Formal Semantics

Natural Language Processing
CS 4120/6120—Spring 2016
Northeastern University

David Smith
some slides from Jason Eisner

Language as Structure

- So far, we've talked about structure
- What structures are more probable?
- Language modeling: Good sequences of words/ characters
- Text classification: Good sequences in defined contexts
- How can we recover hidden structure?
- Tagging: hidden word classes
- Parsing: hidden word relations

What Does It All Mean?

- Studying phonology, morphology, syntax, etc. independent of meaning is methodologically very useful
- We can study the structure of languages we don't understand
- We can use HMMs and CFGs to study protein structure and music, which don't bear meaning in the same way as language

What Does It All Mean?

- How would you know if a computer "understood" the "meaning" of an (English) utterance (even in some weak "scarequoted" way)?
- How would you know if a person understood the meaning of an utterance?

What Does It All Mean?

- Paraphrase,"state in your own words" (English to English translation)
- Translation into another language
- Reading comprehension questions
- Drawing appropriate inferences
- Carrying out appropriate actions
- Open-ended dialogue (Turing test)

Programming Language Interpreter

- What is meaning of $3+5 * 6$?
- First parse it into $3+(5 * 6)$

Programming Language Interpreter

- What is meaning of $3+5 * 6$?
- First parse it into $3+(5 * 6)$

Programming Language Interpreter

- What is meaning of $3+5 * 6$?
- First parse it into $3+(5 * 6)$
- Now give a meaning to each node in the tree (bottom-up)

Programming Language

Interpreter

- What is meaning of $3+5 * 6$?
- First parse it into $3+(5 * 6)$
- Now give a meaning to each node in the tree (bottom-up)

Programming Language

Interpreter

- What is meaning of $3+5 * 6$?
- First parse it into $3+(5 * 6)$
- Now give a meaning to each node in the tree (bottom-up)

Interpreting in an Environment

Interpreting in an Environment

- How about $3+5 * x$?

Interpreting in an Environment

- How about $3+5 * x$?
- Same thing: the meaning of x is found from the environment (it's 6)

Interpreting in an Environment

- How about $3+5 * x$?
- Same thing: the meaning of x is found from the environment (it's 6)
- Analogies in language?

Compiling

Compiling

- How about $3+5 * x$?

Compiling

- How about 3+5*x?
= Don't know x at compile time

Compiling

- How about $3+5 * x$?
= Don't know x at compile time
= "Meaning" at a node is a piece of code, not a number

Compiling

- How about 3+5*x?
= Don't know x at compile time
= "Meaning" at a node is a piece of code, not a number

Compiling

- How about 3+5*x?
- Don't know x at compile time
- "Meaning" at a node is a piece of code, not a number
$5 *(x+1)-2$ is a different expression that produces equivalent code

Compiling

- How about $3+5 * x$?
- Don't know x at compile time
" "Meaning" at a node is a piece of code, not a number
$5 *(x+1)-2$ is a different expression that produces equivalent code (can be converted to the previous code by optimization)

Compiling

- How about $3+5 * x$?
- Don't know x at compile time
" "Meaning" at a node is a piece of code, not a number
$5 *(x+1)-2$ is a different expression that produces equivalent code (can be converted to the previous code by optimization)

Analogies in language?

What Counts as Understanding? some notions

What Counts as Understanding? some notions

- We understand if we can respond appropriately
- ok for commands, questions (these demand response)
- "Computer, warp speed 5"
" "throw axe at dwarf"
" "put all of my blocks in the red box"
- imperative programming languages
- SQL database queries and other questions
- We understand statement if we can determine its truth
" ok, but if you knew whether it was true, why did anyone bother telling it to you?
" comparable notion for understanding NP is to compute what the NP refers to, which might be useful

What Counts as Understanding? some notions

What Counts as Understanding? some notions

- We understand statement if we know how one could (in principle) determine its truth
" What are exact conditions under which it would be true?
" necessary + sufficient
- Equivalently, derive all its consequences
" what else must be true if we accept the statement?
" Match statements with a "domain theory"
" Philosophers tend to use this definition

What Counts as Understanding? some notions

- We understand statement if we know how one could (in principle) determine its truth
" What are exact conditions under which it would be true?
" necessary + sufficient
- Equivalently, derive all its consequences
" what else must be true if we accept the statement?
" Match statements with a "domain theory"
" Philosophers tend to use this definition
- We understand statement if we can use it to answer
questions [very similar to above - requires reasoning]
" Easy: John ate pizza. What was eaten by John?
" Hard: White's first move is P-Q4. Can Black checkmate?
Constructing a procedure to get the answer is enough

What Does It All Mean?

- Paraphrase,"state in your own words" (English to English translation)
- Translation into another language
- Reading comprehension questions
- Drawing appropriate inferences
- Carrying out appropriate actions
- Open-ended dialogue (Turing test)
- Translation to logical form that we can reason about

(First Order) Logic
 Some Preliminaries

(First Order) Logic Some Preliminaries

Three major kinds of objects

(First Order) Logic Some Preliminaries

Three major kinds of objects

1. Booleans

- Roughly, the semantic values of sentences

(First Order) Logic Some Preliminaries

Three major kinds of objects

1. Booleans

- Roughly, the semantic values of sentences

2. Entities

- Values of NPs, e.g., objects like this slide
- Maybe also other types of entities, like times

(First Order) Logic Some Preliminaries

Three major kinds of objects

1. Booleans

- Roughly, the semantic values of sentences

2. Entities

- Values of NPs, e.g., objects like this slide
- Maybe also other types of entities, like times

3. Functions of various types

- Functions from booleans to booleans (and, or, not)
- A function from entity to boolean is called a "predicate" - e.g., frog(x), green(x)
- Functions might return other functions!

(First Order) Logic Some Preliminaries

Three major kinds of objects

1. Booleans

- Roughly, the semantic values of sentences

2. Entities

- Values of NPs, e.g., objects like this slide
- Maybe also other types of entities, like times

3. Functions of various types

- Functions from booleans to booleans (and, or, not)
- A function from entity to boolean is called a "predicate" - e.g., frog(x), green(x)
- Functions might return other functions!
- Function might take other functions as arguments!

