
Noisy Channel and
Hidden Markov Models

Natural Language Processing
CS 4120/6120—Spring 2017

Northeastern University

David Smith
with material from Jason Eisner & Andrew McCallum

One thing I wanted to ask you about is this. A most serious problem, for UNESCO
and for the constructive and peaceful future of the planet, is the problem of
translation, as it unavoidably affects the communication between peoples. Huxley has
recently told me that they are appalled by the magnitude and the importance of the
translation job.

Recognizing fully, even though necessarily vaguely, the semantic difficulties because of
multiple meanings, etc., I have wondered if it were unthinkable to design a computer
which would translate. Even if it would translate only scientific material (where the
semantic difficulties are very notably less), and even if it did produce an inelegant (but
intelligible) result, it would seem to me worth while.

Also knowing nothing official about, but having guessed and inferred considerable
about, powerful new mechanized methods in cryptography—methods which I
believe succeed even when one does not know what language has been coded—
one naturally wonders if the problem of translation could conceivably be treated
as a problem in cryptography. When I look at an article in Russian, I say: “This is
really written in English, but it has been coded in some strange symbols. I
will now proceed to decode.”

Warren Weaver
to Norbert Wiener

4 March 1947

! What does this say?
! And what other words are substrings?

! Given L = a “lexicon” FSA that matches all English words.
! How to apply to this problem?
! What if Lexicon is weighted?
! From unigrams to bigrams?
! Smooth L to include unseen words?

Word Segmentation

theprophetsaidtothecity

! Spelling correction also needs a lexicon L
! But there is distortion …

! Let T be a transducer that models common typos and
other spelling errors
! ance (") ence (deliverance, ...)
! e " ε (deliverance, ...)
! ε " e // Cons _ Cons (athlete, ...)
! rr " r (embarrasş occurrence, …)
! ge " dge (privilege, …)
! etc.

! Now what can you do with L .o. T ?
! Should T and L have probabilities?
! Want T to include “all possible” errors …

Spelling correction

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

correct spelling

typos

misspelling

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

(lexicon space)*

delete spaces

text w/o spaces

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

(lexicon space)*

pronunciation

speech

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

(lexicon space)*

pronunciation

speech

language model

acoustic model

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

“target” language

translation

“source” language

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

“target” language

translation

“source” language

language model

translation model

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

tree

delete everything  
but terminals

text

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

tree

delete everything  
but terminals

text

probabilistic CFG

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

p(X)

p(Y | X)

p(X,Y)

*

=

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

p(X)

p(Y | X)

p(X,Y)

*

=

want to recover x∈X from y∈Y

Noisy Channel Model

noisy channel X " Y

real language X

yucky language Y

p(X)

p(Y | X)

p(X,Y)

*

=

want to recover x∈X from y∈Y
choose x that maximizes p(x | y) or equivalently p(x,y)

Noisy Channel Model

p(X)

p(Y | X)

p(X,Y)

*

=

Noisy Channel Model

p(X)

p(Y | X)

p(X,Y)

*

=

a:a
/0.

7 b:b/0.3

Noisy Channel Model

p(X)

p(Y | X)

p(X,Y)

*

=
a:D

/0.
9a:C

/0.
1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

Noisy Channel Model

p(X)

p(Y | X)

p(X,Y)

*

=
a:D

/0.
9a:C

/0.
1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

Noisy Channel Model

p(X)

p(Y | X)

p(X,Y)

*

=
a:D

/0.
9a:C

/0.
1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:D
/0.

63a:C
/0.

07 b:C/0.24b:D/0.06

Noisy Channel Model

p(X)

p(Y | X)

p(X,Y)

*

=
a:D

/0.
9a:C

/0.
1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:D
/0.

63a:C
/0.

07 b:C/0.24b:D/0.06

Note p(x,y) sums to 1.

Noisy Channel Model

p(X)

p(Y | X)

p(X,Y)

*

=
a:D

/0.
9a:C

/0.
1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:D
/0.

63a:C
/0.

07 b:C/0.24b:D/0.06

Note p(x,y) sums to 1.
Suppose y=“C”; what is best “x”?

Noisy Channel Model

p(X)

p(Y | X)

p(X,Y)

*

=
a:D

/0.
9a:C

/0.
1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:D
/0.

63a:C
/0.

07 b:C/0.24b:D/0.06

Suppose y=“C”; what is best “x”?

Noisy Channel Model

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:C
/0.

07 b:C/0.24

Noisy Channel Model

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:C
/0.

07 b:C/0.24

restrict just to
paths compatible
with output “C”

Noisy Channel Model

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:C
/0.

07 b:C/0.24

.o. *
C:C/1 (Y=y)?restrict just to

paths compatible
with output “C”

Noisy Channel Model

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:C
/0.

07 b:C/0.24

.o. *
C:C/1 (Y=y)?restrict just to

paths compatible
with output “C”

best path

! Let Lexicon be a machine that matches all Turkish
words
! Same problem as word segmentation (in, e.g., Chinese)
! Just at a lower level: morpheme segmentation
! Turkish word: uygarlaştıramadıklarımızdanmışsınızcasına  

= uygar+laş+tır+ma+dık+ları+mız+dan+mış+sınız+ca+sı+na  
(behaving) as if you are among those whom we could not cause to
become civilized

! Some constraints on morpheme sequence: bigram probs
! Generative model – concatenate then fix up joints

! stop + -ing = stopping, fly + -s = flies, vowel harmony
!Use a cascade of transducers to handle all the fixups

! But this is just morphology!
! Can use probabilities here too (but people often don’t)

Morpheme Segmentation

 Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

O(k) deletion arcs

O(k) insertion 
arcs

O(k2) substitution  
arcs

O(k) no-change arcs

 Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

O(k) deletion arcs

O(k) insertion 
arcs

O(k2) substitution  
arcs

O(k) identity arcs

Likely edits = high-probability arcs

Stochastic

clara

 Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

Stochastic

.o.

=

caca
.o.

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c

ε:c
c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c
ε:c

c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

clara

 Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

Stochastic

.o.

=

caca
.o.

