity	
  between	
  x	
  and	
  all	
  examples	
  in	
  D.	
  
§Assign	
  x	
  the	
  category	
  of	
  the	
  most	
  similar	
  example	
  in	
  D.

§ Does	
  not	
  compute	
  anything	
  beyond	
  storing	
  the	
  examples

Sec.14.3
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Nearest-­‐Neighbor	
  Learning
§ Learning:	
  just	
  store	
  the	
  labeled	
  training	
  examples	
  D
§ Tes(ng	
  instance	
  x	
  (under	
  1NN):	
  
§Compute	
  similarity	
  between	
  x	
  and	
  all	
  examples	
  in	
  D.	
  
§Assign	
  x	
  the	
  category	
  of	
  the	
  most	
  similar	
  example	
  in	
  D.

§ Does	
  not	
  compute	
  anything	
  beyond	
  storing	
  the	
  examples
§ Also	
  called:	
  
§Case-­‐based	
  learning	
  
§Memory-­‐based	
  learning	
  
§ Lazy	
  learning

§ Ra(onale	
  of	
  kNN:	
  con(guity	
  hypothesis

Sec.14.3
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k	
  Nearest	
  Neighbor

§Using	
  only	
  the	
  closest	
  example	
  (1NN)	
  
subject	
  to	
  errors	
  due	
  to:	
  
§A	
  single	
  atypical	
  example.	
  	
  
§Noise	
  (i.e.,	
  an	
  error)	
  in	
  the	
  category	
  label	
  of	
  a	
  
single	
  training	
  example.	
  

§More	
  robust:	
  find	
  the	
  k	
  examples	
  and	
  
return	
  the	
  majority	
  category	
  of	
  these	
  k	
  

§k	
  is	
  typically	
  odd	
  to	
  avoid	
  (es;	
  3	
  and	
  5	
  are	
  
most	
  common

Sec.14.3
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kNN	
  decision	
  boundaries

Government

Science

Arts

Boundaries 
are in 
principle 
arbitrary 
surfaces – but 
usually 
polyhedra

kNN gives locally defined decision boundaries between
classes – far away points do not influence each classification 
decision (unlike in Naïve Bayes, Rocchio, etc.)

Sec.14.3
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Illustra(on	
  of	
  3	
  Nearest	
  Neighbor	
  for	
  Text	
  
Vector	
  Space

Sec.14.3
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3	
  Nearest	
  Neighbor	
  vs.	
  Rocchio
§ Nearest	
  Neighbor	
  tends	
  to	
  handle	
  polymorphic	
  
categories	
  beQer	
  than	
  Rocchio/NB.	
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kNN:	
  Discussion
§ No	
  feature	
  selec(on	
  necessary	
  
§ No	
  training	
  necessary	
  
§ Scales	
  well	
  with	
  large	
  number	
  of	
  classes	
  
§ Don’t	
  need	
  to	
  train	
  n	
  classifiers	
  for	
  n	
  classes	
  

§ Classes	
  can	
  influence	
  each	
  other	
  
§ Small	
  changes	
  to	
  one	
  class	
  can	
  have	
  ripple	
  effect	
  

§May	
  be	
  expensive	
  at	
  test	
  (me	
  
§ In	
  most	
  cases	
  it’s	
  more	
  accurate	
  than	
  NB	
  or	
  Rocchio

Sec.14.3



Let’s test our intuition
§ Can a bag of words always be viewed as a 

vector space?
§ What about a bag of features?
§ Can we always view a standing query as a 

region in a vector space?
§ What about Boolean queries on terms?
§ What do “rectangles” equate to?

42
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Bias	
  vs.	
  capacity	
  –	
  no(ons	
  and	
  
terminology
§ Consider	
  asking	
  a	
  botanist:	
  Is	
  an	
  object	
  a	
  tree?	
  	
  
§Too	
  much	
  capacity,	
  low	
  bias	
  

§Botanist	
  who	
  memorizes	
  
§Will	
  always	
  say	
  “no”	
  to	
  new	
  object	
  (e.g.,	
  different	
  #	
  of	
  
leaves)	
  

§Not	
  enough	
  capacity,	
  high	
  bias	
  
§Lazy	
  botanist	
  
§Says	
  “yes”	
  if	
  the	
  object	
  is	
  green	
  

§You	
  want	
  the	
  middle	
  ground

(Example due to C. Burges)

Sec.14.6
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kNN	
  vs.	
  Naive	
  Bayes
§Bias/Variance	
  tradeoff	
  
§Variance	
  ≈	
  Capacity	
  

§ kNN	
  has	
  high	
  variance	
  and	
  low	
  bias.	
  
§Infinite	
  memory	
  

§NB	
  has	
  low	
  variance	
  and	
  high	
  bias.	
  