Logic: Lambda Terms

" Lambda terms:
"A way of writing "anonymous functions"
"No function header or function name
"But defines the key thing: behavior of the function
"Just as we can talk about 3 without naming it " x "

- Let square = λp p*p
- Equivalent to int square(p) \{ return p*p; \}
- But we can talk about λp p*p without naming it
- Format of a lambda term: λ variable expression

Logic: Lambda Terms

Logic: Lambda Terms

Lambda terms:

Logic: Lambda Terms

- Lambda terms:
- Let square = λp p*p

Logic: Lambda Terms

- Lambda terms:
- Let square $=\lambda p p^{*} p$
- Then square $(3)=\left(\lambda p p^{*} p\right)(3)=3 * 3$

Logic: Lambda Terms

- Lambda terms:
- Let square $=\lambda p p^{*} p$
- Then square (3) $=(\lambda p p * p)(3)=3 * 3$
- Note: square(x) isn't a function! It's just the value x^{*} x.

Logic: Lambda Terms

- Lambda terms:
- Let square $=\lambda p p^{*} p$
- Then square (3) $=\left(\lambda p p^{*} p\right)(3)=3 * 3$
- Note: square(x) isn't a function! It's just the value x^{*} x.
- But λx square $(x)=\lambda x x^{*} x=\lambda p p^{*} p=$ square
(proving that these functions are equal - and indeed they are, as they act the same on all arguments: what is $(\lambda \times$ square $(x))(y)$?)

Logic: Lambda Terms

- Lambda terms:
- Let square $=\lambda p p^{*} p$
- Then square (3) $=\left(\lambda p p^{*} p\right)(3)=3 * 3$
- Note: square(x) isn't a function! It's just the value x^{*} x.
- But λx square $(x)=\lambda x x^{*} x=\lambda p p^{*} p=$ square
(proving that these functions are equal - and indeed they are, as they act the same on all arguments: what is $(\lambda \times$ square $(x))(y)$?)

Logic: Lambda Terms

- Lambda terms:
- Let square $=\lambda p p^{*} p$
- Then square (3) $=\left(\lambda p p^{*} p\right)(3)=3 * 3$
- Note: square(x) isn't a function! It's just the value $x^{*} x$.
- But λx square $(x)=\lambda x x^{*} x=\lambda p p^{*} p=$ square (proving that these functions are equal - and indeed they are, as they act the same on all arguments: what is $(\lambda \times \operatorname{square}(x))(y)$?)
- Let even $=\lambda p(p \bmod 2==0) \quad$ a predicate: returns true/false

Logic: Lambda Terms

- Lambda terms:
- Let square $=\lambda p p^{*} p$
- Then square (3) $=\left(\lambda p p^{*} p\right)(3)=3 * 3$
- Note: square(x) isn't a function! It's just the value $x^{*} x$.
- But λx square $(x)=\lambda x x^{*} x=\lambda p p^{*} p=$ square (proving that these functions are equal - and indeed they are, as they act the same on all arguments: what is $(\lambda \times$ square $(x))(y)$?)
- Let even $=\lambda p(p \bmod 2==0) \quad$ a predicate: returns true/false
- even (x) is true if x is even

Logic: Lambda Terms

- Lambda terms:
" Let square $=\lambda p$ p*p
- Then square(3) = ($\lambda p \mathrm{p}$ *p)(3) = 3*3
- Note: square (x) isn't a function! It's just the value $x^{*} x$.
- But λx square $(x)=\lambda x x^{*} x=\lambda p p^{*} p=$ square (proving that these functions are equal - and indeed they are, as they act the same on all arguments: what is $(\lambda \times$ square $(x))(y)$?)
- Let even $=\lambda p(p \bmod 2==0) \quad$ a predicate: returns true/false
- even (x) is true if x is even
- How about even(square(x))?
- λx even(square (x)) is true of numbers with even squares
- Just apply rules to get $\lambda x\left(\operatorname{even}\left(x^{*} x\right)\right)=\lambda x\left(x^{*} \times \bmod 2==0\right)$

Logic: Lambda Terms

- Lambda terms:
" Let square $=\lambda p$ p*
- Then square(3) = ($\lambda p \mathrm{p}$ *p)(3) = 3*3
- Note: square (x) isn't a function! It's just the value $x^{*} x$.
- But λx square $(x)=\lambda x x^{*} x=\lambda p p^{*} p=$ square (proving that these functions are equal - and indeed they are, as they act the same on all arguments: what is $(\lambda x$ square $(x))(y)$?)
- Let even $=\lambda p(p \bmod 2==0) \quad$ a predicate: returns true/false
- even (x) is true if x is even
- How about even(square(x))?
- λx even(square (x)) is true of numbers with even squares
- Just apply rules to get $\lambda x\left(\operatorname{even}\left(x^{*} x\right)\right)=\lambda x\left(x^{*} \times \bmod 2==0\right)$
- This happens to denote the same predicate as even does

Logic: Multiple Arguments

Logic: Multiple Arguments

All lambda terms have one argument

Logic: Multiple Arguments

" All lambda terms have one argument

- But we can fake multiple arguments ...

Logic: Multiple Arguments

" All lambda terms have one argument

- But we can fake multiple arguments ...

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...

Suppose we want to write times(5,6)

Logic: Multiple Arguments

" All lambda terms have one argument

- But we can fake multiple arguments ...
- Suppose we want to write times(5,6)
- Suppose times is defined as $\lambda \times \lambda y\left(x^{*} y\right)$

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...

Suppose we want to write times(5,6)

- Suppose times is defined as $\lambda \times \lambda y\left(x^{*} y\right)$

Claim that times(5)(6) is 30
" times(5) $=\left(\lambda \times \lambda y x^{*} y\right)(5)=\lambda y 5^{*} y$

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...
- Suppose we want to write times(5,6)
- Suppose times is defined as $\lambda \times \lambda y\left(x^{*} y\right)$

Claim that times(5)(6) is 30

- times(5) = ($\lambda \times \lambda y x^{*} y$) (5) = $\lambda y 5^{*} y$
- If this function weren't anonymous, what would we call it?

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...

Suppose we want to write times(5,6)

- Suppose times is defined as $\lambda \times \lambda y\left(x^{*} y\right)$

Claim that times(5)(6) is 30
"times(5) = ($\lambda \times \lambda y x^{*} y$) (5) $=\lambda y 5^{*} y$

- If this function weren't anonymous, what would we call it?
"times(5)(6) $=\left(\lambda y 5^{*} y\right)(6)=5 * 6=30$

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]
- times(5,6) = times(5)(6)

$$
=\left(\lambda x \lambda y x^{*} y\right)(5)(6)=\left(\lambda y 5^{*} y\right)(6)=5 * 6=30
$$

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]
- times(5,6) $=$ times(5)(6)

$$
=\left(\lambda x \lambda y x^{*} y\right)(5)(6)=\left(\lambda y 5^{*} y\right)(6)=5 * 6=30
$$

- So we can always get away with 1-arg functions ...

