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One thing I wanted to ask you about is this. A most serious problem, for UNESCO 
and for the constructive and peaceful future of the planet, is the problem of 
translation, as it unavoidably affects the communication between peoples. Huxley has 
recently told me that they are appalled by the magnitude and the importance of the 
translation job.

Recognizing fully, even though necessarily vaguely, the semantic difficulties because of 
multiple meanings, etc., I have wondered if it were unthinkable to design a computer 
which would translate. Even if it would translate only scientific material (where the 
semantic difficulties are very notably less), and even if it did produce an inelegant (but 
intelligible) result, it would seem to me worth while.

Also knowing nothing official about, but having guessed and inferred considerable 
about, powerful new mechanized methods in cryptography—methods which I 
believe succeed even when one does not know what language has been coded—
one naturally wonders if the problem of translation could conceivably be treated 
as a problem in cryptography. When I look at an article in Russian, I say: “This is 
really written in English, but it has been coded in some strange symbols. I 
will now proceed to decode.”

Warren Weaver
to Norbert Wiener

4 March 1947



! What does this say?  
! And what other words are substrings? 

! Given L = a “lexicon” FSA that matches all English words. 
! How to apply to this problem? 
! What if Lexicon is weighted? 
! From unigrams to bigrams? 
! Smooth L to include unseen words?

Word Segmentation

theprophetsaidtothecity



! Spelling correction also needs a lexicon L 
! But there is distortion … 

! Let T be a transducer that models common typos and 
other spelling errors 
! ance (") ence (deliverance, ...) 
! e " ε (deliverance, ...) 
! ε " e // Cons _ Cons (athlete, ...)  
! rr " r  (embarrasş occurrence, …) 
! ge " dge (privilege, …) 
! etc. 

! Now what can you do with L .o. T ? 
! Should T and L have probabilities? 
! Want T to include “all possible” errors …

Spelling correction
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noisy channel   X " Y

real language   X

yucky language   Y

p(X)

p(Y | X)

p(X,Y)

*

=

want to recover x∈X from y∈Y
choose x that maximizes p(x | y) or equivalently p(x,y)
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! Let Lexicon be a machine that matches all Turkish 
words 
! Same problem as word segmentation (in, e.g., Chinese) 
! Just at a lower level: morpheme segmentation 
! Turkish word: uygarlaştıramadıklarımızdanmışsınızcasına  

= uygar+laş+tır+ma+dık+ları+mız+dan+mış+sınız+ca+sı+na  
(behaving) as if you are among those whom we could not cause to 
become civilized 

! Some constraints on morpheme sequence: bigram probs 
! Generative model – concatenate then fix up joints 

! stop + -ing = stopping,     fly + -s = flies,     vowel harmony 
!Use a cascade of transducers to handle all the fixups 

! But this is just morphology! 
! Can use probabilities here too (but people often don’t)

Morpheme Segmentation
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    Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

O(k) deletion arcs 

O(k) insertion 
arcs 

O(k2) substitution  
arcs 

O(k) identity arcs 

Likely edits = high-probability arcs

Stochastic
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    Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

Stochastic

.o.

=

caca
.o.

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c

ε:c
c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c
ε:c

c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε



clara

    Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

Stochastic

.o.

=

caca
.o.

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c

ε:c
c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c
ε:c

c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

Best path (by Dijkstra’s algorithm)
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Transliteration 
(Knight & Graehl, 1998)

Computational Linguistics Volume 24, Number 4 

T (a) ~ (ka) ~-(sa) ~ (ta) ~(na) ¢" (ha) ~(ma) ~ (ra) 
(i) ~ (k±) ~ (shi) Y-(ch±) ~ (ni) a (hi) ~ (mi) ~ (ri) 
(u) ~ (ku) X (su) 7 (tsu) % (nu) 7 (hu) ~ (mu) 2~ (ru) 

:n(e) ~(ke) ~ (se) ~ (te) ~ (he) ~-(he) fl (me) , ~ (re) 
M- (o) = (ko) Y (so) b (to) ] (no) • (ho) ~ (mo) ~ (ro) 
-~ (ba) 2"(ga) -< (pa) -Y(za) ~(da) T (a) -V (ya) ~ (ya) 

(bi) @'(gi) ff (pi) ~ (ji) Y(de) 4 (i) ~ (yo) ~ (yo) 

Y (bu) ~ ( g u )  ~ (pu) X'(zu) F (do) ~ (u) :~(yu)  ~ (yu) 
-<(be) ~(ge) ~ (pe) ~'(ze) ~ (n) ~ (e) ~ (v) 

(bo) ~(go) ~:(po) / (zo) ~'(chi) ~ (o) V (wa) -- 

Figure 1 
Katakana symbols and their Japanese pronunciations. 

