
Gaussian Mixture Models For 
Clustering Data 

Soft Clustering and the EM Algorithm 



K-Means Clustering 

• Input:  
– Observations:     𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑        ∀𝑖𝑖 ∈ {1, … . ,𝑁𝑁} 
– Number of Clusters: 𝑘𝑘 

 

• Output: 
– Cluster Assignments. 
– Cluster Centroids:    𝜇𝜇𝑗𝑗 ∈ ℝ𝑑𝑑        ∀𝑗𝑗 ∈ {1, … . , 𝑘𝑘} 



K-Means Clustering 

• Let 𝑧𝑧𝑖𝑖  be a binary vector of 
dimension ‘k’ associated with 
each observation. 

• If the 𝑖𝑖𝑡𝑡𝑡 observation belongs 
to the 𝑗𝑗𝑡𝑡𝑡 cluster then 𝑧𝑧𝑖𝑖𝑗𝑗 = 1 
and all other components of z 
are zero.  

• Thus, z can be considered as a 
cluster label vector associated 
with each observation. 

Cluster-1 

Cluster-2 

Cluster-3 

1 0 0 

0 0 1 

1-of-k representation for cluster assignment. 



K-Means Clustering 

• We can now cast k-means as a minimization problem with the 
objective function: 

   
 
 
 
 
 

• We need to find 𝑧𝑧𝑛𝑛𝑛𝑛 and 𝜇𝜇𝑛𝑛 that minimize J. 
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K-Means Clustering 

• Minimizing this function w.r.t  𝑧𝑧𝑛𝑛𝑛𝑛 : 
– All n points are independent can optimize each one independently. 
– Choose 𝑧𝑧𝑛𝑛𝑛𝑛 to be 1 for whichever value k gives the minimum value of 

the squared distance. 
– Assign the current observation to the nearest cluster center. 

 

• Minimizing this function w.r.t  𝜇𝜇𝑛𝑛 : 
– Take the derivative of J w.r.t 𝜇𝜇𝑛𝑛 and equate to zero. 

 

𝜇𝜇𝑛𝑛 =
∑ 𝑧𝑧𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑁𝑁
𝑛𝑛=1
∑ 𝑧𝑧𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1

 

 

 



Finally! 

• Iterative Algorithm For K-Means: 
– Initialize k centroids. 
– Repeat till convergence: 

• Calculate 𝑧𝑧𝑛𝑛𝑛𝑛 
• Update 𝜇𝜇𝑛𝑛 



Example 

 
• Looking for 

two clusters. 
 

• Initialize the 
centroids. 
(The blue 
and the red 
crosses). 
 

-2 0 2

-2

0

2



Example 

 
 
 

• Calculate the 
cluster 
assignments. 
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Example 

 
 

• Re-calculate 
the centroids 
based on the 
new cluster 
assignments. 
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Iteration -2 New 𝑧𝑧𝑛𝑛𝑛𝑛  
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Iteration -2 New 𝑧𝑧𝑛𝑛𝑛𝑛  New 𝜇𝜇𝑛𝑛  

New Blue Centroid 
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Iteration -2 New 𝑧𝑧𝑛𝑛𝑛𝑛  New 𝜇𝜇𝑛𝑛  

New Blue Centroid 
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Iteration -3 
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Iteration -2 New 𝑧𝑧𝑛𝑛𝑛𝑛  New 𝜇𝜇𝑛𝑛  

New Blue Centroid 
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Iteration -3 Final Results 



Minimizing the Objective Function 
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Terminology 

• Model Parameters (𝜃𝜃 = {𝜇𝜇1….𝑛𝑛}) 
– The centroids. 

• Complete Data (𝑦𝑦 = {𝑥𝑥1..𝑛𝑛, 𝑧𝑧1..𝑛𝑛}) 
– The observations along with the cluster assignments. 

• Incomplete Data (𝑥𝑥1..𝑛𝑛) 
– Only the observations. 