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]
- times(5,6) = times(5)(6)

$$
=\left(\lambda x \lambda y x^{*} y\right)(5)(6)=\left(\lambda y 5^{*} y\right)(6)=5^{*} 6=30
$$

- So we can always get away with 1-arg functions ...
- ... which might return a function to take the next argument. Whoa.

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]
- times(5,6) $=$ times(5)(6)

$$
=\left(\lambda x \lambda y x^{*} y\right)(5)(6)=\left(\lambda y 5^{*} y\right)(6)=5^{*} 6=30
$$

- So we can always get away with 1-arg functions ...
" ... which might return a function to take the next argument. Whoa.
- Remember: square can be written as λx square(x)

Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...
- If we write times(5,6), it's just syntactic sugar for times(5)(6) or perhaps times(6)(5) [notation varies]
- times(5,6) $=$ times(5)(6)

$$
=\left(\lambda x \lambda y x^{*} y\right)(5)(6)=\left(\lambda y 5^{*} y\right)(6)=5^{*} 6=30
$$

- So we can always get away with 1-arg functions ... " ... which might return a function to take the next argument. Whoa.
- Remember: square can be written as λx square (x)
- And now times can be written as $\lambda x \lambda y$ times (x, y)

Grounding out

Grounding out

- So what does times actually mean???

Grounding out

- So what does times actually mean???
- How do we get from times $(5,6)$ to 30 ?
- Whether times $(5,6)=30$ depends on whether symbol * actually denotes the multiplication function!

Grounding out

- So what does times actually mean???
- How do we get from times $(5,6)$ to 30 ?
- Whether times $(5,6)=30$ depends on whether symbol * actually denotes the multiplication function!

Grounding out

- So what does times actually mean???
- How do we get from times(5,6) to 30 ?
* Whether times(5,6) $=30$ depends on whether symbol * actually denotes the multiplication function!
- Well, maybe * was defined as another lambda term, so substitute to get $*(5,6)=$ (blah blah blah)(5)(6)
- But we can't keep doing substitutions forever!
- Eventually we have to ground out in a primitive term
- Primitive terms are bound to object code

Grounding out

- So what does times actually mean???
- How do we get from times $(5,6)$ to 30 ?
* Whether times(5,6) $=30$ depends on whether symbol * actually denotes the multiplication function!
- Well, maybe * was defined as another lambda term, so substitute to get $*(5,6)=$ (blah blah blah)(5)(6)
- But we can't keep doing substitutions forever!
- Eventually we have to ground out in a primitive term
- Primitive terms are bound to object code
- Maybe *(5,6) just executes a multiplication function

Grounding out

- So what does times actually mean???
- How do we get from times(5,6) to 30 ?
* Whether times(5,6) $=30$ depends on whether symbol * actually denotes the multiplication function!
- Well, maybe * was defined as another lambda term, so substitute to get *(5,6) $=($ blah blah blah $)(5)(6)$
- But we can't keep doing substitutions forever!
- Eventually we have to ground out in a primitive term
- Primitive terms are bound to object code
- Maybe * $(5,6)$ just executes a multiplication function
- What is executed by loves(john, mary) ?

Logic: Interesting Constants

"Thus, have "constants" that name some of the entities and functions (e.g., *):

- GeorgeWBush - an entity
- red - a predicate on entities
"holds of just the red entities: $\operatorname{red}(\mathrm{x})$ is true if x is red!
- loves - a predicate on 2 entities
"loves(GeorgeWBush, LauraBush)
"Question: What does loves(LauraBush) denote?
- Constants used to define meanings of words
- Meanings of phrases will be built from the constants

Logic: Interesting Constants

Logic: Interesting Constants

- most - a predicate on 2 predicates on entities
" most(pig, big) = "most pigs are big"
"Equivalently, most($\lambda \times \operatorname{pig}(\mathrm{x})$, $\lambda \times \operatorname{big}(\mathrm{x})$)
" returns true if most of the things satisfying the first predicate also satisfy the second predicate

Logic: Interesting Constants

- most - a predicate on 2 predicates on entities
" most(pig, big) = "most pigs are big"
"Equivalently, most($\lambda \times \operatorname{pig}(\mathrm{x})$, $\lambda \times \operatorname{big}(\mathrm{x})$)
" returns true if most of the things satisfying the first predicate also satisfy the second predicate similarly for other quantifiers
- all(pig,big) (equivalent to $\forall x \operatorname{pig}(x) \Rightarrow \operatorname{big}(x))$
" exists(pig,big) (equivalent to $\exists x \operatorname{pig}(\mathrm{x})$ AND $\operatorname{big}(\mathrm{x})$)
" can even build complex quantifiers from English phrases:
" "between 12 and 75"; "a majority of"; "all but the smallest 2"

A reasonable representation?

-Gilly swallowed a goldfish
" First attempt: swallowed(Gilly, goldfish)

- Returns true or false. Analogous to
" prime(17)
- equal(4,2+2)
- loves(GeorgeWBush, LauraBush)
- swallowed(Gilly, Jilly)
" ... or is it analogous?

A reasonable representation?

A reasonable representation?

- Gilly swallowed a goldfish

First attempt: swallowed(Gilly, goldfish)

A reasonable representation?

- Gilly swallowed á goldfish
- First attempt: swallowed(Gilly, goldfish)
- But we're not paying attention to a!

A reasonable representation?

- Gilly swallowed a goldfish
- First attempt: swallowed(Gilly, goldfish)
- But we're not paying attention to a!
- goldfish isn't the name of a unique object the way Gilly is

A reasonable representation?

- Gilly swallowed a goldfish
- First attempt: swallowed(Gilly, goldfish)
- But we're not paying attention to a!
- goldfish isn't the name of a unique object the way Gilly is

A reasonable representation?

- Gilly swallowed a goldfish
- First attempt: swallowed(Gilly, goldfish)
- But we're not paying attention to a!
- goldfish isn't the name of a unique object the way Gilly is
- In particular, don't want

Gilly swallowed a goldfish and Milly swallowed a goldfish
to translate as
swallowed(Gilly, goldfish) AND swallowed(Milly, goldfish) since probably not the same goldfish ...

