Formal Semantics

Natural Language Processing CS 4120/6120—Spring 2016 Northeastern University

David Smith some slides from Jason Eisner

Language as Structure

- So far, we've talked about structure
- What structures are more probable?
 - Language modeling: Good sequences of words/ characters
 - Text classification: Good sequences in defined contexts
- How can we recover hidden structure?
 - Tagging: hidden word classes
 - Parsing: hidden word relations

- Studying phonology, morphology, syntax, etc. independent of meaning is methodologically very useful
- We can study the structure of languages we don't understand
- We can use HMMs and CFGs to study protein structure and music, which don't bear meaning in the same way as language

- How would you know if a computer "understood" the "meaning" of an (English) utterance (even in some weak "scarequoted" way)?
- How would you know if a person understood the meaning of an utterance?

- Paraphrase, "state in your own words" (English to English translation)
- Translation into another language
- Reading comprehension questions
- Drawing appropriate inferences
- Carrying out appropriate actions
- Open-ended dialogue (Turing test)

- What is meaning of 3+5*6?
- First parse it into 3+(5*6)

- What is meaning of 3+5*6?
- First parse it into 3+(5*6)

- What is meaning of 3+5*6?
- First parse it into 3+(5*6)
- Now give a meaning to each node in the tree (bottom-up)

- What is meaning of 3+5*6?
- First parse it into 3+(5*6)
- Now give a meaning to each node in the tree (bottom-up)

- What is meaning of 3+5*6?
- First parse it into 3+(5*6)
- Now give a meaning to each node in the tree (bottom-up)

How about 3+5*x?

- How about 3+5*x?
- Same thing: the meaning of x is found from the environment (it's 6)

- How about 3+5*x?
- Same thing: the meaning of x is found from the environment (it's 6)
- Analogies in language?

- How about 3+5*x?

- How about 3+5*x?
- Don't know x at compile time

- How about 3+5*x?
- Don't know x at compile time
- "Meaning" at a node is a piece of code, not a number

- How about 3+5*x?
- Don't know x at compile time
- "Meaning" at a node is a piece of code, not a number

- How about 3+5*x?
- Don't know x at compile time
- "Meaning" at a node is a piece of code, not a number

5* (x+1) -2 is a different expression that produces equivalent code

- How about 3+5*x?
- Don't know x at compile time
- "Meaning" at a node is a piece of code, not a number

5* (x+1) -2 is a different expression that produces equivalent code (can be converted to the previous code by optimization)

- How about 3+5*x?
- Don't know x at compile time
- "Meaning" at a node is a piece of code, not a number

5* (x+1) -2 is a different expression that produces equivalent code (can be converted to the previous code by optimization)
Analogies in language?

- We understand if we can respond appropriately
 - ok for commands, questions (these demand response)
 - "Computer, warp speed 5"
 - "throw axe at dwarf"
 - "put all of my blocks in the red box"
 - imperative programming languages
 - SQL database queries and other questions
- We understand statement if we can determine its truth
 - ok, but if you knew whether it was true, why did anyone bother telling it to you?
 - comparable notion for understanding NP is to compute what the NP refers to, which might be useful

- We understand statement if we know how one could (in principle) determine its truth
 - What are exact conditions under which it would be true?
 - necessary + sufficient
 - Equivalently, derive all its consequences
 - what else must be true if we accept the statement?
 - Match statements with a "domain theory"
 - Philosophers tend to use this definition

- We understand statement if we know how one could (in principle) determine its truth
 - What are exact conditions under which it would be true?
 - necessary + sufficient
 - Equivalently, derive all its consequences
 - what else must be true if we accept the statement?
 - Match statements with a "domain theory"
 - Philosophers tend to use this definition
- We understand statement if we can use it to answer questions [very similar to above – requires reasoning]
 - Easy: John ate pizza. What was eaten by John?
 - Hard: White's first move is P-Q4. Can Black checkmate?
 - Constructing a procedure to get the answer is enough

- Paraphrase, "state in your own words" (English to English translation)
- Translation into another language
- Reading comprehension questions
- Drawing appropriate inferences
- Carrying out appropriate actions
- Open-ended dialogue (Turing test)
- Translation to logical form that we can reason about

- 1. Booleans
 - Roughly, the semantic values of sentences

- 1. Booleans
 - Roughly, the semantic values of sentences
- 2. Entities
 - Values of NPs, e.g., objects like this slide
 - Maybe also other types of entities, like times

- 1. Booleans
 - Roughly, the semantic values of sentences
- 2. Entities
 - Values of NPs, e.g., objects like this slide
 - Maybe also other types of entities, like times
- 3. Functions of various types
 - Functions from booleans to booleans (and, or, not)
 - A function from entity to boolean is called a "predicate" – e.g., frog(x), green(x)
 - Functions might return other functions!