Angela Johnson 

(a n jira jyo n son)  

New York Times 

(nyu uyo oku ta imuzu) 

ice cream 

(a isukurfimu) 

Omaha Beach 

(omahabiit chi) 

pro soccer 

(purosakkaa) 

Tonya Harding 

(toonya haadingu) 

ramp lamp casual fashion team leader 
~yT"  ? y ~  ~ J = T J ~ 7 ~ y  ~ - - ~ - - ~ ' - -  
(ranpu) (ranpu) (kaj yuaruhas shyon) (chifmuriidaa) 

Notice how the transliteration is more phonetic than orthographic; the letter h in 
Johnson does not produce any katakana. Also, a dot-separator (,) is used to sepa- 
rate words, but not consistently. And transliteration is clearly an information-losing 
operation: ranpu could come from either lamp or ramp, while aisukuri imu loses the 
distinction between ice cream and I scream. 

Transliteration is not trivial to automate, but we will be concerned with an even 
more challenging problem--going from katakana back to English, i.e., back-translit- 
eration. Human translators can often "sound out" a katakana phrase to guess an 
appropriate translation. Automating this process has great practical importance in 
Japanese/English machine translation. Katakana phrases are the largest source of text 
phrases that do not appear in bilingual dictionaries or training corpora (a.k.a. "not- 
found words"), but very little computational work has been done in this area. Yamron 
et al. (1994) briefly mention a pattern-matching approach, while Arbabi et al. (1994) 
discuss a hybrid neural-net/expert-system approach to (forward) transliteration. 

The information-losing aspect of transliteration makes it hard to invert. Here are 
some problem instances, taken from actual newspaper articles: 

? ? ? 

(aasudee) (robaato shyoon renaado) (masutaazutoonamento) 

600 
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symbols, however, suffers from a number of problems. One can easily wind up with 
a system that proposes iskrym as a back-transliteration of aisukuriimu. Taking letter 
frequencies into account improves this to a more plausible-looking isclim. Moving to 
real words may give is crime: the i corresponds to ai, the s corresponds to su, etc. 
Unfortunately, the correct answer here is ice cream. 

After initial experiments along these lines, we stepped back and built a generative 
model of the transliteration process, which goes like this: 

. 

2. 

3. 

4. 

5. 

An English phrase is written. 

A translator pronounces it in English. 

The pronunciation is modified to fit the Japanese sound inventory. 

The sounds are converted into katakana. 

Katakana is written. 

This divides our problem into five subproblems. Fortunately, there are techniques 
for coordinating solutions to such subproblems, and for using generative models in the 
reverse direction. These techniques rely on probabilities and Bayes' theorem. Suppose 
we build an English phrase generator that produces word sequences according to 
some probability distribution P(w). And suppose we build an English pronouncer that 
takes a word sequence and assigns it a set of pronunciations, again probabilistically, 
according to some P(plw). Given a pronunciation p, we may want to search for the 
word sequence w that maximizes P(wlp ). Bayes' theorem lets us equivalently maximize 
P(w) • P(plw),  exactly the two distributions we have modeled. 

Extending this notion, we settled down to build five probability distributions: 

. 

2. 

3. 

4. 

5. 

P(w) - -  generates written English word sequences. 

P(elw) - -  pronounces English word sequences. 

P(jle) - -  converts English sounds into Japanese sounds. 

P(klj ) - -  converts Japanese sounds to katakana writing. 

P(o]k) - -  introduces misspellings caused by optical character recognition 
(OCR). 

Given a katakana string o observed by OCR, we want to find the English word 
sequence w that maximizes the sum, over all e, j, and k, of 

P(w). P(elw). P(jle). P(klj) • P(olk) 

Following Pereira and Riley (1997), we implement P(w) in a weighted finite-state ac- 
ceptor (WFSA) and we implement the other distributions in weighted finite-state trans- 
ducers (WFSTs). A WFSA is a state/transition diagram with weights and symbols on 
the transitions, making some output sequences more likely than others. A WFST is a 
WFSA with a pair of symbols on each transition, one input and one output. Inputs 
and outputs may include the empty symbol ¢. Also following Pereira and Riley (1997), 
we have implemented a general composition algorithm for constructing an integrated 
model P(xlz) from models P(xly ) and P(y[z), treating WFSAs as WFSTs with identical 
inputs and outputs. We use this to combine an observed katakana string with each 
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Bigram LM as FSM

the

quick

brown

fox

jumped

V states

O(V2) arcs
(& parameters)

What about a 
trigram model?

