CS6200
Information Retrieval

David Smith
College of Computer and Information Science
Northeastern University
Processing Text

• Converting documents to index terms

• Why?
 – Matching the exact string of characters typed by the user is too restrictive
 • i.e., it doesn’t work very well in terms of effectiveness
 – Not all words are of equal value in a search
 – Sometimes not clear where words begin and end
 • Not even clear what a word is in some languages
 – e.g., Chinese, Korean
Text Statistics

• Huge variety of words used in text but
• Many statistical characteristics of word occurrences are predictable
 – e.g., distribution of word counts
• Retrieval models and ranking algorithms depend heavily on statistical properties of words
 – e.g., important words occur often in documents but are not high frequency in collection
Zipf’s Law

• Distribution of word frequencies is very **skewed**
 – a few words occur very often, many words hardly ever occur
 – e.g., two most common words (“the”, “of”) make up about 10% of all word occurrences in text documents

• Zipf’s “law” (more generally, a “power law”):
 – observation that rank \(r \) of a word times its frequency \(f \) is approximately a constant \(k \)
 • assuming words are ranked in order of decreasing frequency
 – i.e., \(r.f \approx k \) or \(r.P_r \approx c \), where \(P_r \) is probability of word occurrence and \(c \approx 0.1 \) for English
Zipf’s Law

Probability (of occurrence)

Rank (by decreasing frequency)
News Collection (AP89) Statistics

Total documents 84,678
Total word occurrences 39,749,179
Vocabulary size 198,763
Words occurring > 1000 times 4,169
Words occurring once 70,064

<table>
<thead>
<tr>
<th>Word</th>
<th>Freq.</th>
<th>r</th>
<th>Pr(%)</th>
<th>r.Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>assistant</td>
<td>5,095</td>
<td>1,021</td>
<td>.013</td>
<td>0.13</td>
</tr>
<tr>
<td>sewers</td>
<td>100</td>
<td>17,110</td>
<td>2.56 × 10−4</td>
<td>0.04</td>
</tr>
<tr>
<td>toothbrush</td>
<td>10</td>
<td>51,555</td>
<td>2.56 × 10−5</td>
<td>0.01</td>
</tr>
<tr>
<td>hazmat</td>
<td>1</td>
<td>166,945</td>
<td>2.56 × 10−6</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Top 50 Words from AP89