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c

ε:c
c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c
ε:c

c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

Best path (by Dijkstra’s algorithm)

Speech Recognition by FST Composition
(Pereira & Riley 1996)

p(word seq)

p(phone seq | word seq)

p(acoustics | phone seq)

.o.

.o.

trigram language model

pronunciation model

acoustic model

Speech Recognition by FST Composition
(Pereira & Riley 1996)

p(word seq)

p(phone seq | word seq)

p(acoustics | phone seq)

.o.

.o.

trigram language model

pronunciation model

acoustic model
.o.

observed acoustics

Speech Recognition by FST Composition
(Pereira & Riley 1996)

p(word seq)

p(phone seq | word seq)

p(acoustics | phone seq)

.o.

.o.
ə:phone

context
phone

context

 CAT:k æ t

trigram language model

Speech Recognition by FST Composition
(Pereira & Riley 1996)

p(word seq)

p(phone seq | word seq)

p(acoustics | phone seq)

.o.

.o.

.o.
ə:phone

context
phone

context

 CAT:k æ t

trigram language model

Transliteration
(Knight & Graehl, 1998)

Computational Linguistics Volume 24, Number 4

T (a) ~ (ka) ~-(sa) ~ (ta) ~(na) ¢" (ha) ~(ma) ~ (ra)
(i) ~ (k±) ~ (shi) Y-(ch±) ~ (ni) a (hi) ~ (mi) ~ (ri)
(u) ~ (ku) X (su) 7 (tsu) % (nu) 7 (hu) ~ (mu) 2~ (ru)

:n(e) ~(ke) ~ (se) ~ (te) ~ (he) ~-(he) fl (me) , ~ (re)
M- (o) = (ko) Y (so) b (to)] (no) • (ho) ~ (mo) ~ (ro)
-~ (ba) 2"(ga) -< (pa) -Y(za) ~(da) T (a) -V (ya) ~ (ya)

(bi) @'(gi) ff (pi) ~ (ji) Y(de) 4 (i) ~ (yo) ~ (yo)

Y (bu) ~ (g u) ~ (pu) X'(zu) F (do) ~ (u) :~(yu) ~ (yu)
-<(be) ~(ge) ~ (pe) ~'(ze) ~ (n) ~ (e) ~ (v)

(bo) ~(go) ~:(po) / (zo) ~'(chi) ~ (o) V (wa) --

Figure 1
Katakana symbols and their Japanese pronunciations.

Angela Johnson

(a n jira jyo n son)

New York Times

(nyu uyo oku ta imuzu)

ice cream

(a isukurfimu)

Omaha Beach

(omahabiit chi)

pro soccer

(purosakkaa)

Tonya Harding

(toonya haadingu)

ramp lamp casual fashion team leader
~yT" ? y ~ ~ J = T J ~ 7 ~ y ~ - - ~ - - ~ ' - -
(ranpu) (ranpu) (kaj yuaruhas shyon) (chifmuriidaa)

Notice how the transliteration is more phonetic than orthographic; the letter h in
Johnson does not produce any katakana. Also, a dot-separator (,) is used to sepa-
rate words, but not consistently. And transliteration is clearly an information-losing
operation: ranpu could come from either lamp or ramp, while aisukuri imu loses the
distinction between ice cream and I scream.

Transliteration is not trivial to automate, but we will be concerned with an even
more challenging problem--going from katakana back to English, i.e., back-translit-
eration. Human translators can often "sound out" a katakana phrase to guess an
appropriate translation. Automating this process has great practical importance in
Japanese/English machine translation. Katakana phrases are the largest source of text
phrases that do not appear in bilingual dictionaries or training corpora (a.k.a. "not-
found words"), but very little computational work has been done in this area. Yamron
et al. (1994) briefly mention a pattern-matching approach, while Arbabi et al. (1994)
discuss a hybrid neural-net/expert-system approach to (forward) transliteration.

The information-losing aspect of transliteration makes it hard to invert. Here are
some problem instances, taken from actual newspaper articles:

? ? ?

(aasudee) (robaato shyoon renaado) (masutaazutoonamento)

600

Computational Linguistics Volume 24, Number 4

symbols, however, suffers from a number of problems. One can easily wind up with
a system that proposes iskrym as a back-transliteration of aisukuriimu. Taking letter
frequencies into account improves this to a more plausible-looking isclim. Moving to
real words may give is crime: the i corresponds to ai, the s corresponds to su, etc.
Unfortunately, the correct answer here is ice cream.

After initial experiments along these lines, we stepped back and built a generative
model of the transliteration process, which goes like this:

.

2.

3.

4.

5.

An English phrase is written.

A translator pronounces it in English.

The pronunciation is modified to fit the Japanese sound inventory.

The sounds are converted into katakana.

Katakana is written.

This divides our problem into five subproblems. Fortunately, there are techniques
for coordinating solutions to such subproblems, and for using generative models in the
reverse direction. These techniques rely on probabilities and Bayes' theorem. Suppose
we build an English phrase generator that produces word sequences according to
some probability distribution P(w). And suppose we build an English pronouncer that
takes a word sequence and assigns it a set of pronunciations, again probabilistically,
according to some P(plw). Given a pronunciation p, we may want to search for the
word sequence w that maximizes P(wlp). Bayes' theorem lets us equivalently maximize
P(w) • P(plw), exactly the two distributions we have modeled.

Extending this notion, we settled down to build five probability distributions:

.

2.

3.

4.

5.

P(w) - - generates written English word sequences.

P(elw) - - pronounces English word sequences.

P(jle) - - converts English sounds into Japanese sounds.

P(klj) - - converts Japanese sounds to katakana writing.

P(o]k) - - introduces misspellings caused by optical character recognition
(OCR).