- 1. Booleans
 - Roughly, the semantic values of sentences
- 2. Entities
 - Values of NPs, e.g., objects like this slide
 - Maybe also other types of entities, like times
- 3. Functions of various types
 - Functions from booleans to booleans (and, or, not)
 - A function from entity to boolean is called a "predicate" – e.g., frog(x), green(x)
 - Functions might return other functions!
 - Function might take other functions as arguments!

Logic: Lambda Terms

- Lambda terms:
 - A way of writing "anonymous functions"
 - No function header or function name
 - But defines the key thing: **behavior** of the function
 - Just as we can talk about 3 without naming it "x"
 - Let square = $\lambda p p^*p$
 - Equivalent to int square(p) { return p*p; }
 - But we can talk about λp p*p without naming it
 - Format of a lambda term: λ variable expression

Logic: Lambda Terms

Lambda terms:

- Lambda terms:
 - Let square = $\lambda p p^*p$

- Lambda terms:
 - Let square = $\lambda p p^*p$
 - Then square(3) = $(\lambda p p*p)(3) = 3*3$

- Lambda terms:
 - Let square = $\lambda p p^*p$
 - Then square(3) = $(\lambda p p*p)(3) = 3*3$
 - Note: square(x) isn't a function! It's just the value x*x.

- Lambda terms:
 - Let square = $\lambda p p^*p$
 - Then square(3) = $(\lambda p p*p)(3) = 3*3$
 - Note: square(x) isn't a function! It's just the value x*x.
 - But λx square(x) = λx x*x = λp p*p = square (proving that these functions are equal – and indeed they are, as they act the same on all arguments: what is $(\lambda x \text{ square}(x))(y)$?)

- Lambda terms:
 - Let square = $\lambda p p^*p$
 - Then square(3) = $(\lambda p p*p)(3) = 3*3$
 - Note: square(x) isn't a function! It's just the value x*x.
 - But λx square(x) = λx x*x = λp p*p = square (proving that these functions are equal – and indeed they are, as they act the same on all arguments: what is $(\lambda x \text{ square}(x))(y)$?)

- Lambda terms:
 - Let square = $\lambda p p^*p$
 - Then square(3) = $(\lambda p p*p)(3) = 3*3$
 - Note: square(x) isn't a function! It's just the value x*x.
 - But $\lambda \mathbf{x}$ square(x) = λx x*x = λp p*p = square (proving that these functions are equal – and indeed they are, as they act the same on all arguments: what is $(\lambda x \text{ square}(x))(y)$?)
 - Let even = λp (p mod 2 == 0) a predicate: returns true/false

- Lambda terms:
 - Let square = $\lambda p p^*p$
 - Then square(3) = $(\lambda p p*p)(3) = 3*3$
 - Note: square(x) isn't a function! It's just the value x*x.
 - But $\lambda \mathbf{x}$ square(x) = λx x*x = λp p*p = square (proving that these functions are equal – and indeed they are, as they act the same on all arguments: what is $(\lambda x \text{ square}(x))(y)$?)
 - Let even = λp (p mod 2 == 0) a predicate: returns true/false
 - even(x) is true if x is even

- Lambda terms:
 - Let square = $\lambda p p^*p$
 - Then square(3) = $(\lambda p p*p)(3) = 3*3$
 - Note: square(x) isn't a function! It's just the value x*x.
 - But $\lambda \mathbf{x}$ square(x) = λx x*x = λp p*p = square (proving that these functions are equal – and indeed they are, as they act the same on all arguments: what is $(\lambda x \text{ square}(x))(y)$?)
 - Let even = λp (p mod 2 == 0) a predicate: returns true/false
 - even(x) is true if x is even
 - How about even(square(x))?
 - $\rightarrow \lambda x \text{ even(square(x))}$ is true of numbers with even squares
 - Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)

- Lambda terms:
 - Let square = $\lambda p p^*p$
 - Then square(3) = $(\lambda p p*p)(3) = 3*3$
 - Note: square(x) isn't a function! It's just the value x*x.
 - But $\lambda \mathbf{x}$ square(x) = λx x*x = λp p*p = square (proving that these functions are equal – and indeed they are, as they act the same on all arguments: what is $(\lambda x \text{ square}(x))(y)$?)
 - Let even = λp (p mod 2 == 0) a predicate: returns true/false
 - even(x) is true if x is even
 - How about even(square(x))?
 - $\rightarrow \lambda x \text{ even(square(x))}$ is true of numbers with even squares
 - Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)
 - This happens to denote the same predicate as even does

All lambda terms have one argument

- All lambda terms have one argument
- But we can fake multiple arguments ...