<table>
<thead>
<tr>
<th>Word</th>
<th>Freq.</th>
<th>r</th>
<th>$P_r(%)$</th>
<th>$r.P_r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>2,420,778</td>
<td>1</td>
<td>6.49</td>
<td>0.065</td>
</tr>
<tr>
<td>of</td>
<td>1,045,733</td>
<td>2</td>
<td>2.80</td>
<td>0.056</td>
</tr>
<tr>
<td>to</td>
<td>968,882</td>
<td>3</td>
<td>2.60</td>
<td>0.078</td>
</tr>
<tr>
<td>a</td>
<td>892,429</td>
<td>4</td>
<td>2.39</td>
<td>0.096</td>
</tr>
<tr>
<td>and</td>
<td>865,644</td>
<td>5</td>
<td>2.32</td>
<td>0.120</td>
</tr>
<tr>
<td>in</td>
<td>847,825</td>
<td>6</td>
<td>2.27</td>
<td>0.140</td>
</tr>
<tr>
<td>said</td>
<td>504,593</td>
<td>7</td>
<td>1.35</td>
<td>0.095</td>
</tr>
<tr>
<td>for</td>
<td>363,865</td>
<td>8</td>
<td>0.98</td>
<td>0.078</td>
</tr>
<tr>
<td>that</td>
<td>347,072</td>
<td>9</td>
<td>0.93</td>
<td>0.084</td>
</tr>
<tr>
<td>was</td>
<td>293,027</td>
<td>10</td>
<td>0.79</td>
<td>0.079</td>
</tr>
<tr>
<td>on</td>
<td>291,947</td>
<td>11</td>
<td>0.78</td>
<td>0.086</td>
</tr>
<tr>
<td>he</td>
<td>250,919</td>
<td>12</td>
<td>0.67</td>
<td>0.081</td>
</tr>
<tr>
<td>is</td>
<td>245,843</td>
<td>13</td>
<td>0.65</td>
<td>0.086</td>
</tr>
<tr>
<td>with</td>
<td>223,846</td>
<td>14</td>
<td>0.60</td>
<td>0.084</td>
</tr>
<tr>
<td>at</td>
<td>210,064</td>
<td>15</td>
<td>0.56</td>
<td>0.085</td>
</tr>
<tr>
<td>by</td>
<td>209,586</td>
<td>16</td>
<td>0.56</td>
<td>0.090</td>
</tr>
<tr>
<td>it</td>
<td>195,621</td>
<td>17</td>
<td>0.52</td>
<td>0.089</td>
</tr>
<tr>
<td>from</td>
<td>189,451</td>
<td>18</td>
<td>0.51</td>
<td>0.091</td>
</tr>
<tr>
<td>as</td>
<td>181,714</td>
<td>19</td>
<td>0.49</td>
<td>0.093</td>
</tr>
<tr>
<td>be</td>
<td>157,300</td>
<td>20</td>
<td>0.42</td>
<td>0.084</td>
</tr>
<tr>
<td>were</td>
<td>153,913</td>
<td>21</td>
<td>0.41</td>
<td>0.087</td>
</tr>
<tr>
<td>an</td>
<td>152,576</td>
<td>22</td>
<td>0.41</td>
<td>0.090</td>
</tr>
<tr>
<td>have</td>
<td>149,749</td>
<td>23</td>
<td>0.40</td>
<td>0.092</td>
</tr>
<tr>
<td>his</td>
<td>142,285</td>
<td>24</td>
<td>0.38</td>
<td>0.092</td>
</tr>
<tr>
<td>but</td>
<td>140,880</td>
<td>25</td>
<td>0.38</td>
<td>0.094</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word</th>
<th>Freq.</th>
<th>r</th>
<th>$P_r(%)$</th>
<th>$r.P_r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>has</td>
<td>136,007</td>
<td>26</td>
<td>0.37</td>
<td>0.095</td>
</tr>
<tr>
<td>are</td>
<td>130,322</td>
<td>27</td>
<td>0.35</td>
<td>0.094</td>
</tr>
<tr>
<td>not</td>
<td>127,943</td>
<td>28</td>
<td>0.34</td>
<td>0.096</td>
</tr>
<tr>
<td>who</td>
<td>116,364</td>
<td>29</td>
<td>0.31</td>
<td>0.090</td>
</tr>
<tr>
<td>they</td>
<td>111,024</td>
<td>30</td>
<td>0.30</td>
<td>0.089</td>
</tr>
<tr>
<td>its</td>
<td>111,021</td>
<td>31</td>
<td>0.30</td>
<td>0.092</td>
</tr>
<tr>
<td>had</td>
<td>103,943</td>
<td>32</td>
<td>0.28</td>
<td>0.089</td>
</tr>
<tr>
<td>will</td>
<td>102,949</td>
<td>33</td>
<td>0.28</td>
<td>0.091</td>
</tr>
<tr>
<td>would</td>
<td>99,503</td>
<td>34</td>
<td>0.27</td>
<td>0.091</td>
</tr>
<tr>
<td>about</td>
<td>92,983</td>
<td>35</td>
<td>0.25</td>
<td>0.087</td>
</tr>
<tr>
<td>i</td>
<td>92,005</td>
<td>36</td>
<td>0.25</td>
<td>0.089</td>
</tr>
<tr>
<td>been</td>
<td>88,786</td>
<td>37</td>
<td>0.24</td>
<td>0.088</td>
</tr>
<tr>
<td>this</td>
<td>87,286</td>
<td>38</td>
<td>0.23</td>
<td>0.089</td>
</tr>
<tr>
<td>their</td>
<td>84,638</td>
<td>39</td>
<td>0.23</td>
<td>0.089</td>
</tr>
<tr>
<td>new</td>
<td>83,449</td>
<td>40</td>
<td>0.22</td>
<td>0.090</td>
</tr>
<tr>
<td>or</td>
<td>81,796</td>
<td>41</td>
<td>0.22</td>
<td>0.090</td>
</tr>
<tr>
<td>which</td>
<td>80,385</td>
<td>42</td>
<td>0.22</td>
<td>0.091</td>
</tr>
<tr>
<td>we</td>
<td>80,245</td>
<td>43</td>
<td>0.22</td>
<td>0.093</td>
</tr>
<tr>
<td>more</td>
<td>76,388</td>
<td>44</td>
<td>0.21</td>
<td>0.090</td>
</tr>
<tr>
<td>after</td>
<td>75,165</td>
<td>45</td>
<td>0.20</td>
<td>0.091</td>
</tr>
<tr>
<td>us</td>
<td>72,045</td>
<td>46</td>
<td>0.19</td>
<td>0.089</td>
</tr>
<tr>
<td>percent</td>
<td>71,956</td>
<td>47</td>
<td>0.19</td>
<td>0.091</td>
</tr>
<tr>
<td>up</td>
<td>71,082</td>
<td>48</td>
<td>0.19</td>
<td>0.092</td>
</tr>
<tr>
<td>one</td>
<td>70,266</td>
<td>49</td>
<td>0.19</td>
<td>0.092</td>
</tr>
<tr>
<td>people</td>
<td>68,988</td>
<td>50</td>
<td>0.19</td>
<td>0.093</td>
</tr>
</tbody>
</table>
Zipf’s Law for AP89

- Log-log plot: Note problems at high and low frequencies
Zipf’s Law

• What is the proportion of words with a given frequency?
 – Word that occurs n times has rank $r_n = k/n$
 – Number of words with frequency n is
 • $r_n - r_{n+1} = k/n - k/(n + 1) = k/n(n + 1)$
 – Proportion found by dividing by total number of words = highest rank = k
 – So, proportion with frequency n is $1/n(n+1)$
Zipf’s Law

• Example word frequency ranking

<table>
<thead>
<tr>
<th>Rank</th>
<th>Word</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>concern</td>
<td>5,100</td>
</tr>
<tr>
<td>1001</td>
<td>spoke</td>
<td>5,100</td>
</tr>
<tr>
<td>1002</td>
<td>summit</td>
<td>5,100</td>
</tr>
<tr>
<td>1003</td>
<td>bring</td>
<td>5,099</td>
</tr>
<tr>
<td>1004</td>
<td>star</td>
<td>5,099</td>
</tr>
<tr>
<td>1005</td>
<td>immediate</td>
<td>5,099</td>
</tr>
<tr>
<td>1006</td>
<td>chemical</td>
<td>5,099</td>
</tr>
<tr>
<td>1007</td>
<td>african</td>
<td>5,098</td>
</tr>
</tbody>
</table>