What about backoff?



Grammatical Categories

! “Parts of speech” (partes orationis) 
!Some Cool Kids call them “word classes” 

!Folk definitions 
!Nouns: people, places, concepts, things, ... 
!Verbs: expressive of action 
!Adjectives: properties of nouns 

! In linguistics, defined by role in syntax

Andrew McCallum, UMass Amherst

Grammatical categories: parts-of-speech

• Nouns: people, animals, concepts, things

• Verbs: expresses action in the sentence

• Adjectives: describe properties of nouns

• The                      one is in the corner.

sad
intelligent
green
fat
… “Substitution test”

3
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Input:   the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! Uses:
! text-to-speech (how do we pronounce “lead”?)
! can write regexps like (Det) Adj* N+ over the output
! preprocessing to speed up parser (but a little dangerous)
! if you know the tag, you can back off to it in other tasks

The Tagging Task



Why Do We Care?
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! The first statistical NLP task
! Been done to death by different methods
! Easy to evaluate (how many tags are correct?)
! Canonical finite-state task (in English)

! Can be done well with methods that look at local context
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! The first statistical NLP task
! Been done to death by different methods
! Easy to evaluate (how many tags are correct?)
! Canonical finite-state task (in English)

! Can be done well with methods that look at local context
! Though should “really” do it by parsing!

Why Do We Care?

Input:   the lead paint is unsafe 
Output: the/Det lead/N paint/N is/V unsafe/Adj



Tagged Data Sets

!Brown Corpus 
!Designed to be a representative sample from 1961 

!news, poetry, “belles lettres”, short stories 
!87 different tags 

!Penn Treebank 
!45 different tags 
!Currently most widely used for English 

!Now a paradigm in lots of other languages 
!Chinese Treebank has over 200 tags



Penn Treebank POS Tags

Andrew McCallum, UMass Amherst

Part-of-speech tags, examples

• PART-OF-SPEECH TAG EXAMPLES

• Adjective JJ happy, bad

• Adjective, comparative JJR happier, worse

• Adjective, cardinal number CD 3, fifteen

• Adverb RB often, particularly

• Conjunction, coordination CC and, or

• Conjunction, subordinating IN although, when

• Determiner DT this, each, other, the, a, some

• Determiner, postdeterminer JJ many, same

• Noun NN aircraft, data

• Noun, plural NNS women, books

• Noun, proper, singular NNP London, Michael

• Noun, proper, plural NNPS Australians, Methodists

• Pronoun, personal PRP you, we, she, it

• Pronoun, question WP who, whoever

• Verb, base present form VBP take, live

6



Word Class Classes

! Importantly for predicting POS tags, there are 
two broad classes 

! “Closed class” words 
!Belong to classes that don’t accept new members 
!Determiners: the, a, an, this, ... 
!Prepositions: in, on, of, ... 

! “Open class” words 
!Nouns, verbs, adjectives, adverbs, ... 

! “Closed” is relative: These words are born and 
die over longer time scales (e.g, “regarding”)



Ambiguity in Language

Andrew McCallum, UMass Amherst

Ambiguity in Language

Fed raises interest rates 0.5%

in effort to control inflation

NY Times headline 17 May 2000
S

NP VP

NNP

Fed

V NP NP PP

raises

interest rates

NN NN

0.5 in NN VP

V VP

V NP

NN

CD NN PP NP

%

effort

to

control

inflation
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Part-of-speech Ambiguity

Andrew McCallum, UMass Amherst

Part of speech ambiguities

Fed  raises  interest rates  0.5  % in effort to

control inflation

Part-of-speech ambiguities

NNP NNS

VBZ

NNS

VBZ

NNS

VBZ
VB

CD NN

10
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! Supervised: Training corpus is tagged by humans
! Unsupervised: Training corpus isn’t tagged
! Partly supervised: Training corpus isn’t tagged, but 

you have a dictionary giving possible tags for each 
word

! We’ll start with the supervised case and move to 
decreasing levels of supervision.