Given a katakana string o observed by OCR, we want to find the English word
sequence w that maximizes the sum, over all e, j, and k, of

P(w). P(elw). P(jle). P(klj) • P(olk)

Following Pereira and Riley (1997), we implement P(w) in a weighted finite-state ac-
ceptor (WFSA) and we implement the other distributions in weighted finite-state trans-
ducers (WFSTs). A WFSA is a state/transition diagram with weights and symbols on
the transitions, making some output sequences more likely than others. A WFST is a
WFSA with a pair of symbols on each transition, one input and one output. Inputs
and outputs may include the empty symbol ¢. Also following Pereira and Riley (1997),
we have implemented a general composition algorithm for constructing an integrated
model P(xlz) from models P(xly) and P(y[z), treating WFSAs as WFSTs with identical
inputs and outputs. We use this to combine an observed katakana string with each

602

Part-of-Speech Tagging

Bigram LM as FSM

the

quick

brown

fox

jumped

Bigram LM as FSM

the

quick

brown

fox

jumped

V states

Bigram LM as FSM

the

quick

brown

fox

jumped

V states

O(V2) arcs
(& parameters)

Bigram LM as FSM

the

quick

brown

fox

jumped

V states

O(V2) arcs
(& parameters)

What about a
trigram model?

Bigram LM as FSM

the

quick

brown

fox

jumped

V states

O(V2) arcs
(& parameters)

What about a
trigram model?

What about backoff?

Grammatical Categories

! “Parts of speech” (partes orationis)
!Some Cool Kids call them “word classes”

!Folk definitions
!Nouns: people, places, concepts, things, ...
!Verbs: expressive of action
!Adjectives: properties of nouns

! In linguistics, defined by role in syntax

Andrew McCallum, UMass Amherst

Grammatical categories: parts-of-speech

• Nouns: people, animals, concepts, things

• Verbs: expresses action in the sentence

• Adjectives: describe properties of nouns

• The one is in the corner.

sad
intelligent
green
fat
… “Substitution test”

3

The Tagging Task

Input: the lead paint is unsafe

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! Uses:

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! Uses:
! text-to-speech (how do we pronounce “lead”?)

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! Uses:
! text-to-speech (how do we pronounce “lead”?)
! can write regexps like (Det) Adj* N+ over the output

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! Uses:
! text-to-speech (how do we pronounce “lead”?)
! can write regexps like (Det) Adj* N+ over the output
! preprocessing to speed up parser (but a little dangerous)

The Tagging Task

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! Uses:
! text-to-speech (how do we pronounce “lead”?)
! can write regexps like (Det) Adj* N+ over the output
! preprocessing to speed up parser (but a little dangerous)
! if you know the tag, you can back off to it in other tasks

The Tagging Task

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! The first statistical NLP task

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! The first statistical NLP task
! Been done to death by different methods

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! The first statistical NLP task
! Been done to death by different methods
! Easy to evaluate (how many tags are correct?)

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! The first statistical NLP task
! Been done to death by different methods
! Easy to evaluate (how many tags are correct?)
! Canonical finite-state task (in English)

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! The first statistical NLP task
! Been done to death by different methods
! Easy to evaluate (how many tags are correct?)
! Canonical finite-state task (in English)

! Can be done well with methods that look at local context

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

! The first statistical NLP task
! Been done to death by different methods
! Easy to evaluate (how many tags are correct?)
! Canonical finite-state task (in English)

! Can be done well with methods that look at local context
! Though should “really” do it by parsing!

Why Do We Care?

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

Tagged Data Sets

!Brown Corpus
!Designed to be a representative sample from 1961

!news, poetry, “belles lettres”, short stories
!87 different tags

!Penn Treebank
!45 different tags
!Currently most widely used for English

!Now a paradigm in lots of other languages
!Chinese Treebank has over 200 tags

Penn Treebank POS Tags

Andrew McCallum, UMass Amherst

Part-of-speech tags, examples

• PART-OF-SPEECH TAG EXAMPLES

• Adjective JJ happy, bad

• Adjective, comparative JJR happier, worse

• Adjective, cardinal number CD 3, fifteen

• Adverb RB often, particularly

• Conjunction, coordination CC and, or

• Conjunction, subordinating IN although, when

• Determiner DT this, each, other, the, a, some

• Determiner, postdeterminer JJ many, same

• Noun NN aircraft, data

• Noun, plural NNS women, books

• Noun, proper, singular NNP London, Michael

• Noun, proper, plural NNPS Australians, Methodists

• Pronoun, personal PRP you, we, she, it

• Pronoun, question WP who, whoever

• Verb, base present form VBP take, live

6

Word Class Classes

! Importantly for predicting POS tags, there are
two broad classes

! “Closed class” words
!Belong to classes that don’t accept new members
!Determiners: the, a, an, this, ...
!Prepositions: in, on, of, ...

! “Open class” words
!Nouns, verbs, adjectives, adverbs, ...

! “Closed” is relative: These words are born and
die over longer time scales (e.g, “regarding”)

Ambiguity in Language

Andrew McCallum, UMass Amherst

Ambiguity in Language

Fed raises interest rates 0.5%

in effort to control inflation

NY Times headline 17 May 2000
S

NP VP

NNP

Fed

V NP NP PP

raises

interest rates

NN NN

0.5 in NN VP

V VP

V NP

NN

CD NN PP NP

%

effort

to

control

inflation

9

Part-of-speech Ambiguity

Andrew McCallum, UMass Amherst

Part of speech ambiguities

Fed raises interest rates 0.5 % in effort to

control inflation

Part-of-speech ambiguities

NNP NNS

VBZ

NNS

VBZ

NNS

VBZ
VB

CD NN

10

Degree of Supervision

! Supervised: Training corpus is tagged by humans

Degree of Supervision

! Supervised: Training corpus is tagged by humans
! Unsupervised: Training corpus isn’t tagged

Degree of Supervision

! Supervised: Training corpus is tagged by humans
! Unsupervised: Training corpus isn’t tagged
! Partly supervised: Training corpus isn’t tagged, but

you have a dictionary giving possible tags for each
word

Degree of Supervision

! Supervised: Training corpus is tagged by humans
! Unsupervised: Training corpus isn’t tagged
! Partly supervised: Training corpus isn’t tagged, but

you have a dictionary giving possible tags for each
word

Degree of Supervision

! Supervised: Training corpus is tagged by humans
! Unsupervised: Training corpus isn’t tagged
! Partly supervised: Training corpus isn’t tagged, but

you have a dictionary giving possible tags for each
word

! We’ll start with the supervised case and move to
decreasing levels of supervision.

Degree of Supervision

Current Performance

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

!How many tags are correct?