Use a Quantifier

Use a Quantifier

- Gilly swallowed a goldfish

First attempt: swallowed(Gilly, goldfish)

Use a Quantifier

- Gilly swallowed a goldfish

First attempt: swallowed(Gilly, goldfish)

- Better: $\exists \mathrm{g}$ goldfish(g) AND swallowed(Gilly, g)

Use a Quantifier

- Gilly swallowed a goldfish
- First attempt: swallowed(Gilly, goldfish)
- Better: $\exists \mathrm{g}$ goldfish(g) AND swallowed(Gilly, g)
- Or using one of our quantifier predicates:
- exists($\lambda \mathrm{g}$ goldfish(g), $\lambda \mathrm{g}$ swallowed(Gilly,g))
- Equivalently: exists(goldfish, swallowed(Gilly))
" "In the set of goldfish there exists one swallowed by Gilly"

Use a Quantifier

- Gilly swallowed a goldfish
- First attempt: swallowed(Gilly, goldfish)
- Better: $\exists \mathrm{g}$ goldfish(g) AND swallowed(Gilly, g)
- Or using one of our quantifier predicates:
- exists(λ g goldfish(g), $\lambda \mathrm{g}$ swallowed(Gilly,g))
- Equivalently: exists(goldfish, swallowed(Gilly))
" "In the set of goldfish there exists one swallowed by Gilly"
- Here goldfish is a predicate on entities
- This is the same semantic type as red
- But goldfish is noun and red is adjective .. \#@!?

Tense

Tense

Gilly swallowed a goldfish

Tense

- Gilly swallowed a goldfish
- Previous attempt: exists(goldfish, $\lambda \mathrm{g}$ swallowed(Gilly,g))

Tense

- Gilly swallowed a goldfish
- Previous attempt: exists(goldfish, $\lambda \mathrm{g}$ swallowed(Gilly,g))
- Improve to use tense:

Tense

- Gilly swallowed a goldfish
- Previous attempt: exists(goldfish, $\lambda \mathrm{g}$ swallowed(Gilly,g))
- Improve to use tense:
" Instead of the 2-arg predicate swallowed(Gilly,g) try a 3-arg version swallow($\mathrm{t}, \mathrm{Gilly}, \mathrm{g}$) where t is a time

Tense

- Gilly swallowed a goldfish
- Previous attempt: exists(goldfish, $\lambda \mathrm{g}$ swallowed(Gilly,g))
- Improve to use tense:
" Instead of the 2-arg predicate swallowed(Gilly,g) try a 3-arg version swallow($\mathrm{t}, \mathrm{Gilly}, \mathrm{g}$) where t is a time
Now we can write:
ヨt past(t) AND exists(goldfish, $\lambda \mathrm{g}$ swallow(t,Gilly,g))

Tense

- Gilly swallowed a goldfish
- Previous attempt: exists(goldfish, $\lambda \mathrm{g}$ swallowed(Gilly,g))
- Improve to use tense:
- Instead of the 2-arg predicate swallowed(Gilly,g) try a 3-arg version swallow($\mathrm{t}, \mathrm{Gilly}, \mathrm{g}$) where t is a time
- Now we can write:

ヨt past(t) AND exists(goldfish, $\lambda \mathrm{g}$ swallow(t,Gilly,g))

- "There was some time in the past such that a goldfish was among the objects swallowed by Gilly at that time"

(Simplify Notation)

- Gilly swallowed a goldfish
- Previous attempt: exists(goldfish, swallowed(Gilly))
- Improve to use tense:
- Instead of the 2-arg predicate swallowed(Gilly,g) try a 3-arg version swallow(t,Gilly,g)
- Now we can write: ヨt past(t) AND exists(goldfish, swallow(t,Gilly))
- "There was some time in the past such that a goldfish was among the objects swallowed by Gilly at that time"

Event Properties

Event Properties

- Gilly swallowed a goldfish
- Previous: ヨt past(t) AND exists(goldfish, swallow(t,Gilly))

Event Properties

- Gilly swallowed a goldfish
- Previous: ヨt past(t) AND exists(goldfish, swallow(t,Gilly))
- Why stop at time? An event has other properties:
- [Gilly] swallowed [a goldfish] [on a dare]
[in a telephone booth] [with 30 other freshmen] [after many bottles of vodka had been consumed].
- Specifies who what why when ...

Event Properties

- Gilly swallowed a goldfish
- Previous: ヨt past(t) AND exists(goldfish, swallow(t,Gilly))
- Why stop at time? An event has other properties:
- [Gilly] swallowed [a goldfish] [on a dare]
[in a telephone booth] [with 30 other freshmen] [after many bottles of vodka had been consumed].
- Specifies who what why when ...
- Replace time variable t with an event variable e
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
* As with probability notation, a comma represents AND

Could define past as $\lambda e \exists$ t before(t, now), ended-at(e,t)

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, location(e)), ...
- Does this mean what we'd expect??

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, location(e)), ... $\exists \mathrm{g}$ goldfish(g), swallowee (e,g)
- Does this mean what we'd expect??

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, location(e)), ... $\exists \mathrm{g}$ goldfish(g), swallowee $(\mathrm{e}, \mathrm{g}) \quad \forall \mathrm{b}$ booth(b) $\Rightarrow \operatorname{location(e,b)~}$
- Does this mean what we'd expect??

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, location(e)), ... $\exists \mathrm{g}$ goldfish (g), swallowee $(\mathrm{e}, \mathrm{g}) \quad \forall \mathrm{b}$ booth $(\mathrm{b}) \Rightarrow$ location(e,b)
- Does this mean what we'd expect??
says that there's only one event
with a single goldfish getting swallowed that took place in a lot of booths ...

Quantifier Order

- Groucho Marx celebrates quantifier order ambiguity:
- In this country a woman gives birth every 15 min. Our job is to find that woman and stop her.
" \exists woman ($\forall 15$ min gives-birth-during(woman, 15min))

" Surprisingly, both are possible in natural language!
" Which is the joke meaning (where it's always the same woman) and why?

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, location(e)), ... $\exists \mathrm{g}$ goldfish (g), swallowee $(\mathrm{e}, \mathrm{g}) \quad \forall \mathrm{b}$ booth $(\mathrm{b}) \Rightarrow \operatorname{location(e,b)~}$

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, location(e)), ... $\exists \mathrm{g}$ goldfish(g), swallowee $(\mathrm{e}, \mathrm{g}) \quad \forall \mathrm{b}$ booth(b) $\Rightarrow \operatorname{location(e,b)~}$

Does this mean what we'd expect??

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, location(e)), ... $\exists \mathrm{g}$ goldfish(g), swallowee $(\mathrm{e}, \mathrm{g}) \quad \forall \mathrm{b}$ booth $(\mathrm{b}) \Rightarrow \operatorname{location(e,b)}$

Does this mean what we'd expect??