Degree of Supervision
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!How many tags are correct?
!About 97% currently

Current Performance

Input:   the lead paint is unsafe 
Output: the/Det lead/N paint/N is/V unsafe/Adj



!How many tags are correct?
!About 97% currently
!But baseline is already 90%

!Baseline is performance of stupidest possible method
!Tag every word with its most frequent tag
!Tag unknown words as nouns

Current Performance

Input:   the lead paint is unsafe 
Output: the/Det lead/N paint/N is/V unsafe/Adj



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      

Each unknown tag is constrained by its word



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      

Each unknown tag is constrained by its word 
and by the tags to its immediate left and right. 
But those tags are unknown too …



What Should We Look At?

Bill  directed   a    cortege  of  autos  through  the  dunes
PN     Verb    Det   Noun  Prep Noun    Prep    Det  Noun

correct tags

PN      Adj     Det   Noun  Prep Noun    Prep    Det  Noun 
Verb   Verb   Noun Verb 
                            Adj          some possible tags for 
                            Prep         each word (maybe more) 
                             …?      

Each unknown tag is constrained by its word 
and by the tags to its immediate left and right. 
But those tags are unknown too …



!Noisy Channel Model (statistical)

Finite-State Approaches

noisy channel   X " Y

real language   X

yucky language   Y

want to recover X from Y 

part-of-speech tags 
(n-gram model)

replace tags  
with words

text
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Review: Noisy Channel

noisy channel   X " Y

real language   X

yucky language   Y

p(X)

p(Y | X)

p(X,Y)

*

=

want to recover x∈X from y∈Y
choose x that maximizes p(x | y) or equivalently p(x,y)



Noisy Channel for Tagging

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:C
/0.

07 b:C/0.24

.o. *
C:C/1 (Y = y)?

best path

acceptor: p(tag sequence)

transducer: tags " words

acceptor: the observed words

transducer: scores candidate tag seqs 
on their joint probability with obs words; 

pick best path

“Markov Model”

“Unigram Replacement”

“straight line”
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Markov Model

Det

Start

Adj
Noun

Verb

Prep

Stop

0.3

0.4 0.5

Start Det Adj Adj Noun Stop  = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

0.7

p(tag seq)

0.1
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Markov Model as an FSA

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun 
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun 
0.5

Start Det Adj Adj Noun Stop  = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

Det 0.8

ε 0.2

p(tag seq)



Markov Model (tag bigrams)

Det

Start

Adj
Noun Stop

Adj 0.4
Noun 
0.5

ε 0.2

Det 0.8

p(tag seq)

Start Det Adj Adj Noun Stop  = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

Adj 0.3



Noisy Channel for Tagging

p(X)

p(Y | X)

p(X, y)

*

=

.o.

=

.o. *
p(y | Y)

automaton: p(tag sequence)

transducer: tags " words

automaton: the observed words

transducer: scores candidate tag seqs 
on their joint probability with obs words; 

pick best path

“Markov Model”

“Unigram Replacement”

“straight line”



Noisy Channel for Tagging

p(X)

p(Y | X)

p(X, y)

*

=

.o.

=

.o. *
p(y | Y)

transducer: scores candidate tag seqs 
on their joint probability with obs words; 

we should pick best path

the cool directed autos

Adj:cortege/0.000001 
…

Noun:Bill/0.002
Noun:autos/0.001

… 
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun 
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun 
0.5

Det 0.8

ε 0.2



Unigram Replacement Model

Noun:Bill/0.002

Noun:autos/0.001

… 
Noun:cortege/0.000001

Adj:cool/0.003

Adj:directed/0.0005

Adj:cortege/0.000001 
…

Det:the/0.4

Det:a/0.6

sums to 1

sums to 1

p(word seq | tag seq)



Det

Start

Adj
Noun

Verb

Prep

Stop

Adj 0.3

Adj 0.4
Noun 
0.5

Det 0.8

ε 0.2

p(tag seq)

Compose
Adj:cortege/0.000001 

…

Noun:Bill/0.002
Noun:autos/0.001

… 
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun 
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun 
0.5

Det 0.8

ε 0.2



Det:a 0.48 
Det:the 0.32

Compose

Det

Start

Adj
Noun Stop

Adj:cool 0.0009 
Adj:directed 0.00015 
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Adj:cortege/0.000001 
…