- All lambda terms have one argument
- But we can fake multiple arguments ...

- All lambda terms have one argument
- But we can fake multiple arguments ...

Suppose we want to write times(5,6)

- All lambda terms have one argument
- But we can fake multiple arguments ...
- Suppose we want to write times(5,6)
- Suppose times is defined as λx λy (x*y)

- All lambda terms have one argument
- But we can fake multiple arguments ...
- Suppose we want to write times(5,6)
- Suppose times is <u>defined</u> as λx λy (x*y)
- Claim that times(5)(6) is 30
 - times(5) = $(\lambda x \lambda y x^*y)$ (5) = $\lambda y 5^*y$

- All lambda terms have one argument
- But we can fake multiple arguments ...
- Suppose we want to write times(5,6)
- Suppose times is <u>defined</u> as λx λy (x*y)
- Claim that times(5)(6) is 30
 - times(5) = $(\lambda x \lambda y x^*y)$ (5) = $\lambda y 5^*y$
 - If this function weren't anonymous, what would we call it?

- All lambda terms have one argument
- But we can fake multiple arguments ...
- Suppose we want to write times(5,6)
- Suppose times is defined as λx λy (x*y)
- Claim that times(5)(6) is 30
 - times(5) = $(\lambda x \lambda y x^*y)$ (5) = $\lambda y 5^*y$
 - If this function weren't anonymous, what would we call it?
 - $-times(5)(6) = (\lambda y 5*y)(6) = 5*6 = 30$

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]

```
• times(5,6) = times(5)(6)
= (\lambda x \lambda y x^*y)(5)(6) = (\lambda y 5^*y)(6) = 5^*6 = 30
```

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]

```
• times(5,6) = times(5)(6)
= (\lambda x \lambda y x^*y) (5)(6) = (\lambda y 5^*y)(6) = 5^*6 = 30
```

So we can always get away with 1-arg functions ...

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]

```
• times(5,6) = times(5)(6)
= (\lambda x \lambda y x^*y) (5)(6) = (\lambda y 5^*y)(6) = 5^*6 = 30
```

- So we can always get away with 1-arg functions ...
 - which might return a function to take the next argument. Whoa.

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]

```
• times(5,6) = times(5)(6)
= (\lambda x \lambda y x^*y) (5)(6) = (\lambda y 5^*y)(6) = 5^*6 = 30
```

- So we can always get away with 1-arg functions ...
 - which might return a function to take the next argument. Whoa.
- Remember: square can be written as λx square(x)

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]

```
• times(5,6) = times(5)(6)
= (\lambda x \lambda y x^*y) (5)(6) = (\lambda y 5^*y)(6) = 5^*6 = 30
```

- So we can always get away with 1-arg functions ...
 - which might return a function to take the next argument. Whoa.
- Remember: square can be written as λx square(x)
 - And now times can be written as $\lambda x \lambda y$ times(x,y)

So what does times actually mean???

- So what does times actually mean???
- How do we get from times(5,6) to 30 ?
 - Whether times(5,6) = 30 depends on whether symbol * actually denotes the multiplication function!

- So what does times actually mean???
- How do we get from times(5,6) to 30 ?
 - Whether times(5,6) = 30 depends on whether symbol * actually denotes the multiplication function!

- So what does times actually mean???
- How do we get from times(5,6) to 30 ?
 - Whether times(5,6) = 30 depends on whether symbol * actually denotes the multiplication function!
- Well, maybe * was defined as another lambda term, so substitute to get *(5,6) = (blah blah blah)(5)(6)
- But we can't keep doing substitutions forever!
 - Eventually we have to ground out in a primitive term
 - Primitive terms are bound to object code

- So what does times actually mean???
- How do we get from times(5,6) to 30 ?
 - Whether times(5,6) = 30 depends on whether symbol * actually denotes the multiplication function!