- It's $\exists \mathrm{e} \forall \mathrm{b}$ which means same event for every booth

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, location(e)), $\exists \mathrm{g}$ goldfish(g), swallowee $(\mathrm{e}, \mathrm{g}) \quad \forall \mathrm{b}$ booth(b) \Rightarrow location(e,b)

Does this mean what we'd expect??

- It's $\exists \mathrm{e} \forall \mathrm{b}$ which means same event for every booth
- Probably false unless Gilly can be in every booth during her swallowing of a single goldfish

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, $\lambda \mathrm{b}$ location(e,b))

Quantifier Order

- Gilly swallowed a goldfish in a booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
- Gilly swallowed a goldfish in every booth
- ヨe past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), all(booth, $\lambda b \operatorname{location(e,b))~}$

Other reading ($\forall \mathrm{b} \exists \mathrm{e}$) involves quantifier raising:

Quantifier Order

－Gilly swallowed a goldfish in a booth
－ヨe past（e），act（e，swallowing），swallower（e，Gilly）， exists（goldfish，swallowee（e）），exists（booth，location（e）），．．．
－Gilly swallowed a goldfish in every booth
－ヨe past（e），act（e，swallowing），swallower（e，Gilly）， exists（goldfish，swallowee（e）），all（booth，$\lambda b \operatorname{location(e,b))~}$

Other reading（ $\forall \mathrm{b} \exists \mathrm{e}$ ）involves quantifier raising：
＂all（booth，$\lambda \mathrm{b}$［ヨe past（e），act（e，swallowing），swallower （e，Gilly），exists（goldfish，swallowee（e）），location（e，b）］）

Quantifier Order

－Gilly swallowed a goldfish in a booth
－ヨe past（e），act（e，swallowing），swallower（e，Gilly）， exists（goldfish，swallowee（e）），exists（booth，location（e）），．．．
－Gilly swallowed a goldfish in every booth
－ヨe past（e），act（e，swallowing），swallower（e，Gilly）， exists（goldfish，swallowee（e）），all（booth，$\lambda b \operatorname{location(e,b))~}$

Other reading（ $\forall \mathrm{b} \exists \mathrm{e}$ ）involves quantifier raising：
＂all（booth，$\lambda \mathrm{b}$［ヨe past（e），act（e，swallowing），swallower （e，Gilly），exists（goldfish，swallowee（e）），location（e，b）］）
＝＂for all booths b ，there was such an event in b＂

Intensional Arguments

Intensional Arguments

- Willy wants a unicorn

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
" "there is a particular unicorn u that Willy wants"
= In this reading, the wantee is an individual entity

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
- "there is a particular unicorn u that Willy wants"
= In this reading, the wantee is an individual entity
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{u}$ unicorn(u))
" "Willy wants any entity u that satisfies the unicorn predicate"
- In this reading, the wantee is a type of entity
- Sentence doesn't claim that such an entity exists

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), exists(unicorn, $\lambda \mathrm{u}$ wantee(e,u))
- "there is a particular unicorn u that Willy wants"
= In this reading, the wantee is an individual entity
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{u}$ unicorn(u))
= "Willy wants any entity u that satisfies the unicorn predicate"
- In this reading, the wantee is a type of entity
- Sentence doesn't claim that such an entity exists
- Willy wants Lilly to get married

Intensional Arguments

－Willy wants a unicorn
－ヨe act（e，wanting），wanter（e，Willy），exists（unicorn，λu wantee（e，u））
＂＂there is a particular unicorn u that Willy wants＂
－In this reading，the wantee is an individual entity
－ヨe act（e，wanting），wanter（e，Willy），wantee（e，$\lambda \mathrm{u}$ unicorn（u））
＝＂Willy wants any entity u that satisfies the unicorn predicate＂
－In this reading，the wantee is a type of entity
－Sentence doesn＇t claim that such an entity exists
－Willy wants Lilly to get married
－ヨe present（e），act（e，wanting），wanter（e，Willy）， wantee（e，$\lambda \mathrm{e}^{\prime}$［act（ e^{\prime}, marriage），marrier（ $\left.\mathrm{e}^{\prime}, \mathrm{Lill} \mathrm{l}\right)$ ］）

Intensional Arguments

－Willy wants a unicorn
－ヨe act（e，wanting），wanter（e，Willy），exists（unicorn，λu wantee（e，u））
＂＂there is a particular unicorn u that Willy wants＂
－In this reading，the wantee is an individual entity
－ヨe act（e，wanting），wanter（e，Willy），wantee（e，$\lambda \mathrm{u}$ unicorn（u））
＝＂Willy wants any entity u that satisfies the unicorn predicate＂
－In this reading，the wantee is a type of entity
－Sentence doesn＇t claim that such an entity exists
－Willy wants Lilly to get married
－ヨe present（e），act（e，wanting），wanter（e，Willy）， wantee（e，$\lambda \mathrm{e}^{\prime}$［act（ e^{\prime}, marriage），marrier（ $\left.\mathrm{e}^{\prime}, \mathrm{Lill} \mathrm{l}\right)$ ）］）
－＂Willy wants any event é in which Lilly gets married＂

Intensional Arguments

－Willy wants a unicorn
－ヨe act（e，wanting），wanter（e，Willy），exists（unicorn，λu wantee（e，u））
＂＂there is a particular unicorn u that Willy wants＂
－In this reading，the wantee is an individual entity
－ヨe act（e，wanting），wanter（e，Willy），wantee（e，$\lambda \mathrm{u}$ unicorn（u））
＂＂Willy wants any entity u that satisfies the unicorn predicate＂
－In this reading，the wantee is a type of entity
－Sentence doesn＇t claim that such an entity exists
－Willy wants Lilly to get married
－ヨe present（e），act（e，wanting），wanter（e，Willy）， wantee（e，$\lambda \mathrm{e}^{\prime}$［act（e＇，marriage），marrier（e＇，Lilly）］）
－＂Willy wants any event e＇in which Lilly gets married＂
－Here the wantee is a type of event

Intensional Arguments

－Willy wants a unicorn
－ヨe act（e，wanting），wanter（e，Willy），exists（unicorn，λu wantee（e，u））
＂＂there is a particular unicorn u that Willy wants＂
－In this reading，the wantee is an individual entity
－ヨe act（e，wanting），wanter（e，Willy），wantee（e，$\lambda \mathrm{u}$ unicorn（u））
＂＂Willy wants any entity u that satisfies the unicorn predicate＂
－In this reading，the wantee is a type of entity
－Sentence doesn＇t claim that such an entity exists
－Willy wants Lilly to get married
－ヨe present（e），act（e，wanting），wanter（e，Willy）， wantee（e，$\lambda \mathrm{e}^{\prime}$［act（e＇，marriage），marrier（e＇，Lilly）］）
－＂Willy wants any event e＇in which Lilly gets married＂
－Here the wantee is a type of event
－Sentence doesn＇t claim that such an event exists