Current Performance

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

!How many tags are correct?
!About 97% currently

Current Performance

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

!How many tags are correct?
!About 97% currently
!But baseline is already 90%

!Baseline is performance of stupidest possible method
!Tag every word with its most frequent tag
!Tag unknown words as nouns

Current Performance

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

What Should We Look At?

Bill directed a cortege of autos through the dunes

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

Each unknown tag is constrained by its word

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

What Should We Look At?

Bill directed a cortege of autos through the dunes
PN Verb Det Noun Prep Noun Prep Det Noun

correct tags

PN Adj Det Noun Prep Noun Prep Det Noun
Verb Verb Noun Verb
 Adj some possible tags for
 Prep each word (maybe more)
 …?

Each unknown tag is constrained by its word
and by the tags to its immediate left and right.
But those tags are unknown too …

!Noisy Channel Model (statistical)

Finite-State Approaches

noisy channel X " Y

real language X

yucky language Y

want to recover X from Y

part-of-speech tags
(n-gram model)

replace tags  
with words

text

Review: Noisy Channel

noisy channel X " Y

real language X

yucky language Y

p(X)

p(Y | X)

p(X,Y)

*

=

Review: Noisy Channel

noisy channel X " Y

real language X

yucky language Y

p(X)

p(Y | X)

p(X,Y)

*

=

want to recover x∈X from y∈Y

Review: Noisy Channel

noisy channel X " Y

real language X

yucky language Y

p(X)

p(Y | X)

p(X,Y)

*

=

want to recover x∈X from y∈Y
choose x that maximizes p(x | y) or equivalently p(x,y)

Noisy Channel for Tagging

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:C
/0.

07 b:C/0.24

.o. *
C:C/1 (Y = y)?

best path

acceptor: p(tag sequence)

transducer: tags " words

acceptor: the observed words

transducer: scores candidate tag seqs
on their joint probability with obs words;

pick best path

“Markov Model”

“Unigram Replacement”

“straight line”

Markov Model (bigrams)

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model (bigrams)

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model (bigrams)

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model (bigrams)

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model (bigrams)

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model (bigrams)

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model (bigrams)

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model (bigrams)

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model

Det

Start

Adj
Noun

Verb

Prep

Stop

Markov Model

Det

Start

Adj
Noun

Verb

Prep

Stop

0.3 0.7

Markov Model

Det

Start

Adj
Noun

Verb

Prep

Stop

0.3 0.7

0.4 0.5

0.1

Markov Model

Det

Start

Adj
Noun

Verb

Prep

Stop

0.70.3

0.8

0.2
0.4 0.5

0.1

Markov Model

Det

Start

Adj
Noun

Verb

Prep

Stop

0.3

0.4 0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

0.7

p(tag seq)

0.1

Markov Model as an FSA

Det

Start

Adj
Noun

Verb

Prep

Stop

0.70.3

0.4 0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

p(tag seq)

0.1

Markov Model as an FSA

Det

Start

Adj
Noun

Verb

Prep

Stop

0.70.3

0.4 0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

0.8

0.2

p(tag seq)

0.1

Markov Model as an FSA

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun 
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun 
0.5

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

Det 0.8

ε 0.2

p(tag seq)

Markov Model (tag bigrams)

Det

Start

Adj
Noun Stop

Adj 0.4
Noun 
0.5

ε 0.2

Det 0.8

p(tag seq)

Start Det Adj Adj Noun Stop = 0.8 * 0.3 * 0.4 * 0.5 * 0.2

Adj 0.3

Noisy Channel for Tagging

p(X)

p(Y | X)

p(X, y)

*

=

.o.

=

.o. *
p(y | Y)

automaton: p(tag sequence)

transducer: tags " words

automaton: the observed words

transducer: scores candidate tag seqs
on their joint probability with obs words;

pick best path

“Markov Model”

“Unigram Replacement”

“straight line”

Noisy Channel for Tagging

p(X)

p(Y | X)

p(X, y)

*

=

.o.

=

.o. *
p(y | Y)

transducer: scores candidate tag seqs
on their joint probability with obs words;

we should pick best path

the cool directed autos

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun 
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun 
0.5

Det 0.8

ε 0.2

Unigram Replacement Model

Noun:Bill/0.002

Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003

Adj:directed/0.0005

Adj:cortege/0.000001
…

Det:the/0.4

Det:a/0.6

sums to 1

sums to 1

p(word seq | tag seq)

Det

Start

Adj
Noun

Verb

Prep

Stop

Adj 0.3

Adj 0.4
Noun 
0.5

Det 0.8

ε 0.2

p(tag seq)

Compose
Adj:cortege/0.000001

…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun 
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun 
0.5

Det 0.8

ε 0.2

Det:a 0.48
Det:the 0.32

Compose

Det

Start

Adj
Noun Stop

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Adj:cortege/0.000001
…

Noun:Bill/0.002
Noun:autos/0.001

…
Noun:cortege/0.000001

Adj:cool/0.003
Adj:directed/0.0005

Det:the/0.4
Det:a/0.6

Verb

Prep

Det

Start

Adj
Noun

Verb

Prep

Stop

Noun 
0.7Adj 0.3

Adj 0.4

ε 0.1

Noun 
0.5

Det 0.8

ε 0.2

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos

ε

Observed Words as Straight-Line FSA

word seq

the cool directed autos

Det:a 0.48
Det:the 0.32

Det

Start

Adj
Noun Stop

Adj:cool 0.0009
Adj:directed 0.00015
Adj:cortege 0.000003

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

Compose with the cool directed autos

Adj:cool 0.0012
Adj:directed 0.00020
Adj:cortege 0.000004

N:cortege
N:autos

ε

Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

the cool directed autosCompose with

AdjAdj:directed 0.00020
N:autos

ε

Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

the cool directed autosCompose with

Adj

why did this
loop go away?