 

• In clustering problems we only have 
incomplete data and need to find estimates 
for both 𝜃𝜃 and 𝑧𝑧1..𝑛𝑛. 



Dissecting the K-Means Algorithm 

• There is a cyclic dependency between 
the model parameters and the cluster 
assignments. 

• Initially we guess the model parameters. 
• Based on this guess we estimate new 

cluster assignments. 
• Which in turn impacts the model 

parameters which are then re-estimated.  

Initialize Model 
Parameters 

Estimate Cluster 
Assignments 

Estimate New Model 
Parameters 

𝜃𝜃(𝑜𝑜𝑜𝑜𝑑𝑑) 

𝜃𝜃(𝑛𝑛𝑛𝑛𝑛𝑛) 
𝑧𝑧𝑛𝑛𝑛𝑛 



Dissecting the K-Means Algorithm 

• There is a cyclic dependency between 
the model parameters and the cluster 
assignments. 

• Initially we guess the model parameters. 
• Based on this guess we estimate new 

cluster assignments. 
• Which in turn impacts the model 

parameters which are then re-estimated.  

Initialize Model 
Parameters 

Estimate Cluster 
Assignments 

Estimate New Model 
Parameters 

𝜃𝜃(𝑜𝑜𝑜𝑜𝑑𝑑) 

𝜃𝜃(𝑛𝑛𝑛𝑛𝑛𝑛) 
𝑧𝑧𝑛𝑛𝑛𝑛 

E-Step 
M-Step 
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Another Problem 
• K-Means makes hard guesses 

for cluster assignment. 
 

• For some cases our model 
may not be sure about exact 
cluster assignment. 
 

• Can we make this 
probabilistic so that 𝑧𝑧𝑛𝑛𝑛𝑛 
defines the probability that 
the 𝑛𝑛𝑡𝑡𝑡 observation belongs 
to the 𝑘𝑘𝑡𝑡𝑡 cluster? 
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Another Problem 
• K-Means makes hard guesses 

for cluster assignment. 
 

• For some cases our model 
may not be sure about exact 
cluster assignment. 
 

• Can we make this 
probabilistic so that 𝑧𝑧𝑛𝑛𝑛𝑛 
defines the probability that 
the 𝑛𝑛𝑡𝑡𝑡 observation belongs 
to the 𝑘𝑘𝑡𝑡𝑡 cluster? 

 
?? 



Probabilistic Clustering 

• Lets place a Gaussian centered at each of the means 
discovered by K-Means (assume we know the covariance). 
 

• Since we have run the k-means algorithm we have access to 
complete data i.e. 𝑦𝑦 = {𝑥𝑥1..𝑛𝑛, 𝑧𝑧1..𝑛𝑛} 
 

• The probability of the complete data is: 

𝑃𝑃 𝑋𝑋,𝑍𝑍 𝜃𝜃 = ��{𝜋𝜋𝑛𝑛 ∙ 𝒩𝒩(𝜇𝜇𝑛𝑛 , Σ𝑛𝑛) }𝑧𝑧𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛

 

Complete Data Likelihood 



Probabilistic Clustering 
• We don’t know the value of Z for our data, they are 

missing/hidden/latent. Need to get rid of Z to calculate the data 
likelihood: 

                     𝑃𝑃 𝑋𝑋 𝜃𝜃 =  ∑ 𝑃𝑃(𝑋𝑋,𝑍𝑍|𝜃𝜃)𝑍𝑍     (Marginalize it out) 
 

• Lets see what happens to our complete data likelihood when we 
marginalize out Z. 
 

