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Social Search
• Social search

✤ Communities of users actively participating in 
the search process

✤ Goes beyond classical search tasks

• Key differences

✤ Users interact with the system

✤ Users interact with other users either implicitly 
or explicitly



Web 2.0
• Social search includes, but is not limited to, the so-called social 

media sites

✤ Collectively referred to as “Web 2.0” as opposed to the 
classical notion of the Web (“Web 1.0”)

• Social media sites

✤ User generated content

✤ Users can tag their own and other’s content

✤ Users can share favorites, tags, etc., with others

• Examples (from the last 10 years):

✤ Digg, Twitter, Flickr, YouTube, Del.icio.us, CiteULike, 
MySpace, Facebook, and LinkedIn



Social Search

• User tagging (i.e., manual indexing)

• Searching within communities

• Filtering and recommender systems

• Distributed search

✤ Peer-to-peer (P2P, not covered here)

✤ Metasearch (if there’s time)



User Tags and Manual Indexing

• Then: Library card catalogs

✤ Indexing terms chosen with search in mind

✤ Experts generate indexing terms

✤ Terms are very high quality

✤ Terms chosen from controlled vocabulary

• Now: Social media tagging

✤ Tags not always chosen with search in mind

✤ Users generate tags

✤ Tags can be noisy or even incorrect

✤ Tags chosen from folksonomies



Expert Cataloguing
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Social Tagging



Some Categories of Tags

• Content-based: cherry blossoms, car

• Context-based: Washington, DC

• Attributes: Nikon, B&W

• Subjective: delicious, awesome

• Organizational: to_read



Searching Tags

• Searching user tags is challenging

✤ Most items have only a few tags

✤ Tags are very short

• Boolean, probabilistic, vector space, and 
language modeling will fail if use naïvely

• Must overcome the vocabulary mismatch 
problem between the query and tags



Tag Expansion
• Can overcome vocabulary mismatch problem by 

expanding tag representation with external 
knowledge

• Possible external sources

✤ Thesaurus

✤ Web search results

✤ Query logs

• After tags have been expanded, can use standard 
retrieval models



Tag Expansion



Searching Tags

• Even with tag expansion, searching tags is 
challenging

• Tags are inherently noisy and incorrect

• Many items may not even be tagged!

• Typically easier to find popular items with 
many tags than less popular items with few/
no tags



Inferring Missing Tags

• How can we automatically tag items with 
few or no tags?

• Uses of inferred tags

✤ Improved tag search

✤ Automatic tag suggestion



Inferring Tags

• TF.IDF

✤ Suggest tags that have a high TF.IDF weight in the item

✤ Only works for textual items

• Classification

✤ Train binary classifier for each tag

✤ Performs well for popular tags, but not as well for rare tags

• Maximal marginal relevance

✤ Finds tags that are relevant to the item and novel with 
respect to existing tags

Methods�for�Inferring�Tags

• TF.IDF
– Suggest�tags�that�have�a�high�TF.IDF�weight�in�the�item
– Only�works�for�textual�items

• Classification
– Train�binary�classifier�for�each�tag
– Performs�well�for�popular�tags,�but�not�as�well�for�rare�
tags

• Maximal�marginal�relevance
– Finds�tags�that�are�relevant�to�the�item�and�novel�with�
respect�to�existing�tags

–



Browsing & Tag Clouds
• Search is useful for finding items of interest

• Browsing is more useful for exploring collections of 
tagged items

• Various ways to visualize collections of tags

✤ Tag lists

✤ Tag clouds

✤ Alphabetical order

✤ Grouped by category

✤ Formatted/sorted according to popularity



Tag Clouds



Searching within 
Communities
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Retrieving Social Data

Seo, Croft, Smith IR 2011
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Finding Communities

• How can we find users with common interests?

• How can we find documents on a common 
topic?

• Graph clustering

• Hypertext Induced Topic Search (HITS)

✤ Nodes may be Hubs or Authorities

✤ Iterative solution



HITS Algorithm



HITS Iteration



Clustering Nodes



EM Clustering (for k clusters)
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EM Clustering (for k clusters)

§ EM algorithm 
§ Viterbi version – called “k-means clustering” 
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

§ Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

§ Parameters: k points representing cluster centers
§ Hidden structure: for each data point (word type),  

which center generated it?



Searching with Communities

• Identify communities

✤ Graph clustering

✤ Hypertext induced topic search

• Exploiting community knowledge

✤ Authorities in HITS graph

✤ Explicit question answering and feedback

✤ Bonus: Training data for retrieval models
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Community QA

• Pros

✤ Answers to complex information needs

✤ Compare multiple opinions

✤ Feedback, interaction with others

• Cons

✤ Latency

✤ All the drawbacks of human interaction



Community QA



Community QA

GIGO?



IR in Communities

• How to match queries to community QA 
(or forums, or other social media)?

✤ Match query to questions, answers, both?

✤ Generally more effective to match 
questions

• Questions, and other posts, are short

• More problems with vocabulary mismatch



Retrieval as Translation



Retrieval as Translation
Naive translation model
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Retrieval as Translation
Naive translation model

Interpolation with 
language model

Example “translations”

How to estimate P(w|t)?
Q/A pairs!



Collaborative Search

The community searches together

Shared queries, results, relevance 
judgments, etc.



Filtering 
and 

Recommending



Filtering and Recommending
• User profiles the fundamental data structure

✤ Profiles can be static or dynamic

✤ Query features + user/social features

• Filtering

✤ Canonical case: query an endless stream

• Recommending (a.k.a. “collaborative filtering”)

✤ Jointly infer relevance from lots of profiles



Static Filtering



Adaptive Filtering



Filtering Models



Filtering Models
Profile model
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Filtering Models
Profile model

Document model

Relevance (adaptive) model

Kullback-Leibler divergence



Scaling and Evaluation

• Treat profiles as “documents” and index them

• Treat incoming documents as queries

• Tradeoffs vary by 
application

Relevant
Non-

relevant
Retrieved TP FP

Not 
retrieved FN TN



Recommending



Recommending
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Recommending

Imagine there’s only one 
document/product

Similar users probably make 
similar judgments and have similar 

tastes

User without mainstream tastes?



Rating by Distance

• Cluster users based on overall rating 
similarity (or other features)

✤ Assign unknown ratings the cluster average

• Average nearest neighbors



Evaluating Recommenders

• Exact-match accuracy (usually too harsh)

• Absolute error

• Mean squared error

• Other task-dependent measures