Adj:directed 0.00020
N:autos

ε

Det:the 0.32
Det

Start

Adj
Noun Stop

Adj:cool 0.0009

p(word seq, tag seq) = p(tag seq) * p(word seq | tag seq)

Verb

Prep

AdjAdj:directed 0.00020
N:autos

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …
 the cool directed autos

ε

Det:t
he 0

.32

In Fact, Paths Form a “Trellis”

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …
 the cool directed autos

Adj:cool 0.0009

Det:t
he 0

.32

In Fact, Paths Form a “Trellis”

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …
 the cool directed autos

Adj:cool 0.0009
Noun:cool 0.007

Det:t
he 0

.32

In Fact, Paths Form a “Trellis”

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …
 the cool directed autos

Adj:cool 0.0009
Noun:cool 0.007

The Trellis Shape Emerges from the
Cross-Product Construction for

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

.o.
0 1

2

3
4

The Trellis Shape Emerges from the
Cross-Product Construction for

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

.o.
0 1

2

3
4

ε

ε

ε

ε
ε
ε

All paths here are 4 words

The Trellis Shape Emerges from the
Cross-Product Construction for

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

.o.
0 1

2

3
4

ε

ε

ε

ε
ε
ε

So all paths here must have 4 words on output side

All paths here are 4 words

The Trellis Shape Emerges from the
Cross-Product Construction for

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,4

0 1 2 3 4

=

.o.
0 1

2

3
4

ε

ε

ε

ε
ε
ε

Det:t
he 0

.32

Actually, Trellis Isn’t Complete

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …
 the cool directed autos

Adj:cool 0.0009
Noun:cool 0.007

Det:t
he 0

.32

Actually, Trellis Isn’t Complete

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …
 the cool directed autos

Adj:cool 0.0009
Noun:cool 0.007

Trellis has no Det " Det or Det "Stop arcs; why?

Noun:autos…

Det:t
he 0

.32

Actually, Trellis Isn’t Complete

Det

Start Adj

Noun

Stop

p(word seq, tag seq)

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed…

ε 0.2

Adj:direc
ted

…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …
 the cool directed autos

Adj:cool 0.0009

Lattice is missing some other arcs; why?

Noun:cool 0.007

Noun:autos…

Det:t
he 0

.32

Actually, Trellis Isn’t Complete

Det

Start Stop

p(word seq, tag seq)

Adj

Noun

Adj

Noun Noun

Adj:directed…

Adj:direc
ted

…

The best path:
Start Det Adj Adj Noun Stop = 0.32 * 0.0009 …
 the cool directed autos

Adj:cool 0.0009

Lattice is missing some states; why?

Noun:cool 0.007 ε 0.2

Find best path from Start to Stop

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007

! Use dynamic programming:
! What is best path from Start to each node?
! Work from left to right
! Each node stores its best path from Start (as probability

plus one backpointer)

Find best path from Start to Stop

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007

! Use dynamic programming:
! What is best path from Start to each node?
! Work from left to right
! Each node stores its best path from Start (as probability

plus one backpointer)
! Special acyclic case of Dijkstra’s shortest-path alg.

Find best path from Start to Stop

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007

! Use dynamic programming:
! What is best path from Start to each node?
! Work from left to right
! Each node stores its best path from Start (as probability

plus one backpointer)
! Special acyclic case of Dijkstra’s shortest-path alg.
! Faster if some arcs/states are absent

Find best path from Start to Stop

Det:t
he 0

.32
Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… ε 0.2

Adj:direc
ted

…

Adj:cool 0.0009
Noun:cool 0.007

In Summary

In Summary
! We are modeling p(word seq, tag seq)

In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words

In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words
! Is tag sequence X likely with these words?

In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words
! Is tag sequence X likely with these words?
! Noisy channel model is a “Hidden Markov Model”:

In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words
! Is tag sequence X likely with these words?
! Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Prep Det
Noun Stop

Bill directed a cortege of autos through the dunes

In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words
! Is tag sequence X likely with these words?
! Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Prep Det
Noun Stop

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words
! Is tag sequence X likely with these words?
! Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Prep Det
Noun Stop

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

probs
from tag
bigram
model

In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words
! Is tag sequence X likely with these words?
! Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Prep Det
Noun Stop

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

probs
from tag
bigram
model

probs from
unigram
replacement

In Summary
! We are modeling p(word seq, tag seq)
! The tags are hidden, but we see the words
! Is tag sequence X likely with these words?
! Noisy channel model is a “Hidden Markov Model”:

Start PN Verb Det Noun Prep Noun Prep Det
Noun Stop

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

!Find X that maximizes probability product

probs
from tag
bigram
model

probs from
unigram
replacement

Another Viewpoint

Another Viewpoint
! We are modeling p(word seq, tag seq)

Another Viewpoint
! We are modeling p(word seq, tag seq)
! Why not use chain rule + some kind of backoff?

Another Viewpoint
! We are modeling p(word seq, tag seq)
! Why not use chain rule + some kind of backoff?
! Actually, we are!

Another Viewpoint
! We are modeling p(word seq, tag seq)
! Why not use chain rule + some kind of backoff?
! Actually, we are!

Start PN Verb Det …
 Bill directed a … p()

= p(Start) * p(PN | Start) * p(Verb | Start PN) * p(Det | Start PN Verb) * …
 * p(Bill | Start PN Verb …) * p(directed | Bill, Start PN Verb Det …)
 * p(a | Bill directed, Start PN Verb Det …) * …

Another Viewpoint
! We are modeling p(word seq, tag seq)
! Why not use chain rule + some kind of backoff?
! Actually, we are!

Start PN Verb Det …
 Bill directed a … p()

= p(Start) * p(PN | Start) * p(Verb | Start PN) * p(Det | Start PN Verb) * …
 * p(Bill | Start PN Verb …) * p(directed | Bill, Start PN Verb Det …)
 * p(a | Bill directed, Start PN Verb Det …) * …

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

Another Viewpoint
! We are modeling p(word seq, tag seq)
! Why not use chain rule + some kind of backoff?
! Actually, we are!

Start PN Verb Det …
 Bill directed a … p()

= p(Start) * p(PN | Start) * p(Verb | Start PN) * p(Det | Start PN Verb) * …
 * p(Bill | Start PN Verb …) * p(directed | Bill, Start PN Verb Det …)
 * p(a | Bill directed, Start PN Verb Det …) * …

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

Another Viewpoint
! We are modeling p(word seq, tag seq)
! Why not use chain rule + some kind of backoff?
! Actually, we are!