�𝑃𝑃 𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖 𝜃𝜃
𝑧𝑧𝑖𝑖

= � �{𝜋𝜋𝑛𝑛𝑁𝑁(𝑥𝑥𝑖𝑖|𝜇𝜇𝑛𝑛 ,Σ𝑛𝑛)}𝑧𝑧𝑖𝑖𝑛𝑛
𝑛𝑛𝑧𝑧𝑖𝑖

 

 

𝑃𝑃 𝑥𝑥𝑖𝑖 𝜃𝜃 = �𝜋𝜋𝑛𝑛𝑁𝑁(𝑥𝑥𝑖𝑖|𝜇𝜇𝑛𝑛 ,Σ𝑛𝑛)
𝑛𝑛

 

 
 

 



Gaussian Mixture Model 
• Data generated from a mixture distribution: 

– 𝑃𝑃 𝑥𝑥 =  ∑ 𝜋𝜋𝑛𝑛𝑁𝑁(𝑥𝑥|𝜇𝜇𝑛𝑛 , Σ𝑛𝑛)𝐾𝐾
𝑛𝑛=1  

– Linear superposition of k Gaussians. 
– Added constraints:  

• 0 ≤ 𝜋𝜋𝑛𝑛 ≤ 1  and ∑ 𝜋𝜋𝑛𝑛𝐾𝐾
𝑛𝑛=1 = 1  (Multinomial Distribution). 

 

• Generating Data: 
– Pick one of the Gaussian randomly with probability 𝜋𝜋𝑛𝑛. 
– Sample the value from the Gaussian centered at 𝜇𝜇𝑛𝑛. 

 
• Parameters of GMM: 

– 𝜃𝜃 = {𝜋𝜋1..𝑛𝑛 ,𝜇𝜇1..𝑛𝑛 ,Σ1..𝑛𝑛}. 

 



Estimating the Parameters 
• We want to estimate our model parameters such that the 

probability of the data being generated by the model is 
maximized. 

𝜃𝜃 = arg max𝑃𝑃(𝑋𝑋|𝜃𝜃) 
     which is equivalent to: 

𝜃𝜃 = arg max  log (𝑃𝑃 𝑋𝑋 𝜃𝜃 ) 
 

• Lets apply this to our incomplete-data likelihood: 
𝑃𝑃 𝑋𝑋 𝜃𝜃 =  � �𝜋𝜋𝑛𝑛𝑁𝑁(𝑥𝑥𝑛𝑛|𝜇𝜇𝑛𝑛 ,Σ𝑛𝑛)

𝑛𝑛𝑛𝑛

 

 

log (𝑃𝑃 𝑋𝑋 𝜃𝜃 ) = � log �𝜋𝜋𝑛𝑛𝑁𝑁(𝑥𝑥𝑛𝑛|𝜇𝜇𝑛𝑛 ,Σ𝑛𝑛)
𝑛𝑛𝑛𝑛

 

 

θ 

θ 

STUCK!! 



Estimating the Parameters 
• Make it a bit simpler, assume we know Z. Now we can 

maximize the complete data log likelihood and estimate the 
model parameters. 

𝑃𝑃 𝑋𝑋,𝑍𝑍 𝜃𝜃 = ��{𝜋𝜋𝑛𝑛 ∙ 𝒩𝒩(𝜇𝜇𝑛𝑛 , Σ𝑛𝑛) }𝑧𝑧𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛

 

 

log 𝑃𝑃 𝑋𝑋,𝑍𝑍 𝜃𝜃 = ��𝑧𝑧𝑛𝑛𝑛𝑛 log 𝜋𝜋𝑛𝑛 + log (𝒩𝒩(𝑥𝑥𝑛𝑛|𝜇𝜇𝑛𝑛, Σ𝑛𝑛))
𝑛𝑛𝑛𝑛

 

 
• Much more easier to work with, the parameters are 

decoupled and we can maximize easily. 

 



Estimating the Parameters 
• If we maximize the complete data log likelihood we get the 

following estimates: 
 

• 𝜇𝜇𝑛𝑛 = ∑ 𝑧𝑧𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛
∑ 𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛

= ∑ 𝑧𝑧𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛
𝑁𝑁𝑛𝑛

 

• Σ𝑛𝑛 = 1
𝑁𝑁𝑛𝑛
∑ 𝑧𝑧𝑛𝑛𝑛𝑛(𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑛𝑛)(𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑛𝑛)𝑇𝑇𝑛𝑛  

• 𝜋𝜋𝑛𝑛 = ∑ 𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛
𝑁𝑁

 
 

• Are we done?? 
• What about the 𝑧𝑧𝑛𝑛𝑛𝑛? we assumed they are known, but they are 

not! 