• To compute number of words with frequency 5,099 – rank of “chemical” minus the rank of “summit” – 1006 – 1002 = 4
Example

<table>
<thead>
<tr>
<th>Number of Occurrences ((n))</th>
<th>Predicted Proportion (\frac{1}{n(n+1)})</th>
<th>Actual Proportion</th>
<th>Actual Number of Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.500</td>
<td>.402</td>
<td>204,357</td>
</tr>
<tr>
<td>2</td>
<td>.167</td>
<td>.132</td>
<td>67,082</td>
</tr>
<tr>
<td>3</td>
<td>.083</td>
<td>.069</td>
<td>35,083</td>
</tr>
<tr>
<td>4</td>
<td>.050</td>
<td>.046</td>
<td>23,271</td>
</tr>
<tr>
<td>5</td>
<td>.033</td>
<td>.032</td>
<td>16,332</td>
</tr>
<tr>
<td>6</td>
<td>.024</td>
<td>.024</td>
<td>12,421</td>
</tr>
<tr>
<td>7</td>
<td>.018</td>
<td>.019</td>
<td>9,766</td>
</tr>
<tr>
<td>8</td>
<td>.014</td>
<td>.016</td>
<td>8,200</td>
</tr>
<tr>
<td>9</td>
<td>.011</td>
<td>.014</td>
<td>6,907</td>
</tr>
<tr>
<td>10</td>
<td>.009</td>
<td>.012</td>
<td>5,893</td>
</tr>
</tbody>
</table>

- Proportions of words occurring \(n\) times in 336,310 TREC documents
- Vocabulary size is 508,209
Vocabulary Growth

• As corpus grows, so does vocabulary size
 – Fewer new words when corpus is already large
• Observed relationship (Heaps’ Law):
 \[v = k \cdot n^\beta \]
 where \(v \) is vocabulary size (number of unique words),
 \(n \) is the number of words in corpus,
 \(k, \beta \) are parameters that vary for each corpus
 (typical values given are \(10 \leq k \leq 100 \) and \(\beta \approx 0.5 \))
AP89 Example
Heaps’ Law Predictions

- Predictions for TREC collections are accurate for large numbers of words
 - e.g., first 10,879,522 words of the AP89 collection scanned
 - prediction is 100,151 unique words
 - actual number is 100,024

- Predictions for small numbers of words (i.e. < 1000) are much worse
GOV2 (Web) Example
Web Example

• Heaps’ Law works with very large corpora
 – new words occurring even after seeing 30 million!
 – parameter values different than typical TREC values

• New words come from a variety of sources
 • spelling errors, invented words (e.g. product, company names), code, other languages, email addresses, etc.

• Search engines must deal with these large and growing vocabularies
Estimating Result Set Size

• How many pages contain all of the query terms?
• For the query “a b c”:
 \[f_{abc} = N \cdot \frac{f_a}{N} \cdot \frac{f_b}{N} \cdot \frac{f_c}{N} = \frac{(f_a \cdot f_b \cdot f_c)}{N^2} \]

 • Assuming that terms occur independently
 • \(f_{abc} \) is the estimated size of the result set
 • \(f_a, f_b, f_c \) are the number of documents that terms a, b, and c occur in
 • \(N \) is the number of documents in the collection
GOV2 Example

<table>
<thead>
<tr>
<th>Word(s)</th>
<th>Document Frequency</th>
<th>Estimated Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>tropical</td>
<td>120,990</td>
<td></td>
</tr>
<tr>
<td>fish</td>
<td>1,131,855</td>
<td></td>
</tr>
<tr>
<td>aquarium</td>
<td>26,480</td>
<td></td>
</tr>
<tr>
<td>breeding</td>
<td>81,885</td>
<td></td>
</tr>
<tr>
<td>tropical fish</td>
<td>18,472</td>
<td>5,433</td>
</tr>
<tr>
<td>tropical aquarium</td>
<td>1,921</td>
<td>127</td>
</tr>
<tr>
<td>tropical breeding</td>
<td>5,510</td>
<td>393</td>
</tr>
<tr>
<td>fish aquarium</td>
<td>9,722</td>
<td>1,189</td>
</tr>
<tr>
<td>fish breeding</td>
<td>36,427</td>
<td>3,677</td>
</tr>
<tr>
<td>aquarium breeding</td>
<td>1,848</td>
<td>86</td>
</tr>
<tr>
<td>tropical fish aquarium</td>
<td>1,529</td>
<td>6</td>
</tr>
<tr>
<td>tropical fish breeding</td>
<td>3,629</td>
<td>18</td>
</tr>
</tbody>
</table>