- Well, maybe * was defined as another lambda term, so substitute to get *(5,6) = (blah blah blah)(5)(6)
- But we can't keep doing substitutions forever!
 - Eventually we have to ground out in a primitive term
 - Primitive terms are bound to object code
- Maybe *(5,6) just executes a multiplication function

- So what does times actually mean???
- How do we get from times(5,6) to 30 ?
 - Whether times(5,6) = 30 depends on whether symbol * actually denotes the multiplication function!
- Well, maybe * was defined as another lambda term, so substitute to get *(5,6) = (blah blah blah)(5)(6)
- But we can't keep doing substitutions forever!
 - Eventually we have to ground out in a primitive term
 - Primitive terms are bound to object code
- Maybe *(5,6) just executes a multiplication function
- What is executed by loves(john, mary) ?

- Thus, have "constants" that name some of the entities and functions (e.g., *):
 - GeorgeWBush an entity
 - red a predicate on entities
 - holds of just the red entities: red(x) is true if x is red!
 - loves a predicate on 2 entities
 - -loves(GeorgeWBush, LauraBush)
 - •Question: What does loves(LauraBush) denote?
- Constants used to define meanings of words
- Meanings of phrases will be built from the constants

- most a predicate on 2 predicates on entities
 - most(pig, big) = "most pigs are big"
 - Equivalently, $most(\lambda x pig(x), \lambda x big(x))$
 - returns true if most of the things satisfying the first predicate also satisfy the second predicate

- most a predicate on 2 predicates on entities
 - most(pig, big) = "most pigs are big"
 - -Equivalently, $most(\lambda x pig(x), \lambda x big(x))$
 - returns true if most of the things satisfying the first predicate also satisfy the second predicate
- similarly for other quantifiers
 - -all(pig,big) (equivalent to $\forall x \text{ pig}(x) \Rightarrow \text{big}(x)$)
 - exists(pig,big) (equivalent to $\exists x \text{ pig}(x) \text{ AND big}(x)$)
 - can even build complex quantifiers from English phrases:
 - between 12 and 75"; "a majority of"; "all but the smallest 2"

A reasonable representation?

- -Gilly swallowed a goldfish
- First attempt: swallowed(Gilly, goldfish)
- Returns true or false. Analogous to
 - prime(17)
 - equal(4,2+2)
 - loves(GeorgeWBush, LauraBush)
 - swallowed(Gilly, Jilly)
- or is it analogous?

- Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)

- Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)
- But we're not paying attention to a!

- -Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)
- But we're not paying attention to a!
- goldfish isn't the name of a unique object the way Gilly is

- -Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)
- But we're not paying attention to a!
- goldfish isn't the name of a unique object the way Gilly is

- -Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)
- But we're not paying attention to a!
- goldfish isn't the name of a unique object the way Gilly is

In particular, don't want Gilly swallowed a goldfish and Milly swallowed a goldfish to translate as swallowed(Gilly, goldfish) AND swallowed(Milly, goldfish) since probably not the same goldfish ...

- Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)

- Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)
- Better: 3g goldfish(g) AND swallowed(Gilly, g)

- Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)
- Better: 3g goldfish(g) AND swallowed(Gilly, g)
- Or using one of our quantifier predicates:
 - exists(λg goldfish(g), λg swallowed(Gilly,g))
 - Equivalently: exists(goldfish, swallowed(Gilly))
 - "In the set of goldfish there exists one swallowed by Gilly"

- Gilly swallowed a goldfish
 - First attempt: swallowed(Gilly, goldfish)
- Better: 3g goldfish(g) AND swallowed(Gilly, g)
- Or using one of our quantifier predicates:
 - exists(λg goldfish(g), λg swallowed(Gilly,g))
 - Equivalently: exists(goldfish, swallowed(Gilly))
 - "In the set of goldfish there exists one swallowed by Gilly"
- Here goldfish is a predicate on entities
 - This is the same semantic type as red
 - But goldfish is noun and red is adjective .. #@!?

Gilly swallowed a goldfish

- Gilly swallowed a goldfish
 - Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

- Gilly swallowed a goldfish
 - Previous attempt: exists(goldfish, λg swallowed(Gilly,g))
- Improve to use tense:

- Gilly swallowed a goldfish
 - Previous attempt: exists(goldfish, λg swallowed(Gilly,g))
- Improve to use tense:
 - Instead of the 2-arg predicate swallowed(Gilly,g)
 try a 3-arg version swallow(t,Gilly,g)
 where t is a time

- Gilly swallowed a goldfish
 - Previous attempt: exists(goldfish, λg swallowed(Gilly,g))
- Improve to use tense:
 - Instead of the 2-arg predicate swallowed(Gilly,g)
 try a 3-arg version swallow(t,Gilly,g)
 where t is a time
 - Now we can write:

It past(t) AND exists(goldfish, λg swallow(t,Gilly,g))