What about 𝑧𝑧𝑛𝑛𝑛𝑛?  

• Recall, the game we played while 
using k-means. 

• Guess the parameters, estimate the 
𝑧𝑧𝑛𝑛𝑛𝑛!! 

• Fixing the parameters to some 
values, we now get a distribution 
over the missing 𝑍𝑍 i.e. 𝑃𝑃 𝑍𝑍 𝑋𝑋,𝜃𝜃 . 

• OK! But this is a distribution, how 
do I get individual values for 𝑧𝑧𝑛𝑛𝑛𝑛?  

Initialize Model 
Parameters 

Estimate Cluster 
Assignments 

Estimate New Model 
Parameters 

𝜃𝜃(𝑜𝑜𝑜𝑜𝑑𝑑) 

𝜃𝜃(𝑛𝑛𝑛𝑛𝑛𝑛) 
𝑧𝑧𝑛𝑛𝑛𝑛 



What about 𝑧𝑧𝑛𝑛𝑛𝑛?  

• Lets evaluate the expected value of each 𝑧𝑧𝑛𝑛𝑛𝑛, under 
𝑃𝑃 𝑍𝑍 𝑋𝑋,𝜃𝜃 .  
𝔼𝔼𝑃𝑃(𝑍𝑍|𝑋𝑋,𝜃𝜃) 𝑧𝑧𝑛𝑛𝑛𝑛 = 1 × 𝑃𝑃 𝑧𝑧𝑛𝑛𝑛𝑛 = 1 𝑥𝑥𝑛𝑛,𝜃𝜃𝑛𝑛 + 0 × 𝑃𝑃 𝑧𝑧𝑛𝑛𝑛𝑛 = 0 𝑥𝑥𝑛𝑛, 𝜃𝜃𝑛𝑛  

                                      = 𝑃𝑃(𝑧𝑧𝑛𝑛𝑛𝑛 = 1|𝑥𝑥𝑛𝑛,𝜃𝜃𝑛𝑛). 
 

• Using Bayes Theorem we have: 
 

𝑃𝑃 𝑧𝑧𝑛𝑛𝑛𝑛 = 1 𝑥𝑥𝑛𝑛, 𝜃𝜃𝑛𝑛 =
𝑃𝑃(𝑥𝑥𝑛𝑛|𝑧𝑧𝑛𝑛𝑛𝑛 = 1,𝜃𝜃𝑛𝑛) ∙ 𝑃𝑃(𝑧𝑧𝑛𝑛𝑛𝑛 = 1|𝜃𝜃𝑛𝑛)

𝑃𝑃(𝑥𝑥𝑛𝑛|𝜃𝜃𝑛𝑛)
 

Incomplete Data  
Likelihood for 𝑥𝑥𝑛𝑛  

Probability that the k-th 
component was chosen to  
generate 𝑥𝑥𝑛𝑛 

Probability of generating 𝑥𝑥𝑛𝑛 using the k-th component.  



What about 𝑧𝑧𝑛𝑛𝑛𝑛? 
• So, 

𝔼𝔼𝑃𝑃(𝑍𝑍|𝑋𝑋,𝜃𝜃) 𝑧𝑧𝑛𝑛𝑛𝑛 =
𝜋𝜋𝑛𝑛𝑁𝑁(𝑥𝑥𝑛𝑛|𝜇𝜇𝑛𝑛, Σ𝑛𝑛)
∑ 𝜋𝜋𝑗𝑗𝑁𝑁(𝑥𝑥𝑛𝑛|𝜇𝜇𝑗𝑗 ,Σ𝑗𝑗)𝑗𝑗

 

                                                      = 𝛾𝛾(𝑧𝑧𝑛𝑛𝑛𝑛)      
 

• This quantity can be viewed as the “responsibility”  that the 
𝑘𝑘𝑡𝑡𝑡 component takes for “explaining” the observation 𝑥𝑥𝑛𝑛. 
 