Collection size \((N)\) is 25,205,179
Result Set Size Estimation

- Poor estimates because words are not independent
- Better estimates possible if co-occurrence information available

\[P(a \cap b \cap c) = P(a \cap b) \cdot P(c | (a \cap b)) \]

\[f_{\text{tropical} \cap \text{fish} \cap \text{aquarium}} = f_{\text{tropical} \cap \text{aquarium}} \cdot \frac{f_{\text{fish} \cap \text{aquarium}}}{f_{\text{aquarium}}} \]
\[= 1921 \cdot \frac{9722}{26480} = 705 \]

\[f_{\text{tropical} \cap \text{fish} \cap \text{breeding}} = f_{\text{tropical} \cap \text{breeding}} \cdot \frac{f_{\text{fish} \cap \text{breeding}}}{f_{\text{breeding}}} \]
\[= 5510 \cdot \frac{36427}{81885} = 2451 \]
Result Set Estimation

• Even better estimates using initial result set
 – Estimate is simply C/s
 • where s is the proportion of the total documents that have been ranked, and C is the number of documents found that contain all the query words
 – E.g., “tropical fish aquarium” in GOV2
 • after processing 3,000 out of the 26,480 documents that contain “aquarium”, $C = 258$
 \[
 f_{tropical \cap fish \cap aquarium} = \frac{258}{(3000 \div 26480)} = 2,277
 \]
 • After processing 20% of the documents,
 \[
 f_{tropical \cap fish \cap aquarium} = 1,778 \quad (1,529 \text{ is real value})
 \]
Estimating Collection Size

• Important issue for Web search engines
• Simple technique: use independence model
 – Given two words a and b that are independent
 \[
 \frac{f_{ab}}{N} = \frac{f_a}{N} \cdot \frac{f_b}{N}
 \]
 \[
 N = (f_a \cdot f_b)/f_{ab}
 \]
 – e.g., for GOV2
 \[
 f_{lincoln} = 771,326 \quad f_{tropical} = 120,990 \quad f_{lincoln \cap tropical} = 3,018
 \]
 \[
 N = (120990 \cdot 771326)/3018 = 30,922,045
 \]
 (actual number is 25,205,179)
Tokenizing

• Forming words from sequence of characters
• Surprisingly complex in English, can be harder in other languages
• Early IR systems:
 – any sequence of alphanumeric characters of length 3 or more
 – terminated by a space or other special character
 – upper-case changed to lower-case
Tokenizing

• Example:
 – “Bigcorp's 2007 bi-annual report showed profits rose 10%.” becomes
 – “bigcorp 2007 annual report showed profits rose”

• Too simple for search applications or even large-scale experiments

• Why? Too much information lost
 – Small decisions in tokenizing can have major impact on effectiveness of some queries
Tokenizing Problems

• Small words can be important in some queries, usually in combinations
 - xp, ma, pm, ben e king, el paso, master p, gm, j lo, world war II

• Both hyphenated and non-hyphenated forms of many words are common
 - Sometimes hyphen is not needed
 - e-bay, wal-mart, active-x, cd-rom, t-shirts
 - At other times, hyphens should be considered either as part of the word or a word separator
 - winston-salem, mazda rx-7, e-cards, pre-diabetes, t-mobile, spanish-speaking
Tokenizing Problems

• Special characters are an important part of tags, URLs, code in documents

• Capitalized words can have different meaning from lower case words
 – Bush, Apple

• Apostrophes can be a part of a word, a part of a possessive, or just a mistake
 – rosie o'donnell, can't, don't, 80's, 1890's, men's straw hats, master's degree, england's ten largest cities, shriner's
Tokenizing Problems

• Numbers can be important, including decimals
 – nokia 3250, top 10 courses, united 93, quicktime 6.5 pro, 92.3 the beat, 288358

• Periods can occur in numbers, abbreviations, URLs, ends of sentences, and other situations
 – I.B.M., Ph.D., cs.umass.edu, F.E.A.R.

• Note: tokenizing steps for queries must be identical to steps for documents
Tokenizing Process

• First step is to use parser to identify appropriate parts of document to tokenize
• Defer complex decisions to other components
 – word is any sequence of alphanumeric characters, terminated by a space or special character, with everything converted to lower-case
 – everything indexed
 – example: 92.3 → 92 3 but search finds documents with 92 and 3 adjacent
 – incorporate some rules to reduce dependence on query transformation components
Tokenizing Process

• Not that different than simple tokenizing process used in past

• Examples of rules used with TREC
 – Apostrophes in words ignored
 • o’connor → oconnor bob’s → bobs
 – Periods in abbreviations ignored
 • I.B.M. → ibm Ph.D. → ph d
Stopping

• Function words (determiners, prepositions) have little meaning on their own
• High occurrence frequencies
• Treated as stopwords (i.e. removed)
 – reduce index space, improve response time, improve effectiveness
• Can be important in combinations
 – e.g., “to be or not to be”
Stopping

• Stopword list can be created from high-frequency words or based on a standard list
• Lists are customized for applications, domains, and even parts of documents
 – e.g., “click” is a good stopword for anchor text
• Best policy is to index all words in documents, make decisions about which words to use at query time
Stemming

• Many morphological variations of words
 – *inflectional* (plurals, tenses)
 – *derivational* (making verbs nouns etc.)
• In most cases, these have the same or very similar meanings (but cf. “building”)
• Stemmers attempt to reduce morphological variations of words to a common stem
 – morphology: many-many; stemming: many-one
 – usually involves removing suffixes
• Can be done at indexing time or as part of query processing (like stopwords)
Stemming

• Generally a small but significant effectiveness improvement
 – can be crucial for some languages
 – e.g., 5-10% improvement for English, up to 50% in Arabic