Start PN Verb Det …
 Bill directed a … p()

= p(Start) * p(PN | Start) * p(Verb | Start PN) * p(Det | Start PN Verb) * …
 * p(Bill | Start PN Verb …) * p(directed | Bill, Start PN Verb Det …)
 * p(a | Bill directed, Start PN Verb Det …) * …

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

Variations

! Multiple tags per word

Variations

! Multiple tags per word
! Transformations to knock some of them out

Variations

! Multiple tags per word
! Transformations to knock some of them out

! How to encode multiple tags and knockouts?

Variations

! Multiple tags per word
! Transformations to knock some of them out

! How to encode multiple tags and knockouts?

Variations

! Multiple tags per word
! Transformations to knock some of them out

! How to encode multiple tags and knockouts?

! Use the above for partly supervised learning

Variations

! Multiple tags per word
! Transformations to knock some of them out

! How to encode multiple tags and knockouts?

! Use the above for partly supervised learning
! Supervised: You have a tagged training corpus

Variations

! Multiple tags per word
! Transformations to knock some of them out

! How to encode multiple tags and knockouts?

! Use the above for partly supervised learning
! Supervised: You have a tagged training corpus
! Unsupervised: You have an untagged training corpus

Variations

! Multiple tags per word
! Transformations to knock some of them out

! How to encode multiple tags and knockouts?

! Use the above for partly supervised learning
! Supervised: You have a tagged training corpus
! Unsupervised: You have an untagged training corpus
! Here: You have an untagged training corpus and a

dictionary giving possible tags for each word

Variations

Applications of HMMs
• NLP

• Part-of-speech tagging

• Word segmentation

• Information extraction

• Optical character recognition

• Speech recognition

• Modeling acoustics, with continuous emissions

• Computer Vision

• Gesture recognition

• Biology

• Gene finding

• Protein structure prediction

• Economics, Climatology, Robotics, etc.

A More Traditional View
of HMMs

Andrew McCallum, UMass Amherst

Recipe for solving an NLP task

Input: the lead paint is unsafe

Output: the/Det lead/N paint/N is/V unsafe/Adj

1) Data: Notation, representation

2) Problem: Write down the problem in notation

3) Model: Make some assumptions, define a parametric
model (often generative model of the data)

4) Inference: How to search through possible answers to
find the best one

5) Learning: How to estimate parameters

6) Implementation: Engineering considerations for an
efficient implementation

Observations

Tags

Recipe for NLP

Andrew McCallum, UMass Amherst

(Hidden) Markov model tagger

• View sequence of tags as a Markov chain.

Assumptions:

– Limited horizon

– Time invariant (stationary)

– We assume that a word’s tag only depends on the

previous tag (limited horizon) and that his

dependency does not change over time (time

invariance)

– A state (part of speech) generates a word. We

assume it depends only on the state.

An HMM Tagger

Andrew McCallum, UMass Amherst

The Markov Property

• A stochastic process has the Markov property if the
conditional probability distribution of future states of

the process, given the current state, depends only

upon the current state, and conditionally independent

of the past states (the path of the process) given the
current state.

• A process with the Markov property is usually called

a Markov process, and may be described as

Markovian.

The Markov Property

Andrew McCallum, UMass Amherst

HMM as Finite State Machine

DT

JJ

NN

VBP

IN

for

above

in

…

transitions

emissions

P(xt+1|xt)

P(ot|xt)

HMM w/State Emissions

Andrew McCallum, UMass Amherst

HMM as Bayesian Network

• Top row is unobserved states, interpreted as POS tags

• Bottom row is observed output observations (words)

HMM as Bayes Net

Andrew McCallum, UMass Amherst

(One) Standard HMM formalism

• (X, O, xs, A, B) are all variables. Model µ = (A, B)

• X is state sequence of length T; O is observation seq.

• xs is a designated start state (with no incoming
transitions). (Can also be separated into ! as in book.)

• A is matrix of transition probabilities (each row is a
conditional probability table (CPT)

• B is matrix of output probabilities (vertical CPTs)

• HMM is a probabilistic (nondeterministic) finite state
automaton, with probabilistic outputs (from vertices, not
arcs, in the simple case)

(One) Standard HMM Formalism

HMM Inference Problems
• Given an observation sequence, find the

most likely state sequence (tagging)

• Compute the probability of observations
when state sequence is hidden (language
modeling)

• Given observations and (optionally) a their
corresponding states, find parameters that
maximize the probability of the
observations (parameter estimation)

Andrew McCallum, UMass Amherst

Most likely hidden state sequence

• Given O = (o1,…,oT) and model µ = (A,B)

• We want to find

• P(O,X| µ) = P(O|X, µ) P(X| µ)

• P(O|X, µ) = b[x1|o1] b[x2|o2] … b[xT|oT]

• P(X| µ) = a[x1|x2] a[x2|x3] … a[xT-1|xT]

• arg maxX P(O,X| µ) = arg max x1, x2,… xT

• Problem: arg max is exponential in sequence length!

Most Likely State Sequence

Andrew McCallum, UMass Amherst

Representation for Paths: Trellis

Time 1 2 3 4 … T

States

X1

x2

x3

x4

Paths in a Trellis

Andrew McCallum, UMass Amherst

Representation for Paths: Trellis

Time 1 2 3 4 … T

States

X1

x2

x3

x4

Paths in a Trellis

Andrew McCallum, UMass Amherst

Representation for Paths: Trellis

Time 1 2 3 4 … T

States

X1

x2

x3

x4

!i(t) = Probability of most likely path that ends at state i at time t.

a[
x 4,

 x
2]

 b
[o 4

]

Paths in a Trellis

Andrew McCallum, UMass Amherst

Finding Probability of Most Likely Path

using Dynamic Programming

• Efficient computation of max over all states

• Intuition: Probability of the first t observations is

the same for all possible t+1 length sequences.

• Define forward score:

• Compute it recursively from the beginning

• (Then must remember best paths to get arg max.)