• Finally, we can substitute this value for 𝑧𝑧𝑛𝑛𝑛𝑛 in our parameter 
estimates as our best guesses for the values of 𝑧𝑧𝑛𝑛𝑛𝑛 given our 
current model parameters. 



EM for GMM based clustering 
1. Initialize the model parameters 𝜃𝜃(0) 
2. E-Step: Evaluate the responsibilities using current parameter estimates: 

𝛾𝛾 𝑧𝑧𝑛𝑛𝑛𝑛 =
𝜋𝜋𝑛𝑛𝑁𝑁(𝑥𝑥𝑛𝑛|𝜇𝜇𝑛𝑛 ,Σ𝑛𝑛)
∑ 𝜋𝜋𝑗𝑗𝑁𝑁(𝑥𝑥𝑛𝑛|𝜇𝜇𝑗𝑗 ,Σ𝑗𝑗)𝑗𝑗

 

3. M-Step: Re-estimate the parameters using the current responsibilities:        

• 𝜇𝜇𝑛𝑛′ = ∑ 𝛾𝛾 𝑧𝑧𝑛𝑛𝑛𝑛 𝑥𝑥𝑛𝑛𝑛𝑛
𝑁𝑁𝑛𝑛

    

• Σ𝑛𝑛′ = 1
𝑁𝑁𝑛𝑛
∑ 𝛾𝛾 𝑧𝑧𝑛𝑛𝑛𝑛 (𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑛𝑛′ )(𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑛𝑛′ )𝑇𝑇𝑛𝑛  

• 𝜋𝜋𝑛𝑛′ = ∑ 𝛾𝛾 𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛
𝑁𝑁

 

where, 𝑁𝑁𝑛𝑛 = ∑ 𝛾𝛾 𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛 . 

4. If convergence criterion is not satisfied go back to step-2. 

 
 
 



EM for GMM based clustering 

• Convergence Criterion: 
– Check for the change in the values of the parameters. 
– Calculate the incomplete data log likelihood: 

log (𝑃𝑃 𝑋𝑋 𝜃𝜃 ) = � log �𝜋𝜋𝑛𝑛𝑁𝑁(𝑥𝑥𝑛𝑛|𝜇𝜇𝑛𝑛 ,Σ𝑛𝑛)
𝑛𝑛𝑛𝑛

 

and if the value on current iteration has not changed from the previous 

value, or the change is negligible (below a preset tolerance), stop. 



Example 

• Number of 
Clusters?? 

• Data sampled from 
three Gaussians 
centered at: 
– [-1,-3] 
– [-3,-3] 
– [-4.75,-3] 
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Example 

• Run K-Means with 50 random starting points. Select the 
solution that has the minimum sum of squared distances. 
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Ground Truth
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Example 

• Soft Clustering using a three component Gaussian Mixture 
Model with random starting point. 
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Ground Truth Contour Plot of the final GMM
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Example 

• Original Means: 
– [-1,-3] 
– [-3,-3] 
– [-4.75,-3] 

• K-Means Centroids: 
– [-1.0335,-4.057] 
– [-1.5821, -1.6458] 
– [-4.3681, -3.4009] 

• Means of the Three Gaussians Discovered by GMM: 
– [-1.0006, -2.9663] 
– [-2.9747, -2.9921] 
– [-4.7488, -2.9717] 

 
 



EM Algorithm 

• A very powerful method for dealing with probabilistic models 
that involve latent/missing variables. 

• Each iteration of the EM is guaranteed to maximize the data 
log likelihood.  

• Guaranteed to converge to a local maxima. 
• Sensitive to starting points. 
• We have applied it to Gaussian Mixture Models, which can 

model any arbitrary shaped densities. Can be used for data 
density estimation aside from clustering. 
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