Intensional Arguments

－Willy wants a unicorn
－ヨe act（e，wanting），wanter（e，Willy），exists（unicorn，λu wantee（e，u））
－＂there is a particular unicorn u that Willy wants＂
－In this reading，the wantee is an individual entity
－ヨe act（e，wanting），wanter（e，Willy），wantee（e，$\lambda \mathrm{u}$ unicorn（u））
＂＂Willy wants any entity u that satisfies the unicorn predicate＂
－In this reading，the wantee is a type of entity
－Sentence doesn＇t claim that such an entity exists
－Willy wants Lilly to get married
－ヨe present（e），act（e，wanting），wanter（e，Willy）， wantee（e，$\lambda \mathrm{e}^{\prime}$［act（e＇，marriage），marrier（e＇，Lilly）］）
－＂Willy wants any event e＇in which Lilly gets married＂
－Here the wantee is a type of event
－Sentence doesn＇t claim that such an event exists
－Intensional verbs besides want：hope，doubt，believe，．．．

Intensional Arguments

Intensional Arguments

Willy wants a unicorn

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u)) " "Willy wants anything that satisfies the unicorn predicate" - here the wantee is a type of entity

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{u}$ unicorn(u))
= "Willy wants anything that satisfies the unicorn predicate"
- here the wantee is a type of entity
- Problem (a fine point I'll gloss over):

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{u}$ unicorn(u))
= "Willy wants anything that satisfies the unicorn predicate"
- here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
- $\lambda \mathrm{g}$ unicorn (g) is defined by the actual set of unicorns ("extension")

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{u}$ unicorn(u))
= "Willy wants anything that satisfies the unicorn predicate"
- here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
- $\lambda \mathrm{g}$ unicorn (g) is defined by the actual set of unicorns ("extension")
- But this set is empty: $\lambda \mathrm{g}$ unicorn $(\mathrm{g})=\lambda \mathrm{g}$ FALSE $=\lambda \mathrm{g}$ dodo (g)

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
= "Willy wants anything that satisfies the unicorn predicate"
- here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
- $\lambda \mathrm{g}$ unicorn(g$)$ is defined by the actual set of unicorns ("extension")
- But this set is empty: $\lambda \mathrm{g}$ unicorn $(\mathrm{g})=\lambda \mathrm{g}$ FALSE $=\lambda \mathrm{g}$ dodo (g)
- Then wants a unicorn = wants a dodo. Oops!

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{u}$ unicorn(u))
= "Willy wants anything that satisfies the unicorn predicate"
- here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
- $\lambda \mathrm{g}$ unicorn(g) is defined by the actual set of unicorns ("extension")
- But this set is empty: $\lambda \mathrm{g}$ unicorn $(\mathrm{g})=\lambda \mathrm{g}$ FALSE $=\lambda \mathrm{g}$ dodo(g)
- Then wants a unicorn = wants a dodo. Oops!
- So really the wantee should be criteria for unicornness ("intension")

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
" "Willy wants anything that satisfies the unicorn predicate"
- here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
- $\lambda \mathrm{g}$ unicorn(g) is defined by the actual set of unicorns ("extension")
- But this set is empty: $\lambda \mathrm{g}$ unicorn $(\mathrm{g})=\lambda \mathrm{g}$ FALSE $=\lambda \mathrm{g}$ dodo(g)
- Then wants a unicorn = wants a dodo. Oops!
- So really the wantee should be criteria for unicornness ("intension")
- Traditional solution involves "possible-world semantics"

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
" "Willy wants anything that satisfies the unicorn predicate"
- here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
- $\lambda \mathrm{g}$ unicorn(g) is defined by the actual set of unicorns ("extension")
- But this set is empty: $\lambda \mathrm{g}$ unicorn $(\mathrm{g})=\lambda \mathrm{g}$ FALSE $=\lambda \mathrm{g}$ dodo(g)
- Then wants a unicorn = wants a dodo. Oops!
- So really the wantee should be criteria for unicornness ("intension")
- Traditional solution involves "possible-world semantics"

Can imagine other worlds where set of unicorn \neq set of dodos

Intensional Arguments

- Willy wants a unicorn
- ヨe act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{u}$ unicorn(u))
= "Willy wants anything that satisfies the unicorn predicate"
- here the wantee is a type of entity
- Problem (a fine point I'll gloss over):
- $\lambda \mathrm{g}$ unicorn(g) is defined by the actual set of unicorns ("extension")
- But this set is empty: $\lambda \mathrm{g}$ unicorn $(\mathrm{g})=\lambda \mathrm{g}$ FALSE $=\lambda \mathrm{g}$ dodo(g)
- Then wants a unicorn = wants a dodo. Oops!
" So really the wantee should be criteria for unicornness ("intension")
- Traditional solution involves "possible-world semantics"

Can imagine other worlds where set of unicorn \neq set of dodos

- Other worlds also useful for: You must pay the rent
You can pay the rent

If you hadn't, you'd be homeless

Control

Control

Willy wants Lilly to get married

Control

-Willy wants Lilly to get married

- ヨe present(e), act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{f}[\operatorname{act}(f$, marriage $)$, marrier(f,Lilly)])

Control

-Willy wants Lilly to get married

- ヨe present(e), act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{f}[\operatorname{act}(f$, marriage $)$, marrier(f,Lilly)])

Control

-Willy wants Lilly to get married

- ヨe present(e), act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{f}[\operatorname{act}(\mathrm{f}, \mathrm{marriage})$, marrier(f,Lilly)])

Willy wants to get married

Control

-Willy wants Lilly to get married

- ヨe present(e), act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{f}$ [act(f,marriage), marrier(f,Lilly)])
-Willy wants to get married
- Same as Willy wants Willy to get married

Control

-Willy wants Lilly to get married

- ヨe present(e), act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{f}$ [act(f,marriage), marrier(f,Lilly)])
-Willy wants to get married
- Same as Willy wants Willy to get married
- Just as easy to represent as Willy wants Lilly ...

Control

-Willy wants Lilly to get married

- ヨe present(e), act(e,wanting), wanter(e,Willy), wantee(e, $\lambda \mathrm{f}$ [act(f,marriage), marrier(f,Lilly)])
-Willy wants to get married
- Same as Willy wants Willy to get married
- Just as easy to represent as Willy wants Lilly ...
- The only trick is to construct the representation from the syntax. The empty subject position of "to get married" is said to be controlled by the subject of "wants."