Noun:Bill/0.002
Noun:autos/0.001

… 
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Verb

Prep

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun 
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun 
0.5

Det 0.8

ε 0.2

Adj:cool 0.0012 
Adj:directed 0.00020 
Adj:cortege 0.000004

N:cortege 
N:autos

ε



Observed Words as Straight-Line FSA

word seq

the cool directed autos



Det:a 0.48 
Det:the 0.32

Det

Start

Adj
Noun Stop

Adj:cool 0.0009 
Adj:directed 0.00015 
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

Compose with the cool directed autos

Adj:cool 0.0012 
Adj:directed 0.00020 
Adj:cortege 0.000004

N:cortege 
N:autos

ε



Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

the cool directed autosCompose with 

AdjAdj:directed 0.00020
N:autos

ε



Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

the cool directed autosCompose with 

Adj

why did this 
loop go away?

Adj:directed 0.00020
N:autos

ε



Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

AdjAdj:directed 0.00020
N:autos

The best path: 
Start Det  Adj   Adj         Noun Stop  = 0.32 * 0.0009 … 
         the  cool  directed  autos

ε



Det:t
he 0

.32

In Fact, Paths Form a “Trellis”

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

The best path: 
Start Det  Adj   Adj         Noun Stop  = 0.32 * 0.0009 … 
         the  cool  directed  autos
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Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun
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Det:t
he 0

.32

In Fact, Paths Form a “Trellis”

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

The best path: 
Start Det  Adj   Adj         Noun Stop  = 0.32 * 0.0009 … 
         the  cool  directed  autos

Adj:cool 0.0009
Noun:cool 0.007



The Trellis Shape Emerges from the 
Cross-Product Construction  for 
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All paths here are 4 words
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So all paths here must have 4 words on output side

All paths here are 4 words

The Trellis Shape Emerges from the 
Cross-Product Construction  for 

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4
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Det:t
he 0

.32

Actually, Trellis Isn’t Complete

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2
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…
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Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2
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ted

…

The best path: 
Start Det  Adj   Adj         Noun Stop  = 0.32 * 0.0009 … 
         the  cool  directed  autos

Adj:cool 0.0009
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Trellis has no Det " Det or Det "Stop arcs; why?



Noun:autos…

Det:t
he 0

.32

Actually, Trellis Isn’t Complete

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed…

ε 0.2

Adj:direc
ted

…

The best path: 
Start Det  Adj   Adj         Noun Stop  = 0.32 * 0.0009 … 
         the  cool  directed  autos

Adj:cool 0.0009

Lattice is missing some other arcs; why?

Noun:cool 0.007



Noun:autos…

Det:t
he 0

.32

Actually, Trellis Isn’t Complete

Det

Start Stop

p(word seq, tag seq)

Adj

Noun

Adj

Noun Noun

Adj:directed…

Adj:direc
ted

…

The best path: 
Start Det  Adj   Adj         Noun Stop  = 0.32 * 0.0009 … 
         the  cool  directed  autos

Adj:cool 0.0009

Lattice is missing some states; why?

Noun:cool 0.007 ε 0.2



Find best path from Start to Stop

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007



! Use dynamic programming: 
! What is best path from Start to each node? 
! Work from left to right 
! Each node stores its best path from Start (as probability 

plus one backpointer)

Find best path from Start to Stop
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! Use dynamic programming: 
! What is best path from Start to each node? 
! Work from left to right 
! Each node stores its best path from Start (as probability 

plus one backpointer)
! Special acyclic case of Dijkstra’s shortest-path alg.
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! Use dynamic programming: 
! What is best path from Start to each node? 
! Work from left to right 
! Each node stores its best path from Start (as probability 

plus one backpointer)
! Special acyclic case of Dijkstra’s shortest-path alg.
! Faster if some arcs/states are absent

Find best path from Start to Stop

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007
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In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words
! Is tag sequence X likely with these words?
! Noisy channel model is a “Hidden Markov Model”:

Start PN   Verb    Det     Noun  Prep Noun   Prep     Det  
Noun Stop

Bill  directed   a    cortege  of   autos  through  the  dunes

0.4 0.6

0.001

!Find X that maximizes probability product

probs 
from tag 
bigram 
model

probs from 
unigram 
replacement
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! Multiple tags per word
! Transformations to knock some of them out

! How to encode multiple tags and knockouts?