Dynamic Programming

Andrew McCallum, UMass Amherst

Finding the Most Likely State Path

with the Viterbi Algorithm
[Viterbi 1967]

• Used to efficiently find the state sequence that gives
the highest probability to the observed outputs

• Maintains two dynamic programming tables:
– The probability of the best path (max)

– The state transitions of the best path (arg)

• Note that this is different from finding the most likely
tag for each time t!

The Viterbi Algorithm (1967)

Andrew McCallum, UMass Amherst

Viterbi Recipe

• Initialization

• Induction

Store backtrace

• Termination and path readout

Probability of entire best seq.

Viterbi Recipe

HMMs:
Maxing and Summing

Markov vs. Hidden Markov Models

Fed

raises

interest

rates

Markov vs. Hidden Markov Models

Fed

raises

interest

rates

NN

NNS

NNP

VB

VBZ

Markov vs. Hidden Markov Models

Fed

raises

interest

rates

NN

NNS

NNP

VB

VBZ

interest
...

Markov vs. Hidden Markov Models

Fed

raises

interest

rates

NN

NNS

NNP

VB

VBZ

interest
...

raises
rates

...

Markov vs. Hidden Markov Models

Fed

raises

interest

rates

NN

NNS

NNP

VB

VBZ

interest
...

raises
rates

...

raises
rates

...

Markov vs. Hidden Markov Models

Fed

raises

interest

rates

NN

NNS

NNP

VB

VBZ

interest
...

raises
rates

...

raises
rates

...

interest
...

Markov vs. Hidden Markov Models

Fed

raises

interest

rates

NN

NNS

NNP

VB

VBZ

interest
...

raises
rates

...

raises
rates

...

interest
...

Fed
...

Unrolled into a Trellis

Fed raises interest rates

NNP

NNS

NN

VB

VBZ

HMM Inference Problems
• Given an observation sequence, find the

most likely state sequence (tagging)

• Compute the probability of observations
when state sequence is hidden (language
modeling)

• Given observations and (optionally) a their
corresponding states, find parameters that
maximize the probability of the
observations (parameter estimation)

Tagging
Given an observation sequence, find the
most likely state sequence.

arg max
X

P (X | O,µ) = arg max
X

P (X, O | µ)
P (O | µ)

= arg max
X

P (X, O | µ)

arg max
x1,x2,...xT

P (x1, x2, . . . , xT , O | µ)

Last time: Use dynamic programming to find highest-
probability sequence (i.e. best path, like Dijsktra’s
algorithm)

Language Modeling
Compute the probability of observations when
state sequence is hidden.

P (X, O | µ) = P (O | X, µ)P (X | µ)

P (O | µ) =
�

X

P (O | X, µ)P (X | µ)

Therefore

max
x1,x2,...xT

P (x1, x2, . . . , xT , O | µ)

�

x1,x2,...xT

P (x1, x2, . . . , xT , O | µ)

Suspiciously similar to

Viterbi Algorithm (Tagging)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ

Viterbi Algorithm (Tagging)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

Viterbi Algorithm (Tagging)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

Viterbi Algorithm (Tagging)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

Viterbi Algorithm (Tagging)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

Viterbi Algorithm (Tagging)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]

Viterbi Algorithm (Tagging)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]δNN(2)

δNNS(2)

δNNP(2)

δVB(2)

δVBZ(2)

Viterbi Algorithm (Tagging)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ

max = δVB(3)

a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]δNN(2)

δNNS(2)

δNNP(2)

δVB(2)

δVBZ(2)

Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ

Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]

Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2)

Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ

sum = αVB(3)

a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2)

What Do These Greek
Letters Mean?

�j(t) = max
x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

�j(t) =
�

x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

= P (o1 · · · ot�1, xt = j | µ)

What Do These Greek
Letters Mean?

�j(t) = max
x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

�j(t) =
�

x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

= P (o1 · · · ot�1, xt = j | µ)

Probability of the best path from the
beginning to word t such that word t has tag j

What Do These Greek
Letters Mean?

�j(t) = max
x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

�j(t) =
�

x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

= P (o1 · · · ot�1, xt = j | µ)

Probability of the best path from the
beginning to word t such that word t has tag j

Probability of all paths from the beginning
to word t such that word t has tag j

What Do These Greek
Letters Mean?

�j(t) = max
x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

�j(t) =
�

x1···xt�1

P (x1 · · · xt�1, o1 · · · ot�1, xt = j | µ)

= P (o1 · · · ot�1, xt = j | µ)

Probability of the best path from the
beginning to word t such that word t has tag j

Probability of all paths from the beginning
to word t such that word t has tag j

NOT
the probability of tag j

at time t

HMM Language Modeling

• Probability of observations, summed over
all possible ways of tagging that
observation:

• This is the sum of all path probabilities in
the trellis

�

i

�i(T)

HMM Parameter Estimation
• Supervised

• Train on tagged text, test on plain text

• Maximum likelihood (can be smoothed):

• a[VBZ | NN] = C(NN,VBZ) / C(NN)

• b[rates | VBZ] = C(VBZ,rates) / C(VBZ)

• Unsupervised

• Train and test on plain text

• What can we do?

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2)

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

a[NNP|VB]b[rates|NNP]

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

a[NNP|VB]b[rates|NNP]

a[NNS|VB]b[rates|NNS]

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

a[NNP|VB]b[rates|NNP]

a[NNS|VB]b[rates|NNS]

a[NN|VB]b[rates|NN]

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

a[NNP|VB]b[rates|NNP]

a[NNS|VB]b[rates|NNS]

a[NN|VB]b[rates|NN] βNN(4)

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

a[NNP|VB]b[rates|NNP]

a[NNS|VB]b[rates|NNS]

a[NN|VB]b[rates|NN] βNN(4)

βNNS(4)

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

a[NNP|VB]b[rates|NNP]

a[NNS|VB]b[rates|NNS]

a[NN|VB]b[rates|NN] βNN(4)

βNNS(4)

βNNP(4)

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

a[NNP|VB]b[rates|NNP]

a[NNS|VB]b[rates|NNS]

a[NN|VB]b[rates|NN] βNN(4)

βNNS(4)

βNNP(4)

βVB(4)