- Gilly swallowed a goldfish
 - Previous attempt: exists(goldfish, λg swallowed(Gilly,g))
- Improve to use tense:
 - Instead of the 2-arg predicate swallowed(Gilly,g)
 try a 3-arg version swallow(t,Gilly,g) where t is a time
 - Now we can write:
 ∃t past(t) AND exists(goldfish, λg swallow(t,Gilly,g))
 - "There was some time in the past such that a goldfish was among the objects swallowed by Gilly at that time"

(Simplify Notation)

- Gilly swallowed a goldfish
 - Previous attempt: exists(goldfish, swallowed(Gilly))
- Improve to use tense:
 - Instead of the 2-arg predicate swallowed(Gilly,g)
 try a 3-arg version swallow(t,Gilly,g)
 - Now we can write:
 3t past(t) AND exists(goldfish, swallow(t,Gilly))
 - "There was some time in the past such that a goldfish was among the objects swallowed by Gilly at that time"

- Gilly swallowed a goldfish
 - Previous: 3t past(t) AND exists(goldfish, swallow(t,Gilly))

- Gilly swallowed a goldfish
 - Previous: 3t past(t) AND exists(goldfish, swallow(t,Gilly))
- Why stop at time? An event has other properties:
 - [Gilly] swallowed [a goldfish] [on a dare] [in a telephone booth] [with 30 other freshmen] [after many bottles of vodka had been consumed].
 - Specifies who what why when ...

- Gilly swallowed a goldfish
 - Previous: 3t past(t) AND exists(goldfish, swallow(t,Gilly))
- Why stop at time? An event has other properties:
 - [Gilly] swallowed [a goldfish] [on a dare] [in a telephone booth] [with 30 other freshmen] [after many bottles of vodka had been consumed].
 - Specifies who what why when ...
- Replace time variable t with an event variable e
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
 - As with probability notation, a comma represents AND
 - Could define past as λe ∃t before(t,now), ended-at(e,t)

- Gilly swallowed a goldfish in <u>a</u> booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), <u>all(booth, location(e)), ...</u>

Does this mean what we'd expect??

- Gilly swallowed a goldfish in <u>a</u> booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, location(e)), ...
 Jg goldfish(g), swallowee(e,g)
- Does this mean what we'd expect??

- Gilly swallowed a goldfish in <u>a</u> booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, location(e)), ...
 ∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)
- Does this mean what we'd expect??

- Gilly swallowed a goldfish in a booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, location(e)), ...
 ∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)
- Does this mean what we'd expect??

says that there's only <u>one</u> event with a single goldfish getting swallowed that took place in a lot of booths ...

- Groucho Marx celebrates quantifier order ambiguity:
 - In this country <u>a woman</u> gives birth <u>every 15 min</u>. Our job is to find that woman and stop her.
 - ∃woman (∀15min gives-birth-during(woman, 15min))
 - ► ∀15min (∃woman gives-birth-during(15min, woman))
 - Surprisingly, both are possible in natural language!
 - Which is the joke meaning (where it's always the same woman) and why?

- Gilly swallowed a goldfish in a booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, location(e)), ...
 ∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

- Gilly swallowed a goldfish in a booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, location(e)), ...
 ∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)
- Does this mean what we'd expect??

- Gilly swallowed a goldfish in a booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, location(e)), ...
 ∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)
- Does this mean what we'd expect??
 - It's ∃e ∀b which means same event for every booth

- Gilly swallowed a goldfish in a booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, location(e)), ...
 ∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)
- Does this mean what we'd expect??
 - It's ∃e ∀b which means same event for every booth
 - Probably false unless Gilly can be in every booth during her swallowing of a single goldfish

- Gilly swallowed a goldfish in <u>a</u> booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

- Gilly swallowed a goldfish in <u>a</u> booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Other reading (∀b ∃e) involves quantifier raising:

- Gilly swallowed a goldfish in a booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

- Other reading (∀b ∃e) involves quantifier raising:
 - all(booth, λb [∃e past(e), act(e,swallowing), swallower
 (e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])

- Gilly swallowed a goldfish in a booth
 - Je past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly),
 exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

- Other reading (∀b ∃e) involves quantifier raising:
 - all(booth, λb [∃e past(e), act(e,swallowing), swallower
 (e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])
 - "for all booths b, there was such an event in b"

Willy wants a unicorn

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a particular unicorn u that Willy wants"
 - In this reading, the wantee is an individual entity