<table>
<thead>
<tr>
<th>kitab</th>
<th>a book</th>
</tr>
</thead>
<tbody>
<tr>
<td>kitabi</td>
<td>my book</td>
</tr>
<tr>
<td>alkitab</td>
<td>the book</td>
</tr>
<tr>
<td>kitabuki</td>
<td>your book (f)</td>
</tr>
<tr>
<td>kitabuka</td>
<td>your book (m)</td>
</tr>
<tr>
<td>katabu</td>
<td>his book</td>
</tr>
<tr>
<td>kataba</td>
<td>to write</td>
</tr>
<tr>
<td>maktaba</td>
<td>library, bookstore</td>
</tr>
<tr>
<td>maktab</td>
<td>office</td>
</tr>
</tbody>
</table>

Words with the Arabic root **ktb**
Stemming

• Two basic types
 – Dictionary-based: uses lists of related words
 – Algorithmic: uses program to determine related words

• Algorithmic stemmers
 – *suffix-s*: remove ‘s’ endings assuming plural
 • e.g., cats \rightarrow cat, lakes \rightarrow lake, wiis \rightarrow wii
 • Many *false negatives*: supplies \rightarrow supplie
 • Some *false positives*: ups \rightarrow up
Porter Stemmer

• Algorithmic stemmer used in IR experiments since the 70s
• Consists of a series of rules designed to the longest possible suffix at each step
• Effective in TREC
• Produces stems not words
• Makes a number of errors and difficult to modify
Porter Stemmer

• Example step (1 of 5)

Step 1a:

- Replace *sses* by *ss* (e.g., stresses → stress).
- Delete *s* if the preceding word part contains a vowel not immediately before the *s* (e.g., gaps → gap but gas → gas).
- Replace *ied* or *ies* by *i* if preceded by more than one letter, otherwise by *ie* (e.g., ties → tie, cries → cri).
- If suffix is *us* or *ss* do nothing (e.g., stress → stress).

Step 1b:

- Replace *eed, eedly* by *ee* if it is in the part of the word after the first non-vowel following a vowel (e.g., agreed → agree, feed → feed).
- Delete *ed, edly, ing, ingly* if the preceding word part contains a vowel, and then if the word ends in *at, bl, or iz* add *e* (e.g., fished → fish, pirating → pirate), or if the word ends with a double letter that is not *ll, ss* or *zz*, remove the last letter (e.g., falling → fall, dripping → drip), or if the word is short, add *e* (e.g., hoping → hope).
- Whew!
Porter Stemmer

<table>
<thead>
<tr>
<th>False positives</th>
<th>False negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>organization/organ</td>
<td>european/europe</td>
</tr>
<tr>
<td>generalization/generic</td>
<td>cylinder/cylindrical</td>
</tr>
<tr>
<td>numerical/numerous</td>
<td>matrices/matrix</td>
</tr>
<tr>
<td>policy/police</td>
<td>urgency/urgent</td>
</tr>
<tr>
<td>university/universe</td>
<td>create/creation</td>
</tr>
<tr>
<td>addition/additive</td>
<td>analysis/analyses</td>
</tr>
<tr>
<td>negligible/negligent</td>
<td>useful/usefully</td>
</tr>
<tr>
<td>execute/execute</td>
<td>noise/noisy</td>
</tr>
<tr>
<td>past/paste</td>
<td>decompose/decomposition</td>
</tr>
<tr>
<td>ignore/ignorant</td>
<td>sparse/sparsity</td>
</tr>
<tr>
<td>special/specialized</td>
<td>resolve/resolution</td>
</tr>
<tr>
<td>head/heading</td>
<td>triangle/triangular</td>
</tr>
</tbody>
</table>

- Porter2 stemmer addresses some of these issues
- Approach has been used with other languages
Krovetz Stemmer

• Hybrid algorithmic-dictionary
 – Word checked in dictionary
 • If present, either left alone or replaced with “exception”
 • If not present, word is checked for suffixes that could be removed
 • After removal, dictionary is checked again

• Produces words not stems

• Comparable effectiveness

• Lower false positive rate, somewhat higher false negative
Stemmer Comparison

Original text:
Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.

Porter stemmer:
document describe market strategi carri compani agricultur chemic report predict market share chemic report market statist agrochem pesticid herbicid fungicid insecticid fertil predict sale market share stimul demand price cut volum sale

Krovetz stemmer:
document describe marketing strategy carry company agriculture chemical report prediction market share chemical report market statistic agrochem pesticide herbicide fungicide insecticide fertilizer predict sale stimulate demand price cut volume sale
Phrases

• Many queries are 2-3 word phrases

• Phrases are
 – More precise than single words
 • e.g., documents containing “black sea” vs. two words “black” and “sea”
 – Less ambiguous
 • e.g., “big apple” vs. “apple”

• Can be difficult for ranking
 • e.g., Given query “fishing supplies”, how do we score documents with
 – exact phrase many times, exact phrase just once, individual words in same sentence, same paragraph, whole document, variations on words?
Phrases

• Text processing issue – how are phrases recognized?