! Use the above for partly supervised learning
! Supervised: You have a tagged training corpus
! Unsupervised: You have an untagged training corpus
! Here: You have an untagged training corpus and a 

dictionary giving possible tags for each word

Variations



Applications of HMMs
• NLP

• Part-of-speech tagging

• Word segmentation

• Information extraction

• Optical character recognition

• Speech recognition

• Modeling acoustics, with continuous emissions

• Computer Vision

• Gesture recognition

• Biology

• Gene finding

• Protein structure prediction

• Economics, Climatology, Robotics, etc.



A More Traditional View 
of HMMs



Andrew McCallum, UMass Amherst

Recipe for solving an NLP task

Input:   the lead paint is unsafe

Output: the/Det lead/N paint/N is/V unsafe/Adj

1) Data: Notation, representation

2) Problem: Write down the problem in notation

3) Model: Make some assumptions, define a parametric
model (often generative model of the data)

4) Inference: How to search through possible answers to
find the best one

5) Learning: How to estimate parameters

6) Implementation: Engineering considerations for an
efficient implementation

Observations

Tags

Recipe for NLP



Andrew McCallum, UMass Amherst

(Hidden) Markov model tagger

• View sequence of tags as a Markov chain.

Assumptions:

– Limited horizon

– Time invariant (stationary)

– We assume that a word’s tag only depends on the

previous tag (limited horizon) and that his

dependency does not change over time (time

invariance)

– A state (part of speech) generates a word.  We

assume it depends only on the state.

An HMM Tagger



Andrew McCallum, UMass Amherst

The Markov Property

• A stochastic process has the Markov property if the
conditional probability distribution of future states of

the process, given the current state, depends only

upon the current state, and conditionally independent

of the past states (the path of the process) given the
current state.

• A process with the Markov property is usually called

a Markov process, and may be described as

Markovian.

The Markov Property



Andrew McCallum, UMass Amherst

HMM as Finite State Machine

DT

JJ

NN

VBP

IN

for

above

in

…

transitions

emissions

P(xt+1|xt)

P(ot|xt)

HMM w/State Emissions



Andrew McCallum, UMass Amherst

HMM as Bayesian Network

• Top row is unobserved states, interpreted as POS tags

• Bottom row is observed output observations (words)

HMM as Bayes Net



Andrew McCallum, UMass Amherst

(One) Standard HMM formalism

• (X, O, xs, A, B) are all variables.  Model µ = (A, B)

• X is state sequence of length T; O is observation seq.

• xs is a designated start state (with no incoming
transitions).  (Can also be separated into ! as in book.)

• A is matrix of transition probabilities (each row is a
conditional probability table (CPT)

• B is matrix of output probabilities (vertical CPTs)

• HMM is a probabilistic (nondeterministic) finite state
automaton, with probabilistic outputs (from vertices, not
arcs, in the simple case)

(One) Standard HMM Formalism



HMM Inference Problems
• Given an observation sequence, find the 

most likely state sequence (tagging)

• Compute the probability of observations 
when state sequence is hidden (language 
modeling)

• Given observations and (optionally) a their 
corresponding states, find parameters that 
maximize the probability of the 
observations (parameter estimation)



Andrew McCallum, UMass Amherst

Most likely hidden state sequence

• Given O = (o1,…,oT) and model µ = (A,B)

• We want to find

• P(O,X| µ) = P(O|X, µ) P(X| µ )

• P(O|X, µ) = b[x1|o1] b[x2|o2] … b[xT|oT]

• P(X| µ) = a[x1|x2] a[x2|x3] … a[xT-1|xT]

• arg maxX P(O,X| µ) = arg max x1, x2,… xT

• Problem: arg max is exponential in sequence length!

Most Likely State Sequence



Andrew McCallum, UMass Amherst

Representation for Paths: Trellis

Time 1         2     3 4 …   T

States

X1

x2

x3

x4

Paths in a Trellis
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Andrew McCallum, UMass Amherst

Representation for Paths: Trellis

Time 1         2     3 4 …   T

States

X1

x2

x3

x4

!i(t) = Probability of most likely path that ends at state i at time t.

a[
x 4,

 x
2]

 b
[o 4

]

Paths in a Trellis



Andrew McCallum, UMass Amherst

Finding Probability of Most Likely Path

using Dynamic Programming

• Efficient computation of max over all states

• Intuition: Probability of the first t observations is

the same for all possible t+1 length sequences.

