
CS 6140: Machine Learning Spring 2015
College of Computer and Information Science
Northeastern University
Assignment 4 March, 16
Instructor: Bilal Ahmed Due Date: March, 26

1 Näıve Bayes for Document Classification

1.1 Data

Download the 20Newgroups data from http://qwone.com/∼jason/20Newsgroups/20news-bydate-
matlab.tgz The data is composed of six files, three of them contain the test data while the other
three have the training data. Each row of the train.data and test.data files contain the data listed
as (docId, wordId, count). The train.label and test.label files contain the labels for each document.
The class names for each class are listed in *.map files. You can also download the vocabulary for
the dataset from http://qwone.com/∼jason/20Newsgroups/vocabulary.txt.

1.2 Multivariate Bernoulli Model

The Bernoulli model for document generation entails flipping |V | coins where |V | is the size of the
vocabulary. We will model the documents in the twenty webgroups dataset using the same model,
and since we have twenty classes we will be working with a multinomial class prior distribution.

1.3 Multinomial Event Model

In the multinomial event model each document corresponds to independent trials from a multino-
mial distribution over the vocabulary. This is also known as the unigram model.

1.4 Programming Tasks:

1. Create a word-frequency list across the training documents and sort it in descending order
from highest frequency to lowest frequency. We will be working with vocabulary sizes of |V | ∈
top{100, 500, 1000, 2500, 5000, 7500, 10000, 12500, 25000, 50000,All}, where “All” is using the
complete vocabulary.

2. Fit the multivariate Bernoulli model to the training data and evaluate the accuracy on the
test set. Keep in mind to restrict the vocabulary to the selected value of |V | for both the
training and test sets.

3. Fit the multivariate event model to the training data and evaluate the accuracy on the test
set. Keep in mind to restrict the vocabulary to the selected value of |V | for both the training
and test sets.

4. Use a simple smoothing model that assigns a default frequency of 1 to each word from the
vocabulary for both models.
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Figure 1: A bar chart contrasting the accuracy of five classes for two competing models.

1.5 Deliverables:

1. Plot the classification accuracy of the two models versus the vocabulary size on the same plot.

2. Create a grouped bar chart that contrasts the accuracy of every class in the two models. A
sample grouped bar chart is shown in Figure 1.

1.6 Maximum a posteriori estimates of model parameters:

1. The conjugate prior for the Bernoulli distribution is the Beta distribution given as:

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Derive the MAP estimates of the multivariate Bernoulli model if we use the Beta distribution
as a prior for the class conditional word distributions P (w|Ci).

2. The conjugate prior for the multinomial distribution is the Dirichlet distribution given as:

f(x1, x2, . . . , xK−1;α1, α2, . . . , αK) =
Γ(

∑K
i=1 αi)∏K

i=1 Γ(αi)

K∏
j=1

x
αj−1
j

Derive the MAP estimates of the multinomial event model if we use the Dirichlet distribution
as a prior for the class conditional word distributions P (w|Ci).

3. What is the main difference between the Maximum likelihood and the MAP estimates in both
cases.
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1.7 Extra Credit:

Implement the MAP versions for both models and estimate their accuracies on the test set using
the same values for |V | in the first programming task. Use α = β = 2 for the Beta prior in the
multivariate Bernoulli model and use αi = 2; ∀i ∈ {1, 2, . . . , |V |} for the Dirichlet prior in the
multinomial event model.

1. Contrast the performance of the two models by plotting the MAP accuracies against the
vocabulary size.

2. Create a grouped bar chart that contrasts the accuracy of every class in the two models using
the MAP estimated parameters.

3. What is the advantage of using the MAP estimates as opposed to maximum likelihood? Is
there a difference in the accuracies between maximum likelihood and MAP?

2 Logistic Regression

2.1 Data

In this problem you will be working with three datasets for binary classification:

• Spambase: the objective is to classify email messages as being spam or not. To this end the
dataset uses fifty seven text based features to represent each email message. There are about
4600 instances

• Breast Cancer: this dataset is aimed at developing classifiers that can distinguish between
malignant and benign tumors in breast cancer. There are thirty real valued features and 569
instances.

• Pima Indian Diabetes: The task is to predict whether a person has diabetes or not based
on eight features. The data was recorded from females of pima indian heritage. It has a total
of 768 instances.

2.2 Programming Task

Implement logistic regression using gradient ascent. Choose a suitable number of maximum iter-
ations and use a suitable tolerance ε for halting the algorithm once the change in loss falls below
ε.

2.3 Deliverables

1. Report the mean and standard deviation of ten fold cross validation for the three datasets
using logistic regression.

2. Select any one dataset and for a particular training fold show the progression of the gradient
ascent algorithm by plotting the logistic loss for each iteration till convergence.

3. Explain how you chose the tolerance and maximum iterations in your implementation. If you
tried different values of ε plot the training loss versus the epsilon values.
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2.4 The sigmoid function

The sigmoid function is given as:

σ(a) =
1

1 + e−a

1. Compute dσ(x)
dx when a = wTx, where w, x ∈ Rm.

2. For logistic regression with target variable yi ∈ {−1, 1} the posterior probability of the positive
class is:

P (y = 1|x,w) = σ(wTx) =
1

1 + e−wT x

where w, x ∈ Rm. Show that we can express the posterior for both classes as:

P (y = ±1|x,w) = σ(wTx) =
1

1 + e−ywT x

3. Extra-credit: Show that the loss function for logistic regression is:

Llog =
N∑
i=1

log(1 + e−yiw
txi)

where, xi, w ∈ Rm and yi ∈ {±1}.
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