• Three possible approaches:
 – Identify syntactic phrases using a part-of-speech (POS) tagger
 – Use word n-grams
 – Store word positions in indexes and use proximity operators in queries
POS Tagging

• POS taggers use statistical models of text to predict syntactic tags of words
 – Example tags:
 • NN (singular noun), NNS (plural noun), VB (verb), VBD (verb, past tense), VBN (verb, past participle), IN (preposition), JJ (adjective), CC (conjunction, e.g., “and”, “or”), PRP (pronoun), and MD (modal auxiliary, e.g., “can”, “will”).

• Phrases can then be defined as simple noun groups, for example
Pos Tagging Example

Original text:
Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.

Brill tagger:
Document/NN will/MD describe/VB marketing/NN strategies/NNS carried/VBD out/IN by/IN U.S./NNP companies/NNS for/IN their/PRP agricultural/JJ chemicals/NNS ./, or/CC report/NN market/NN statistics/NNS for/IN market/NN share/NN of/IN such/JJ chemicals/NNS ./, predicted/VBN sales/NNS ./, market/NN share/NN ./, stimulate/VB demand/NN ./, price/NN cut/NN ./, volume/NN of/IN sales/NNS ./.
Example Noun Phrases

<table>
<thead>
<tr>
<th>TREC data</th>
<th>Phrase</th>
<th>Frequency</th>
<th>Patent data</th>
<th>Phrase</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Phrase</td>
<td></td>
<td>Frequency</td>
<td>Phrase</td>
<td></td>
</tr>
<tr>
<td>65824</td>
<td>united states</td>
<td>975362</td>
<td>present invention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61327</td>
<td>article type</td>
<td>191625</td>
<td>u.s. pat</td>
<td>preferred embodiment</td>
<td>147352</td>
</tr>
<tr>
<td>33864</td>
<td>los angeles</td>
<td>95097</td>
<td>carbon atoms</td>
<td>group consisting</td>
<td></td>
</tr>
<tr>
<td>18062</td>
<td>hong kong</td>
<td>87903</td>
<td>room temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17788</td>
<td>north korea</td>
<td>81809</td>
<td>seq id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17308</td>
<td>new york</td>
<td>78458</td>
<td>brief description</td>
<td>prior art</td>
<td></td>
</tr>
<tr>
<td>15513</td>
<td>san diego</td>
<td>59828</td>
<td>perspective view</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15009</td>
<td>orange county</td>
<td>58724</td>
<td>first embodiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12869</td>
<td>prime minister</td>
<td>56715</td>
<td>reaction mixture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12799</td>
<td>first time</td>
<td>54619</td>
<td>detailed description</td>
<td>ethyl acetate</td>
<td></td>
</tr>
<tr>
<td>12067</td>
<td>soviet union</td>
<td>54117</td>
<td>ethyl acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10811</td>
<td>russian federation</td>
<td>52195</td>
<td>example 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9912</td>
<td>united nations</td>
<td>52003</td>
<td>block diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8127</td>
<td>southern california</td>
<td>46299</td>
<td>second embodiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7640</td>
<td>south korea</td>
<td>41694</td>
<td>accompanying drawings</td>
<td>output signal</td>
<td></td>
</tr>
<tr>
<td>7620</td>
<td>end recording</td>
<td>40554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7524</td>
<td>european union</td>
<td>37911</td>
<td>first end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7436</td>
<td>south africa</td>
<td>35827</td>
<td>second end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7362</td>
<td>san francisco</td>
<td>34881</td>
<td>appended claims</td>
<td>distal end</td>
<td></td>
</tr>
<tr>
<td>7086</td>
<td>news conference</td>
<td>33947</td>
<td>peace process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6792</td>
<td>city council</td>
<td>32338</td>
<td>human rights</td>
<td>cross-sectional view</td>
<td></td>
</tr>
<tr>
<td>6348</td>
<td>middle east</td>
<td>30193</td>
<td>white house</td>
<td>outer surface</td>
<td></td>
</tr>
</tbody>
</table>
Word N-Grams

- POS tagging can be slow for large collections
- Simpler definition – phrase is any sequence of n words – known as n-grams
 - bigram: 2 word sequence, trigram: 3 word sequence, unigram: single words
 - N-grams also used at character level for applications such as OCR
- N-grams typically formed from overlapping sequences of words
 - i.e. move n-word “window” one word at a time in document
N-Grams

• Frequent n-grams are more likely to be meaningful phrases
• N-grams form a Zipf distribution
 – Better fit than words alone
• Could index all n-grams up to specified length
 – Much faster than POS tagging
 – Uses a lot of storage
 • e.g., document containing 1,000 words would contain 3,990 instances of word n-grams of length $2 \leq n \leq 5$
Google N-Grams

• Web search engines index n-grams
• Google sample (frequency > 40):

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tokens</td>
<td>1,024,908,267,229</td>
</tr>
<tr>
<td>Number of sentences</td>
<td>95,119,665,584</td>
</tr>
<tr>
<td>Number of unigrams</td>
<td>13,588,391</td>
</tr>
<tr>
<td>Number of bigrams</td>
<td>314,843,401</td>
</tr>
<tr>
<td>Number of trigrams</td>
<td>977,069,902</td>
</tr>
<tr>
<td>Number of fourgrams</td>
<td>1,313,818,354</td>
</tr>
<tr>
<td>Number of fivegrams</td>
<td>1,176,470,663</td>
</tr>
</tbody>
</table>

• Most frequent trigram in English is “all rights reserved”
 – In Chinese, “limited liability corporation”
Document Structure and Markup

• Some parts of documents are more important than others

• Document parser recognizes structure using markup, such as HTML tags
 – Headers, anchor text, bolded text all likely to be important
 – Metadata can also be important
 – Links used for *link analysis*
Tropical fish

From Wikipedia, the free encyclopedia

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species. Fishkeepers often use the term tropical fish to refer only those requiring fresh water, with saltwater tropical fish referred to as marine fish.