• Define forward score:

• Compute it recursively from the beginning

• (Then must remember best paths to get arg max.)

Dynamic Programming



Andrew McCallum, UMass Amherst

Finding the Most Likely State Path

with the Viterbi Algorithm
[Viterbi 1967]

• Used to efficiently find the state sequence that gives
the highest probability to the observed outputs

• Maintains two dynamic programming tables:
– The probability of the best path (max)

– The state transitions of the best path (arg)

• Note that this is different from finding the most likely
tag for each time t!

The Viterbi Algorithm (1967)



Andrew McCallum, UMass Amherst

Viterbi Recipe

• Initialization

• Induction

Store backtrace

• Termination and path readout

Probability of entire best seq.

Viterbi Recipe



HMMs: 
Maxing and Summing
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Markov vs. Hidden Markov Models

Fed

raises

interest

rates

NN

NNS

NNP

VB

VBZ

interest
...

raises
rates

...

raises
rates

...

interest
...

Fed
...



Unrolled into a Trellis

Fed raises interest rates

NNP

NNS

NN

VB

VBZ



HMM Inference Problems
• Given an observation sequence, find the 

most likely state sequence (tagging)

• Compute the probability of observations 
when state sequence is hidden (language 
modeling)

• Given observations and (optionally) a their 
corresponding states, find parameters that 
maximize the probability of the 
observations (parameter estimation)



Tagging
Given an observation sequence, find the 
most likely state sequence.

arg max
X

P (X | O,µ) = arg max
X

P (X, O | µ)
P (O | µ)

= arg max
X

P (X, O | µ)

arg max
x1,x2,...xT

P (x1, x2, . . . , xT , O | µ)

Last time: Use dynamic programming to find highest-
probability sequence (i.e. best path, like Dijsktra’s 
algorithm)



Language Modeling
Compute the probability of observations when 
state sequence is hidden.

P (X, O | µ) = P (O | X, µ)P (X | µ)

P (O | µ) =
�

X

P (O | X, µ)P (X | µ)

Therefore

max
x1,x2,...xT

P (x1, x2, . . . , xT , O | µ)

�

x1,x2,...xT

P (x1, x2, . . . , xT , O | µ)

Suspiciously similar to
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Viterbi Algorithm (Tagging)

Fed raises interest rates
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Forward Algorithm (LM)

Fed raises interest rates
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What Do These Greek 
Letters Mean?

�j(t) = max
x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

�j(t) =
�

x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

= P (o1 · · · ot�1, xt = j | µ)

Probability of the best path from the 
beginning to word t such that word t has tag j 

Probability of all paths from the beginning 
to word t such that word t has tag j 

NOT 
the probability of tag j 

at time t



HMM Language Modeling

• Probability of observations, summed over 
all possible ways of tagging that 
observation:

• This is the sum of all path probabilities in 
the trellis

�

i

�i(T )



HMM Parameter Estimation
• Supervised

• Train on tagged text, test on plain text

• Maximum likelihood (can be smoothed):

• a[VBZ | NN] = C(NN,VBZ) / C(NN)

• b[rates | VBZ] = C(VBZ,rates) / C(VBZ)

• Unsupervised

• Train and test on plain text

• What can we do?
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Forward-Backward Algorithm

P (o1 · · · oT , xt = j | µ) = �j(t)⇥j(t)

P (o1 · · · ot�1, xt = j | µ) = �j(t)

P (ot · · · oT | xt = j, µ) = �j(t)

P (xt = j | O,µ) =
P (xt = j, O | µ)

P (O | µ)
=

�j(t)⇥j(t)
�#(T )

P (xt = i, xt+1 = j | O,µ) =
P (xt = i, xt+1 = j, O | µ)

P (O | µ)

=
�i(t)a[j | i]b[ot | j]⇥j(t + 1)

�#(T )



Expectation Maximization (EM)
• Iterative algorithm to maximize likelihood of 

observed data in the absence of hidden data 
(e.g., tags)

• Choose an initial model μ

• Expectation step: find the expected value of 
hidden variables given current μ

• Maximization step: choose new μ to maximize 
probability of hidden and observed data

• Guaranteed to increase likelihood

• Not guaranteed to find global maximum



Supervised vs. Unsupervised

Supervised Unsupervised

Annotated training text Plain text

Simple count/normalize EM

Fixed tag set Set during training

Training reads data 
once

Training needs multiple 
passes



Logarithms for Precision

P (Y ) = p(y1)p(y2) · · · p(yT )

log P (Y ) = log p(y1) + log p(y2) · · · + log p(yT )