§Linear	
  decision	
  surface	
  (hyperplane	
  –	
  see	
  later)

Sec.14.6
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Bias	
  vs.	
  variance:	
   
Choosing	
  the	
  correct	
  model	
  capacity

Sec.14.6
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Summary:	
  Representa(on	
  of 
Text	
  Categoriza(on	
  AQributes

§Representa(ons	
  of	
  text	
  are	
  usually	
  very	
  
high	
  dimensional	
  

§High-­‐bias	
  algorithms	
  that	
  prevent	
  
overfiong	
  should	
  generally	
  work	
  best	
  in	
  
high-­‐dimensional	
  space	
  

§For	
  most	
  text	
  categoriza(on	
  tasks,	
  there	
  
are	
  many	
  relevant	
  features	
  and	
  many	
  
irrelevant	
  ones



Which	
  classifier	
  do	
  I	
  use	
  for	
  a	
  given	
  text	
  
classifica(on	
  problem?
§ Is	
  there	
  a	
  learning	
  method	
  that	
  is	
  op(mal	
  for	
  all	
  text	
  
classifica(on	
  problems?	
  

§ No,	
  because	
  there	
  is	
  a	
  tradeoff	
  between	
  bias	
  and	
  
variance.	
  

§ Factors	
  to	
  take	
  into	
  account:	
  
§ How	
  much	
  training	
  data	
  is	
  available?	
  
§ How	
  simple/complex	
  is	
  the	
  problem?	
  (linear	
  vs.	
  nonlinear	
  
decision	
  boundary)	
  

§ How	
  noisy	
  is	
  the	
  data?	
  
§ How	
  stable	
  is	
  the	
  problem	
  over	
  (me?	
  

§ For	
  an	
  unstable	
  problem,	
  its	
  beQer	
  to	
  use	
  a	
  simple	
  and	
  robust	
  classifier.
47
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Clustering

• Unsupervised structure discovery

• Exploratory data analysis

• Clustering for word senses

• Clustering for retrieval effectiveness

• Some have also proposed clustering for 
efficiency



A Concordance for “party” 

§ thing. She was talking at a party thrown at Daphne's restaurant in  
§ have turned it into the hot dinner-party topic. The comedy is the 
§ selection for the World Cup party, which will be announced on May 1  
§ in the 1983 general election for a party which, when it could not bear to  
§ to attack the Scottish National Party, who look set to seize Perth and  
§ that had been passed to a second party who made a financial decision 
§ the by-pass there will be a street party. "Then," he says, "we are going   
§ number-crunchers within the Labour party, there now seems little doubt 
§ political tradition and the same party. They are both relatively Anglophilic  
§ he told Tony Blair's modernised party they must not retreat into "warm   
§ "Oh no, I'm just here for the party," they said. "I think it's terrible   
§ A future obliges each party to the contract to fulfil it by 
§ be signed by or on behalf of each party to the contract." Mr David N

http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3771338/5
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§ approximate by p(S[EAT] à NP[lion] VP[EAT] | S[EAT])

§ Speaker’s real intention is senses; words are a noisy channel
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§Adjacent words (or their senses)

§Grammatically related words (subject, object, …)

§Other nearby words
§Topic of document
§Sense of other tokens of the word in the same 
document
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§ Plot all word types in k-dimensional space 
§ Look for clusters of close-together types

Plot in k dimensions (here k=3)



Bottom-Up Clustering 

§Start with one cluster per point 
§Repeatedly merge 2 closest clusters 

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B 

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B 
§Produces a dendrogram
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Again, merge closest pair of clusters: 
Complete-link: clusters are close only if all of their points are 
                     dist(A,B) = max dist(a,b) for a∈A, b∈B

distance 
between  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example from Manning & Schütze

Slow to find closest pair – need quadratically many distances
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§ Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

§ Centroid-link: dist(A,B) = dist(mean(A),mean(B))

§Stop when clusters are “big enough”
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§ Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

§ Centroid-link: dist(A,B) = dist(mean(A),mean(B))

§Stop when clusters are “big enough”
§ e.g., provide adequate support for backoff (on a development corpus)

§Some flexibility in defining dist(a,b)
§ Might not be Euclidean distance; e.g., use vector angle

§Start with one cluster per point 
§Repeatedly merge 2 closest clusters 

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B 

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B 
§ too slow to update cluster distances after each merge; but ∃ alternatives!
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EM Clustering (for k clusters)

§ EM algorithm 
§ Viterbi version – called “k-means clustering” 
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

§ Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

§ Parameters: k points representing cluster centers
§ Hidden structure: for each data point (word type),  

which center generated it?



Cluster Hypothesis

• Keith van Rijsbergen: “Closely associated 
documents tend to be relevant to the same 
requests.”



Cluster Hypothesis

Precision in of the 5 nearest 
neighbors of relevant documents



But Does It Help Retrieval?

• Cluster retrieval

• Smoothing with hard 
clusters

• Smoothing with soft 
clusters

• Last two more effective 
(cf. topic models)