Tropical fish are popular aquarium fish, due to their often bright coloration. In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.
Example Web Page

<html>
<head>
<meta name="keywords" content="Tropical fish, Airstone, Albinism, Algae eater, Aquarium, Aquarium fish feeder, Aquarium furniture, Aquascaping, Bath treatment (fishkeeping), Berlin Method, Biotope" />

<title>Tropical fish - Wikipedia, the free encyclopedia</title>
</head>
<body>

<h1 class="firstHeading">Tropical fish</h1>

<p>Tropical fish include a href="/wiki/Fish" title="Fish">fish found in a href="/wiki/Tropics" title="Tropics">tropical environments around the world, including both a href="/wiki/Fresh_water" title="Fresh water">freshwater and a href="/wiki/Sea_water" title="Sea water">salt water species. a href="/wiki/Fishkeeping" title="Fishkeeping">Fishkeepers often use the term <i>tropical fish</i> to refer only those requiring fresh water, with saltwater tropical fish referred to as <i>a href="/wiki/List_of_marine_aquarium_fish_species" title="List of marine aquarium fish species">marine fish</i>.</p>

<p>Tropical fish are popular a href="/wiki/Aquarium" title="Aquarium">aquarium fish, due to their often bright coloration. In freshwater fish, this coloration typically derives from a href="/wiki/Iridescence" title="Iridescence">iridescence, while salt water fish are generally a href="/wiki/Pigment" title="Pigment">pigmented.</p>

</body></html>
Link Analysis

• Links are a key component of the Web
• Important for navigation, but also for search
 – e.g., Example website
 – “Example website” is the anchor text
 – “http://example.com” is the destination link
 – both are used by search engines
Exercise: Link Analysis

• Assumption 1: A link on the web is a quality signal – the author of the link thinks that the linked-to page is high-quality.

• Assumption 2: The anchor text describes the content of the linked-to page.

• Is assumption 1 true in general?

• Is assumption 2 true in general?
Anchor Text

• Used as a description of the content of the destination page
 — i.e., collection of anchor text in all links pointing to a page used as an additional text field
• Anchor text tends to be short, descriptive, and similar to query text
• Retrieval experiments have shown that anchor text has significant impact on effectiveness for some types of queries
 — i.e., more than PageRank
PageRank

• Billions of web pages, some more informative than others

• Links can be viewed as information about the *popularity* (*authority?*) of a web page
 – can be used by ranking algorithm

• *Inlink* count could be used as simple measure

• Link analysis algorithms like PageRank provide more reliable ratings
 – less susceptible to link spam
Random Surfer Model

• Browse the Web using the following algorithm:
 – Choose a random number \(r \) between 0 and 1
 – If \(r < \lambda \):
 • Go to a random page
 – If \(r \geq \lambda \):
 • Click a link at random on the current page
 – Start again

• PageRank of a page is the probability that the “random surfer” will be looking at that page
 – links from popular pages will increase PageRank of pages they point to
Dangling Links

• Random jump prevents getting stuck on pages that
 – do not have links
 – contains only links that no longer point to other pages
 – have links forming a loop

• Links that point to the first two types of pages are called *dangling links*
 – may also be links to pages that have not yet been crawled
PageRank

- PageRank \((PR)\) of page \(C\) = \(PR(A)/2 + PR(B)/1\)
- More generally,

\[
PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L_v}
\]

- where \(B_u\) is the set of pages that point to \(u\), and \(L_v\) is the number of outgoing links from page \(v\) (not counting duplicate links)
PageRank

• Don’t know PageRank values at start
• Assume equal values (1/3 in this case), then iterate:
 – first iteration: \(PR(C) = \frac{0.33}{2} + 0.33 = 0.5 \), \(PR(A) = 0.33 \), and \(PR(B) = 0.17 \)
 – second: \(PR(C) = \frac{0.33}{2} + 0.17 = 0.33 \), \(PR(A) = 0.5 \), \(PR(B) = 0.17 \)
 – third: \(PR(C) = 0.42 \), \(PR(A) = 0.33 \), \(PR(B) = 0.25 \)
• Converges to \(PR(C) = 0.4 \), \(PR(A) = 0.4 \), and \(PR(B) = 0.2 \)
PageRank

• Taking random page jump into account, 1/3 chance of going to any page when \(r < \lambda \)

• \(PR(C) = \frac{\lambda}{3} + (1 - \lambda) \cdot (PR(A)/2 + PR(B)/1) \)

• More generally,

\[
PR(u) = \frac{\lambda}{N} + (1 - \lambda) \cdot \sum_{v \in B_u} \frac{PR(v)}{L_v}
\]