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a particular unicorn u that Willy wants"
 - In this reading, the wantee is an individual entity
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants any entity u that satisfies the unicorn predicate"
 - In this reading, the wantee is a type of entity
 - Sentence doesn't claim that such an entity exists

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a particular unicorn u that Willy wants"
 - In this reading, the wantee is an individual entity
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants any entity u that satisfies the unicorn predicate"
 - In this reading, the wantee is a type of entity
 - Sentence doesn't claim that such an entity exists
- Willy wants Lilly to get married

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a particular unicorn u that Willy wants"
 - In this reading, the wantee is an individual entity
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants any entity u that satisfies the unicorn predicate"
 - In this reading, the wantee is a type of entity
 - Sentence doesn't claim that such an entity exists
- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λe' [act(e',marriage), marrier(e',Lilly)])

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a particular unicorn u that Willy wants"
 - In this reading, the wantee is an individual entity
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants any entity u that satisfies the unicorn predicate"
 - In this reading, the wantee is a type of entity
 - Sentence doesn't claim that such an entity exists
- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λe' [act(e',marriage), marrier(e',Lilly)])
 - "Willy wants any event e' in which Lilly gets married"

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a particular unicorn u that Willy wants"
 - In this reading, the wantee is an individual entity
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants any entity u that satisfies the unicorn predicate"
 - In this reading, the wantee is a type of entity
 - Sentence doesn't claim that such an entity exists
- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λe' [act(e',marriage), marrier(e',Lilly)])
 - "Willy wants any event e' in which Lilly gets married"
 - Here the wantee is a type of event

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a particular unicorn u that Willy wants"
 - In this reading, the wantee is an individual entity
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants any entity u that satisfies the unicorn predicate"
 - In this reading, the wantee is a type of entity
 - Sentence doesn't claim that such an entity exists
- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λe' [act(e',marriage), marrier(e',Lilly)])
 - "Willy wants any event e' in which Lilly gets married"
 - Here the wantee is a type of event
 - Sentence doesn't claim that such an event exists

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a particular unicorn u that Willy wants"
 - In this reading, the wantee is an individual entity
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants any entity u that satisfies the unicorn predicate"
 - In this reading, the wantee is a type of entity
 - Sentence doesn't claim that such an entity exists
- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λe' [act(e',marriage), marrier(e',Lilly)])
 - "Willy wants any event e' in which Lilly gets married"
 - Here the wantee is a type of event
 - Sentence doesn't claim that such an event exists
- Intensional verbs besides want: hope, doubt, believe,...

Willy wants a unicorn

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity
- Problem (a fine point I'll gloss over):

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
 - λg unicorn(g) is defined by the actual set of unicorns ("extension")

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
 - λg unicorn(g) is defined by the actual set of unicorns ("extension")
 - But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
 - λg unicorn(g) is defined by the actual set of unicorns ("extension")
 - But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 - Then wants a unicorn = wants a dodo. Oops!

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
 - λg unicorn(g) is defined by the actual set of unicorns ("extension")
 - But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 - Then wants a unicorn = wants a dodo. Oops!
 - So really the wantee should be <u>criteria</u> for unicornness ("intension")

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
 - λg unicorn(g) is defined by the actual set of unicorns ("extension")
 - But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 - Then wants a unicorn = wants a dodo. Oops!
 - So really the wantee should be <u>criteria</u> for unicornness ("intension")
- Traditional solution involves "possible-world semantics"

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
 - λg unicorn(g) is defined by the actual set of unicorns ("extension")
 - But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 - Then wants a unicorn = wants a dodo. Oops!
 - So really the wantee should be <u>criteria</u> for unicornness ("intension")
- Traditional solution involves "possible-world semantics"
 - Can imagine other worlds where set of unicorn ≠ set of dodos

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants anything that satisfies the unicorn predicate"
 - here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
 - λg unicorn(g) is defined by the actual set of unicorns ("extension")
 - But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 - Then wants a unicorn = wants a dodo. Oops!
 - So really the wantee should be <u>criteria</u> for unicornness ("<u>intension</u>")
- Traditional solution involves "possible-world semantics"
 - Can imagine other worlds where set of unicorn ≠ set of dodos
 - Other worlds also useful for: You must pay the rent You can pay the rent If you hadn't, you'd be homeless

Willy wants Lilly to get married

- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy),
 wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy),
 wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

- Willy wants Lilly to get married
 - Be present(e), act(e, wanting), wanter(e, Willy), wantee(e, λf [act(f, marriage), marrier(f, Lilly)])

Willy wants to get married

- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λf [act(f,marriage), marrier(f,Lilly)])
- Willy wants to get married
 - Same as Willy wants Willy to get married

- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λf [act(f,marriage), marrier(f,Lilly)])
- Willy wants to get married
 - Same as Willy wants Willy to get married
 - Just as easy to represent as Willy wants Lilly ...

- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λf [act(f,marriage), marrier(f,Lilly)])
- Willy wants to get married
 - Same as Willy wants Willy to get married
 - Just as easy to represent as Willy wants Lilly ...
 - The only trick is to construct the representation from the syntax. The empty subject position of "to get married" is said to be <u>controlled</u> by the subject of "wants."

- expert
 - λg expert(g)

- expert
 - λg expert(g)
- big fat expert
 - λg big(g), fat(g), expert(g)
 - But: bogus expert
 - Wrong: λg bogus(g), expert(g)
 - Right: λg (bogus(expert))(g) ... bogus maps to new concept

- expert
 - λg expert(g)
- big fat expert
 - λg big(g), fat(g), expert(g)
 - But: bogus expert
 - Wrong: λg bogus(g), expert(g)
 - Right: λg (bogus(expert))(g) ... bogus maps to new concept
- Baltimore expert (white-collar expert, TV expert ...)
 - λg Related(Baltimore, g), expert(g) expert from Baltimore
 - Or with different intonation:
 - λg (Modified-by(Baltimore, expert))(g) expert on Baltimore
 - Can't use Related for this case: law expert and dog catcher
 - λg Related(law,g), expert(g), Related(dog, g), catcher(g)
 - = dog expert and law catcher

- the goldfish that Gilly swallowed
- every goldfish that Gilly swallowed
- three goldfish that Gilly swallowed

- the goldfish that Gilly swallowed
- every goldfish that Gilly swallowed
- three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)]

- the goldfish that Gilly swallowed
- every goldfish that Gilly swallowed
- three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)]

like an adjective!

three swallowed-by-Gilly goldfish

Nouns and Their Modifiers

- the goldfish that Gilly swallowed
- every goldfish that Gilly swallowed
- three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)]

like an adjective!

three swallowed-by-Gilly goldfish

Or for real: λg [goldfish(g), ∃e [past(e), act(e,swallowing), swallower(e,Gilly), swallowee(e,g)]]

- Lili passionately wants Billy
 - Wrong?: passionately(want(Lili,Billy)) = passionately(true)
 - Better: (passionately(want))(Lili,Billy)
 - Best: ∃e present(e), act(e,wanting), wanter(e,Lili), wantee(e, Billy), manner(e, passionate)

- Lili passionately wants Billy
 - Wrong?: passionately(want(Lili,Billy)) = passionately(true)
 - Better: (passionately(want))(Lili,Billy)
 - Best: ∃e present(e), act(e,wanting), wanter(e,Lili), wantee(e, Billy), manner(e, passionate)
- Lili often stalks Billy
 - (often(stalk))(Lili,Billy)
 - many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili), stalkee(e, Billy), during(e,d))

- Lili passionately wants Billy
 - Wrong?: passionately(want(Lili,Billy)) = passionately(true)
 - Better: (passionately(want))(Lili,Billy)
 - Best: ∃e present(e), act(e,wanting), wanter(e,Lili), wantee(e, Billy), manner(e, passionate)
- Lili often stalks Billy
 - (often(stalk))(Lili,Billy)
 - many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili), stalkee(e, Billy), during(e,d))
- Lili obviously likes Billy
 - (obviously(like))(Lili,Billy) one reading
 - obvious(like(Lili, Billy)) another reading

- What is the meaning of a full sentence?
 - Depends on the punctuation mark at the end. ©
 - Billy likes Lili. → assert(like(B,L))
 - Billy likes Lili? \rightarrow ask(like(B,L))
 - or more formally, "Does Billy like Lili?"
 - Billy, like Lili! → command(like(B,L))
 - or more accurately, "Let Billy like Lili!"

- What is the meaning of a full sentence?
 - Depends on the punctuation mark at the end. ©
 - Billy likes Lili. → assert(like(B,L))
 - Billy likes Lili? \rightarrow ask(like(B,L))
 - or more formally, "Does Billy like Lili?"
 - Billy, like Lili! → command(like(B,L))
 - or more accurately, "Let Billy like Lili!"

 Let's try to do this a little more precisely, using event variables etc.

- What did Gilly swallow?
 - ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly), swallowee(e,x))
 - Argument is identical to the modifier "that Gilly swallowed"
 - Is there any common syntax?