Increased dynamic range of [0,1] to [-∞,0]



Semirings
Set ⊕ ⊗ 0 1

Prob R+ + x 0 1

Max R+ max x 0 1

Log R∪{±∞} log+ + -∞ 0

“Tropical” R∪{±∞} max + -∞ 0

Shortest path R∪{±∞} min + ∞ 0

Boolean {F, T} ∨ ∧ F T

String Σ* ∪ {∞} longest common 
prefix concat ∞ ε



Search as Deduction
Axioms

Inference rule

8A,B 2 T ;W 2 V ; 0  i, j  n

In Prolog
path(B,J) :-
  path(A,I), word(W,I,J), emit(B,W), trans(A,B).
path(“Start”,0).
word(“the”,0,1).
word(“cool”,1,2).
…
emit(“DT”,”the”).
…

path(B, j) (= path(A, i) ^ word(W, i, j)

^ emit(B,W ) ^ trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .



Search as Deduction
Axioms

Inference rule

In Prolog
path(B,J) :-
  path(A,I), word(W,I,J), emit(B,W), trans(A,B).
path(“Start”,0).
word(“the”,0,1).
word(“cool”,1,2).
…
emit(“DT”,”the”).
…

8B, j : path(B, j) =
_

A,W,i

path(A, i) ^ word(W, i, j)

^ emit(B,W ) ^ trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .



Search as Deduction
Axioms

Inference rule

Shortest path

8B, j : path(B, j) =
_

A,W,i

path(A, i) ^ word(W, i, j)

^ emit(B,W ) ^ trans(A,B)

8B, j : path(B, j) = min
A,W,i

path(A, i) + word(W, i, j)

+emit(B,W ) + trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .



Search as Deduction
Axioms

Shortest path

8B, j : path(B, j) = min
A,W,i

path(A, i) + word(W, i, j)

+emit(B,W ) + trans(A,B)

Viterbi algorithm

8B, j : path(B, j) = max

A,W,i
path(A, i) · word(W, i, j)

· emit(B,W ) · trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .



Search as Deduction
Axioms

Viterbi algorithm

8B, j : path(B, j) = max

A,W,i
path(A, i) · word(W, i, j)

· emit(B,W ) · trans(A,B)

Viterbi w/log probabilities

8B, j : path(B, j) = max

A,W,i
path(A, i) + word(W, i, j)

+ emit(B,W ) + trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .



Search as Deduction
Axioms

Viterbi algorithm

8B, j : path(B, j) = max

A,W,i
path(A, i) · word(W, i, j)

· emit(B,W ) · trans(A,B)

Forward algorithm

8B, j : path(B, j) =
X

A,W,i

path(A, i) · word(W, i, j)

· emit(B,W ) · trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .



Search as Deduction
Axioms

Forward algorithm

8B, j : path(B, j) =
X

A,W,i

path(A, i) · word(W, i, j)

· emit(B,W ) · trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Let θ = subset of axioms whose weights we wish to optimize

goal =
X

B

path(B,n)

@goal

@✓

=
X

B

@goal

@path(B,n)

@path(B,n)

@✓

Chain rule



Search as Deduction
Axioms

Forward algorithm

8B, j : path(B, j) =
X

A,W,i

path(A, i) · word(W, i, j)

· emit(B,W ) · trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Chain rule
@goal

@path(A, i)
=
X

B,j

@goal

@path(B, j)

@path(B, j)

@path(A, i)

�A(i) =
X

B,W,j

�B(j) · word(W, i, j) · emit(B,W ) · trans(A,B)



Reading
• Barzilay & Lee. Catching the Drift: Probabilistic 

Content Models, with Applications to Generation and 
Summarization. HLT-NAACL, 2004.

• http://aclweb.org/anthology//N/N04/
N04-1015.pdf

• Ritter, Cherry & Dolan. Unsupervised Modeling of 
Twitter Conversations. HLT-NAACL, 2010.

• http://aclweb.org/anthology//N/N10/
N10-1020.pdf

• Background: Jurafsky & Martin, ch. 5 and 6.1–6.5

http://aclweb.org/anthology//N/N04/N04-1015.pdf
http://aclweb.org/anthology//N/N10/N10-1020.pdf