Nouns and Their Modifiers

Nouns and Their Modifiers

- expert
- $\lambda \mathrm{g}$ expert(g)

Nouns and Their Modifiers

- expert
- $\lambda \mathrm{g}$ expert(g)
-big fat expert
- $\lambda \mathrm{g}$ big(g), fat(g), expert(g)
- But: bogus expert
- Wrong: $\lambda \mathrm{g}$ bogus(g), expert(g)
- Right: $\lambda \mathrm{g}$ (bogus(expert))(g) ... bogus maps to new concept

Nouns and Their Modifiers

- expert
- $\lambda \mathrm{g}$ expert(g)
- big fat expert
- $\lambda \mathrm{g}$ big(g), fat(g), expert(g)
- But: bogus expert
- Wrong: $\lambda \mathrm{g}$ bogus(g), expert(g)
- Right: $\lambda \mathrm{g}$ (bogus(expert))(g) ... bogus maps to new concept
- Baltimore expert (white-collar expert, TV expert...)
$-\lambda g$ Related(Baltimore, g), expert(g) - expert from Baltimore
- Or with different intonation:
- $\lambda \mathrm{g}$ (Modified-by(Baltimore, expert))(g) - expert on Baltimore
- Can't use Related for this case: law expert and dog catcher
$=\lambda \mathrm{g}$ Related(law,g), expert(g), Related(dog, g), catcher(g)
= dog expert and law catcher

Nouns and Their Modifiers

- the goldfish that Gilly swallowed
- every goldfish that Gilly swallowed
-three goldfish that Gilly swallowed

Nouns and Their Modifiers

- the goldfish that Gilly swallowed
- every goldfish that Gilly swallowed
-three goldfish that Gilly swallowed

$\lambda g[$ goldfish (g), swallowed(Gilly, g)]

Nouns and Their Modifiers

- the goldfish that Gilly swallowed
- every goldfish that Gilly swallowed
- three goldfish that Gilly swallowed

$\lambda \mathrm{g}[$ goldfish (g), swallowed(Gilly, g)]

like an adjective!
-three swallowed-by-Gilly goldfish

Nouns and Their Modifiers

- the goldfish that Gilly swallowed
- every goldfish that Gilly swallowed
-three goldfish that Gilly swallowed

$\lambda g[$ goldfish (g), swallowed(Gilly, g)]

like an adjective!
-three swallowed-by-Gilly goldfish

Or for real: $\lambda \mathrm{g}[$ goldfish(g), $\exists \mathrm{e}[$ past(e), act(e,swallowing), swallower(e,Gilly), swallowee(e,g)]]

Adverbs

Adverbs

- Lili passionately wants Billy
- Wrong?: passionately(want(Lili,Billy)) = passionately(true)
- Better: (passionately(want))(Lili,Billy)
- Best: ヨe present(e), act(e,wanting), wanter(e,Lili), wantee(e, Billy), manner(e, passionate)

Adverbs

- Lili passionately wants Billy
- Wrong?: passionately(want(Lili,Billy)) = passionately(true)
- Better: (passionately(want))(Lili,Billy)
- Best: $\exists \mathrm{e}$ present(e), act(e,wanting), wanter(e,Lili), wantee(e, Billy), manner(e, passionate)
- Lili often stalks Billy
- (often(stalk))(Lili,Billy)
- many(day, $\lambda \mathrm{d} \exists \mathrm{e}$ present(e), act(e,stalking), stalker(e,Lili), stalkee(e, Billy), during(e,d))

Adverbs

- Lili passionately wants Billy
- Wrong?: passionately(want(Lili,Billy)) = passionately(true)
- Better: (passionately(want))(Lili,Billy)
- Best: ヨe present(e), act(e,wanting), wanter(e,Lili), wantee(e, Billy), manner(e, passionate)
- Lili often stalks Billy
- (often(stalk))(Lili,Billy)
- many(day, $\lambda \mathrm{d} \exists \mathrm{e}$ present(e), act(e,stalking), stalker(e,Lili), stalkee(e, Billy), during(e,d))
- Lili obviously likes Billy
- (obviously(like))(Lili,Billy) - one reading
- obvious(like(Lili, Billy)) - another reading

Speech Acts

Speech Acts

" What is the meaning of a full sentence?

- Depends on the punctuation mark at the end. ©
- Billy likes Lili. $\quad \rightarrow$ assert(like(B,L))
= Billy likes Lili? $\quad \rightarrow$ ask(like(B,L))
" or more formally, "Does Billy like Lili?"
- Billy, like Lili! $\quad \rightarrow$ command(like(B,L))
" or more accurately, "Let Billy like Lili!"

Speech Acts

- What is the meaning of a full sentence?
- Depends on the punctuation mark at the end. ©
- Billy likes Lili. $\quad \rightarrow$ assert(like(B,L))
= Billy likes Lili? $\quad \rightarrow$ ask(like(B,L))
- or more formally, "Does Billy like Lili?"
- Billy, like Lili! $\quad \rightarrow$ command(like(B,L))
" or more accurately, "Let Billy like Lili!"
- Let's try to do this a little more precisely, using event variables etc.

Speech Acts

Speech Acts

-What did Gilly swallow?

- ask(λx ヨe past(e), act(e,swallowing), swallower(e,Gilly), swallowee(e,x))
" Argument is identical to the modifier "that Gilly swallowed"
- Is there any common syntax?

Speech Acts

-What did Gilly swallow?

- ask(λx ヨe past(e), act(e,swallowing), swallower(e,Gilly), swallowee(e,x))
" Argument is identical to the modifier "that Gilly swallowed"
- Is there any common syntax?
- Eat your fish!
- command($\lambda \mathrm{f}$ act(f,eating), eater(f,Hearer), eatee(...))

Speech Acts

-What did Gilly swallow?

- ask(λx ヨe past(e), act(e,swallowing), swallower(e,Gilly), swallowee(e,x))
" Argument is identical to the modifier "that Gilly swallowed"
- Is there any common syntax?
- Eat your fish!
- command($\lambda \mathrm{f}$ act(f,eating), eater(f,Hearer), eatee(...))
- I ate my fish.
- assert(ヨe past(e), act(e,eating), eater(f,Speaker), eatee(...))