– where \(N \) is the number of pages, \(\lambda \) typically 0.15
procedure \textsc{PageRank}(G) \\
\quad \triangleright G \text{ is the web graph, consisting of vertices (pages) and edges (links).} \\
\quad (P, L) \leftarrow G \quad \triangleright \text{Split graph into pages and links} \\
\quad I \leftarrow \text{a vector of length } |P| \quad \triangleright \text{The current PageRank estimate} \\
\quad R \leftarrow \text{a vector of length } |P| \quad \triangleright \text{The resulting better PageRank estimate} \\
\quad \textbf{for all entries } I_i \in I \textbf{ do} \\
\quad \quad I_i \leftarrow 1/|P| \quad \triangleright \text{Start with each page being equally likely} \\
\quad \textbf{end for} \\
\quad \textbf{while } R \text{ has not converged do} \\
\quad \quad \textbf{for all entries } R_i \in R \textbf{ do} \\
\quad \quad \quad R_i \leftarrow \lambda/|P| \quad \triangleright \text{Each page has a } \lambda/|P| \text{ chance of random selection} \\
\quad \quad \textbf{end for} \\
\quad \quad \textbf{for all pages } p \in P \textbf{ do} \\
\quad \quad \quad Q \leftarrow \text{the set of pages such that } (p, q) \in L \text{ and } q \in P \\
\quad \quad \quad \textbf{if } |Q| \geq 0 \textbf{ then} \\
\quad \quad \quad \quad \textbf{for all pages } q \in Q \textbf{ do} \\
\quad \quad \quad \quad \quad R_q \leftarrow R_q + (1-\lambda)I_p/|Q| \quad \triangleright \text{Probability } I_p \text{ of being at page } p \\
\quad \quad \quad \quad \textbf{end for} \\
\quad \quad \quad \textbf{else} \\
\quad \quad \quad \quad \textbf{for all pages } q \in P \textbf{ do} \\
\quad \quad \quad \quad \quad R_q \leftarrow R_q + (1-\lambda)I_p/|P| \\
\quad \quad \quad \quad \textbf{end for} \\
\quad \quad \quad \textbf{end if} \\
\quad \quad \textbf{end for} \\
\quad \textbf{end while} \\
\quad \textbf{return } R \\
\textbf{end procedure}
A PageRank Implementation

• Preliminaries:
 – 1) Extract links from the source text. You'll also want to extract the URL from each document in a separate file. Now you have all the links (source-destination pairs) and all the source documents
 – 2) Remove all links from the list that do not connect two documents in the corpus. The easiest way to do this is to sort all links by destination, then compare that against the corpus URLs list (also sorted)
 – 3) Create a new file I that contains a (url, pagerank) pair for each URL in the corpus. The initial PageRank value is 1/#D (#D = number of urls)

• At this point there are two interesting files:
 – [L] links (trimmed to contain only corpus links, sorted by source URL)
 – [I] URL/PageRank pairs, initialized to a constant
A PageRank Implementation

- Preliminaries - Link Extraction from .corpus file using Galago

 `DocumentSplit -> IndexReaderSplitParser -> TagTokenizer`

 `split = new DocumentSplit (filename, filetype, new byte[0], new byte[0])`

 `index = new IndexReaderSplitParser (split)`

 `tokenizer = new.TagTokenizer ()`

 `tokenizer.setProcessor (NullProcessor (Document.class))`

 `doc = index.nextDocument ()`

 `tokenizer.process (doc)`

 - `doc.identifier` contains the file’s name
 - `doc.tags` now contains all tags
 - Links can be extracted by finding all tags with name “a”
 - Links should be processed so that they can be compared with some file name in the corpus
A PageRank Implementation

Iteration:
• Steps:
 1. Make a new output file, R.
 2. Read L and I in parallel (since they're all sorted by URL).
 3. For each unique source URL, determine whether it has any outgoing links:
 4. If not, add its current PageRank value to the sum: T (terminals).
 5. If it does have outgoing links, write (source_url, dest_url, Ip/|Q|), where Ip is the current PageRank value, |Q| is the number of outgoing links, and dest_url is a link destination. Do this for all outgoing links. Write this to R.
 6. Sort R by destination URL.
 7. Scan R and I at the same time. The new value of Rp is: (1 - lambda) / #D (a fraction of the sum of all pages) plus: lambda * sum(T) / #D (the total effect from terminal pages), plus: lambda * all incoming mass from step 5. ()
 8. Check for convergence
 9. Write new Rp values to a new I file.
A PageRank Implementation

• Convergence check
 – Stopping criteria for this types of PR algorithm typically is of the form $||\text{new} - \text{old}|| < \tau$ where new and old are the new and old PageRank vectors, respectively.
 – τ is set depending on how much precision you need. Reasonable values include 0.1 or 0.01. If you want really fast, but inaccurate convergence, then you can use something like $\tau=1$.
 – The setting of τ also depends on N (= number of documents in the collection), since $||\text{new-old}||$ (for a fixed numerical precision) increases as N increases, so you can alternatively formulate your convergence criteria as $||\text{new} - \text{old}|| / N < \tau$.
 – Either the L1 or L2 norm can be used.
Link Quality

• Link quality is affected by spam and other factors
 – e.g., *link farms* to increase PageRank
 – *trackback links* in blogs can create loops
 – links from comments section of popular blogs
 • Blog services modify comment links to contain `rel=nofollow` attribute
 • e.g., “Come visit my web page.”
Trackback Links

Blog A

Post a

Link

Blog B

Post b

Trackback links