Forward-Backward Algorithm

Fed raises interest rates

NNP

NNS

NN

VB

VBZ a[VB|VBZ]b[interest|VB]

a[VB|VB]b[interest|VB]

a[VB|NNP]b[interest|VB]

a[VB|NNS]b[interest|VB]

a[VB|NN]b[interest|VB]αNN(2)

αNNS(2)

αNNP(2)

αVB(2)

αVBZ(2) a[VBZ|VB]b[rates|VBZ]

a[VB|VB]b[rates|VB]

a[NNP|VB]b[rates|NNP]

a[NNS|VB]b[rates|NNS]

a[NN|VB]b[rates|NN] βNN(4)

βNNS(4)

βNNP(4)

βVB(4)

βVBZ(4)

Forward-Backward Algorithm

P (o1 · · · oT , xt = j | µ) = �j(t)⇥j(t)

P (o1 · · · ot�1, xt = j | µ) = �j(t)

P (ot · · · oT | xt = j, µ) = �j(t)

P (xt = j | O,µ) =
P (xt = j, O | µ)

P (O | µ)
=

�j(t)⇥j(t)
�#(T)

P (xt = i, xt+1 = j | O,µ) =
P (xt = i, xt+1 = j, O | µ)

P (O | µ)

=
�i(t)a[j | i]b[ot | j]⇥j(t + 1)

�#(T)

Expectation Maximization (EM)
• Iterative algorithm to maximize likelihood of

observed data in the absence of hidden data
(e.g., tags)

• Choose an initial model μ

• Expectation step: find the expected value of
hidden variables given current μ

• Maximization step: choose new μ to maximize
probability of hidden and observed data

• Guaranteed to increase likelihood

• Not guaranteed to find global maximum

Supervised vs. Unsupervised

Supervised Unsupervised

Annotated training text Plain text

Simple count/normalize EM

Fixed tag set Set during training

Training reads data
once

Training needs multiple
passes

Logarithms for Precision

P (Y) = p(y1)p(y2) · · · p(yT)

log P (Y) = log p(y1) + log p(y2) · · · + log p(yT)

Increased dynamic range of [0,1] to [-∞,0]

Semirings
Set ⊕ ⊗ 0 1

Prob R+ + x 0 1

Max R+ max x 0 1

Log R∪{±∞} log+ + -∞ 0

“Tropical” R∪{±∞} max + -∞ 0

Shortest path R∪{±∞} min + ∞ 0

Boolean {F, T} ∨ ∧ F T

String Σ* ∪ {∞} longest common
prefix concat ∞ ε

Search as Deduction
Axioms

Inference rule

8A,B 2 T ;W 2 V ; 0  i, j  n

In Prolog
path(B,J) :-
 path(A,I), word(W,I,J), emit(B,W), trans(A,B).
path(“Start”,0).
word(“the”,0,1).
word(“cool”,1,2).
…
emit(“DT”,”the”).
…

path(B, j) (= path(A, i) ^ word(W, i, j)

^ emit(B,W) ^ trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Search as Deduction
Axioms

Inference rule

In Prolog
path(B,J) :-
 path(A,I), word(W,I,J), emit(B,W), trans(A,B).
path(“Start”,0).
word(“the”,0,1).
word(“cool”,1,2).
…
emit(“DT”,”the”).
…

8B, j : path(B, j) =
_

A,W,i

path(A, i) ^ word(W, i, j)

^ emit(B,W) ^ trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Search as Deduction
Axioms

Inference rule

Shortest path

8B, j : path(B, j) =
_

A,W,i

path(A, i) ^ word(W, i, j)

^ emit(B,W) ^ trans(A,B)

8B, j : path(B, j) = min
A,W,i

path(A, i) + word(W, i, j)

+emit(B,W) + trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Search as Deduction
Axioms

Shortest path

8B, j : path(B, j) = min
A,W,i

path(A, i) + word(W, i, j)

+emit(B,W) + trans(A,B)

Viterbi algorithm

8B, j : path(B, j) = max

A,W,i
path(A, i) · word(W, i, j)

· emit(B,W) · trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Search as Deduction
Axioms

Viterbi algorithm

8B, j : path(B, j) = max

A,W,i
path(A, i) · word(W, i, j)

· emit(B,W) · trans(A,B)

Viterbi w/log probabilities

8B, j : path(B, j) = max

A,W,i
path(A, i) + word(W, i, j)

+ emit(B,W) + trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Search as Deduction
Axioms

Viterbi algorithm

8B, j : path(B, j) = max

A,W,i
path(A, i) · word(W, i, j)

· emit(B,W) · trans(A,B)

Forward algorithm

8B, j : path(B, j) =
X

A,W,i

path(A, i) · word(W, i, j)

· emit(B,W) · trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Search as Deduction
Axioms

Forward algorithm

8B, j : path(B, j) =
X

A,W,i

path(A, i) · word(W, i, j)

· emit(B,W) · trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Let θ = subset of axioms whose weights we wish to optimize

goal =
X

B

path(B,n)

@goal

@✓

=
X

B

@goal

@path(B,n)

@path(B,n)

@✓

Chain rule

Search as Deduction
Axioms

Forward algorithm

8B, j : path(B, j) =
X

A,W,i

path(A, i) · word(W, i, j)

· emit(B,W) · trans(A,B)

path(Start, 0), word(the, 0, 1), emit(DT, the), . . .

Chain rule
@goal

@path(A, i)
=
X

B,j

@goal

@path(B, j)

@path(B, j)

@path(A, i)

�A(i) =
X

B,W,j

�B(j) · word(W, i, j) · emit(B,W) · trans(A,B)

Reading
• Barzilay & Lee. Catching the Drift: Probabilistic

Content Models, with Applications to Generation and
Summarization. HLT-NAACL, 2004.

• http://aclweb.org/anthology//N/N04/
N04-1015.pdf

• Ritter, Cherry & Dolan. Unsupervised Modeling of
Twitter Conversations. HLT-NAACL, 2010.

• http://aclweb.org/anthology//N/N10/
N10-1020.pdf

• Background: Jurafsky & Martin, ch. 5 and 6.1–6.5

http://aclweb.org/anthology//N/N04/N04-1015.pdf
http://aclweb.org/anthology//N/N10/N10-1020.pdf