Compositional Semantics

- We've discussed what semantic representations should look like.
- But how do we get them from sentences???
- First - parse to get a syntax tree.
- Second - look up the semantics for each word.
- Third - build the semantics for each constituent
- Work from the bottom up
" The syntax tree is a "recipe" for how to do it

Compositional Semantics

Compositional Semantics

Compositional Semantics

assert(every(nation, $\lambda x \exists$ e present(e),
act(e,wanting), wanter(e,x), wantee(e, $\lambda \mathrm{e}^{\prime}$ act(e^{\prime}, loving), $\begin{array}{rlll}\left.\left.\left.\operatorname{lover}\left(e^{\prime}, G\right) \text {, lovee }\left(e^{\prime}, \mathrm{L}\right)\right)\right)\right), & \mathrm{S}_{\text {fin }} & \leftarrow & \text { Punc } \\ N \mathrm{NP} & \longrightarrow & \mathrm{VP}_{\text {fin }} & \dot{\lambda} \text { s assert(} \mathrm{s})\end{array}$ Det $\longrightarrow \sim$
Every nation
every nation
$\lambda \vee \lambda \times \exists \mathrm{e}$ present $(\mathrm{e}), \mathrm{v}(\mathrm{x})(\mathrm{e})$
$\lambda \mathrm{y} \lambda \times \lambda \mathrm{e}$ act $(\mathrm{e}$, wanting $)$,
wanter (e, x), wantee (e, y)

Compositional Semantics

Compositional Semantics

Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow \mathrm{NP}$ loves NP
- S[sem=loves $(x, y)] \rightarrow$ NP[sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs

Compositional Semantics

Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow \mathrm{NP}$ loves NP
- S[sem=loves $(x, y)] \rightarrow$ NP[sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

Compositional Semantics

" Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow \mathrm{NP}$ loves NP
- S[sem=loves $(x, y)] \rightarrow$ NP[sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

Compositional Semantics

" Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow \mathrm{NP}$ loves NP
- S[sem=loves $(x, y)] \rightarrow N P[s e m=x]$ loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

Compositional Semantics

" Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow \mathrm{NP}$ loves NP
- S[sem=loves $(x, y)] \rightarrow N P[s e m=x]$ loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

- Template filling: S[sem=showflights($(x, y)] \rightarrow$

I want a flight from NP[sem=x] to NP[sem=y]

Compositional Semantics

Compositional Semantics

- Instead of $S \rightarrow$ NP loves NP
- S[sem=loves $(x, y)] \rightarrow$ NP[sem=x] loves NP[sem=y]

Compositional Semantics

= Instead of S \rightarrow NP loves NP

- S[sem=loves(x, y)] \rightarrow NP[sem=x] loves NP[sem=y]
- might want general rules like $S \rightarrow$ NP VP:
- V[sem=loves] \rightarrow loves
- VP[sem=v(obj)] \rightarrow V[sem=v] NP[sem=obj]
- S[sem=vp(subj)] \rightarrow NP[sem=subj] VP[sem=vp]

Compositional Semantics

= Instead of S \rightarrow NP loves NP

- S[sem=loves(x, y)] \rightarrow NP[sem=x] loves NP[sem=y]
- might want general rules like $S \rightarrow$ NP VP:
- V[sem=loves] \rightarrow loves
- VP[sem= $\mathrm{v}(\mathrm{obj})] \rightarrow \mathrm{V}[$ sem= $=\mathrm{V}]$ NP[sem=obj]
- S[sem=vp(subj)] \rightarrow NP[sem=subj] VP[sem=vp]
- Now George loves Laura has sem=loves(Laura)(George)

Compositional Semantics

- Instead of S \rightarrow NP loves NP
- S[sem=loves $(x, y)] \rightarrow$ NP[sem=x] loves NP[sem=y]
- might want general rules like $S \rightarrow$ NP VP:
- V[sem=loves] \rightarrow loves
- VP[sem=v(obj)] \rightarrow V[sem=v] NP[sem=obj]
- S[sem=vp(subj)] \rightarrow NP[sem=subj] VP[sem=vp]
- Now George loves Laura has sem=loves(Laura)(George)
- In this manner we'll sketch a version where
- Still compute semantics bottom-up
- Grammar is in Chomsky Normal Form
- So each node has 2 children: 1 function \& 1 argument
- To get its semantics, apply function to argument!

Compositional Semantics

Compositional Semantics

(λ adj λ subj $\operatorname{adj}($ subj $))(\lambda x$ tall $(x))$
$=\quad \lambda \operatorname{subj}(\lambda x$ tall $(x))($ subj $)$
$=\quad \lambda$ subj tall(subj)

Compositional Semantics

Compositional Semantics

Compositional Semantics

- Now you can withdraw x again: $\lambda x \exists \mathrm{e}$ present(e), v(x)(e)
Your account v is overdrawn, so your rental application is rejected..
- Deposit some cash X to get $\mathrm{V}(\mathrm{x})$
- Now show you've got the money: ヨe present(e), v(x)(e)
Ma

In Summary: From the Words

In Summary: From the Words

In Summary: From the Words

assert(every(nation, $\lambda x \exists e$ present(e), act(e,wanting), wanter(e, x), wantee(e, $\lambda \mathrm{e}^{\prime}$ act(e^{\prime}, loving $)$, $\begin{array}{llll}\left.\left.\left.\operatorname{lover}\left(e^{\prime}, G\right) \text {, lovee }\left(e^{\prime}, L\right)\right)\right)\right) & \mathrm{S}_{\text {fin }} & \leftarrow \quad \text { Punc } \\ N P & \longrightarrow & V_{\text {fin }} & \dot{\lambda} \text { s assert(s) }\end{array}$ Det $\rightarrow N$
Every nation
every nation
$\lambda v \lambda x \exists \mathrm{e}$ present $(\mathrm{e}), \mathrm{v}(\mathrm{x})(\mathrm{e})$
$\lambda y \lambda \times \lambda \mathrm{e}$ act $(\mathrm{e}$, wanting $)$,
wanter (e, x), wantee (e, y)

START

Other Fun Semantic Stuff: A Few Much-Studied Miscellany

- Temporal logic
- Gilly had swallowed eight goldfish before Milly reached the bowl
- Billy said Jilly was pregnant
- Billy said, "Jilly is pregnant."
- Generics
- Typhoons arise in the Pacific
- Children must be carried
- Presuppositions
- The king of France is bald.
- Have you stopped beating your wife?
" Pronoun-Quantifier Interaction ("bound anaphora")
- Every farmer who owns a donkey beats it.
- If you have a dime, put it in the meter.
- The woman who every Englishman loves is his mother.
- I love my mother and so does Billy.

In Summary

"How do we judge a good meaning representation?

- How can we represent sentence meaning with first-order logic?
- How can logical representations of sentences be composed from logical forms of words?
- Next time: can we train models to recover logical forms?