- What did Gilly swallow?
 - ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly), swallowee(e,x))
 - Argument is identical to the modifier "that Gilly swallowed"
 - Is there any common syntax?
- Eat your fish!
 - **command**(λf act(f,eating), eater(f,Hearer), eatee(...))

- What did Gilly swallow?
 - ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly), swallowee(e,x))
 - Argument is identical to the modifier "that Gilly swallowed"
 - Is there any common syntax?
- Eat your fish!
 - **command**(λf act(f,eating), eater(f,Hearer), eatee(...))
- I ate my fish.
 - assert(∃e past(e), act(e,eating), eater(f,Speaker), eatee(...))

- We've discussed what semantic representations should look like.
- But how do we get them from sentences???
- First parse to get a syntax tree.
- Second look up the semantics for each word.
- Third build the semantics for each constituent
 - Work from the bottom up
 - The syntax tree is a "recipe" for how to do it

- Add a "sem" feature to each context-free rule
 - $-S \rightarrow NP loves NP$

 - Meaning of S depends on meaning of NPs

- Add a "sem" feature to each context-free rule
 - $-S \rightarrow NP loves NP$

 - Meaning of S depends on meaning of NPs
- TAG version:

- Add a "sem" feature to each context-free rule
 - $-S \rightarrow NP loves NP$

 - Meaning of S depends on meaning of NPs

loves

- TAG version:

S loves(x,y)

NP VP

X

- Add a "sem" feature to each context-free rule
 - $-S \rightarrow NP loves NP$

 - Meaning of S depends on meaning of NPs
- TAG version:

- Add a "sem" feature to each context-free rule
 - $-S \rightarrow NP loves NP$

 - Meaning of S depends on meaning of NPs
- TAG version:

 S loves(x,y)

 S died(x)

 NP VP

 NP VP

 NP V NP kicked the bucket
- Template filling: S[sem=showflights(x,y)] → I want a flight from NP[sem=x] to NP[sem=y]

- Instead of S → NP loves NP
 - S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

- Instead of S → NP loves NP
- might want general rules like $S \rightarrow NP VP$:
 - V[sem=loves] → loves
 - VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 - S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

- Instead of S → NP loves NP
 - S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]
- might want general rules like $S \rightarrow NP VP$:
 - V[sem=loves] → loves
 - VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 - S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]
- Now George loves Laura has sem=loves(Laura)(George)

- Instead of S → NP loves NP
- might want general rules like $S \rightarrow NP VP$:
 - V[sem=loves] → loves
 - VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 - S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]
- Now George loves Laura has sem=loves(Laura)(George)
- In this manner we'll sketch a version where
 - Still compute semantics bottom-up
 - Grammar is in Chomsky Normal Form
 - So each node has 2 children: 1 function & 1 argument
 - To get its semantics, apply function to argument!


```
START assert(tall(J))
                   S_{fin}
         tall(J)
                                       Punc \lambda s assert(s)
          NP
                               VP<sub>fin</sub> λsubj tall(subj)
         John
                                        AdjP
                                         tall
                          is
         λadj λsubj adj(subj)
                                        tall
                                         = \lambda x tall(x)
(\lambda adj \lambda subj adj(subj))(\lambda x tall(x))
       \lambda subj (\lambda x tall(x))(subj)
       λsubj
                          tall(subj)
```


Now let's try a more complex example, and really handle tense.

Now let's try a more complex example, and really handle tense.

with the same meaning.

Now you can withdraw x again:

 $\lambda x \exists e \text{ present(e)}, v(x)(e)$

Better analogy: How would you modify the second object on a stack $(\lambda x, \lambda e, act...)$?

In Summary: From the Words

In Summary: From the Words

In Summary: From the Words

Other Fun Semantic Stuff: A Few Much-Studied Miscellany

Temporal logic

- Gilly <u>had swallowed</u> eight goldfish before Milly reached the bowl
- Billy said Jilly was pregnant
- Billy said, "Jilly <u>is</u> pregnant."

Generics

- Typhoons arise in the Pacific
- Children must be carried

Presuppositions

- The king of France is bald.
- Have you stopped beating your wife?

Pronoun-Quantifier Interaction ("bound anaphora")

- Every farmer who owns a donkey beats <u>it</u>.
- If you have a dime, put it in the meter.
- The woman who every Englishman loves is his mother.
- I love my mother and so does Billy.

In Summary

- How do we judge a good meaning representation?
- How can we represent sentence meaning with first-order logic?
- How can logical representations of sentences be **composed** from logical forms of words?
- Next time: can we train models to recover logical forms?