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! often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T) 

! speech recognition & other tasks above are cases of this too: 

! we’re maximizing an appropriate p1(T) defined by p(T | I)

! Pick best probability distribution (a meta-problem!)
! really, pick best parameters θ: train HMM, PCFG, n-grams, clusters …
! maximum likelihood; smoothing; EM if unsupervised (incomplete data)

! Bayesian smoothing: max p(θ|data) = max p(θ, data) =p(θ)p(data|θ)
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! Syntactic features, morph.  Could be stochasticized?
! Methods can be quantitative & data-driven but not fully probabilistic: 

transf.-based learning, bottom-up clustering, LSA, competitive linking

! But probabilities have wormed their way into most things
! p(…) has to capture our intuitions about the ling. data

summary of other half of the course (linguistics)
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! Old AI hacking technique: 
! Possible parses (or whatever) have scores. 
! Pick the one with the best score. 
! How do you define the score? 

! Completely ad hoc! 
! Throw anything you want into the stew 
! Add a bonus for this, a penalty for that, etc. 

! “Learns” over time – as you adjust bonuses and 
penalties by hand to improve performance. ☺ 

! Total kludge, but totally flexible too … 
! Can throw in any intuitions you might have

really so alternative?

Exposé at 9

Probabilistic Revolution
Not Really a Revolution,

Critics Say

Log-probabilities no more
than scores in disguise

“We’re just adding stuff up
like the old corrupt regime
did,” admits spokesperson
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Nuthin’ but adding weights
! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + … 

! PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) … 

! Can regard any linguistic object as a collection of features (here, 
tree = a collection of context-free rules) 

! Weight of the object = total weight of features 
! Our weights have always been conditional log-probs (≤ 0) 

! but that is going to change in a few minutes! 

! HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + … 

! Noisy channel: [log p(source)] + [log p(data | source)] 
! Cascade of FSTs:  

  [log p(A)] + [log p(B | A)] + [log p(C | B)] + … 

! Naïve Bayes:  
 log(Class) + log(feature1 | Class) + log(feature2 | Class) + …
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2. Our results are more meaningful 
! Can use probabilities to place bets, quantify risk 
! e.g., how sure are we that this is the correct parse?
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phonemes | English phonemes) * p(Jap. text | Jap. phonemes) 
! p(semantics) * p(syntax | semantics) * p(morphology | syntax) * 

p(phonology | morphology) * p(sounds | phonology)

83% of
^
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! What assumption does Naïve Bayes make?  True here?

.5  .02   
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Naïve Bayes 
claims .5*.9=45% 
of spam has both 
features – 
25*9=225x more 
likely than in 
ling.

50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling
but here are the emails with both features – only 25x!
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! But ad-hoc approach does have one advantage 

! Can adjust scores to compensate for feature overlap … 
! Some useful features of this message: 

! Contains a dollar amount under $100  

! Mentions money 

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * … 
! What assumption does Naïve Bayes make?  True here?

Probabilists Regret Being Bound by Principle

.5  .02   

.9  .1

spam ling

-1   -5.6   

-.15  -3.3

spam ling
log prob

-.85  -2.3   

-.15  -3.3

spam ling
adjusted
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! But not clear how to restructure these features like that: 

! Contains Buy 
! Contains supercalifragilistic  
! Contains a dollar amount under $100  
! Contains an imperative sentence 
! Reading level = 7th grade 
! Mentions money (use word classes and/or regexp to detect this) 
! … 

! Boy, we’d like to be able to throw all that useful stuff in 
without worrying about feature overlap/independence. 

! Well, maybe we can add up scores and pretend like we 
got a log probability: log p(feats | spam) = 5.77 

 

+4 
+0.2 
+1 
+2 
 -3 
+5 
 …

total: 5.77

! Oops, then p(feats | spam) = exp 5.77 = 320.5
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! p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)  where 
m is the email message 

λi is weight of feature i 

fi(m)∈{0,1} according to whether m has feature i 

More generally, allow fi(m) = count or strength of feature. 

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1  
(summed over all possible messages m!  hard to find!)

! The weights we add up are basically arbitrary.

! They don’t have to mean anything, so long as they give us a good 
probability.

! Why is it called “log-linear”?

! p(feats | spam) = exp 5.77 = 320.5

scale down so 

everything < 1  

and sums to 1!
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! Can use ’em to bet, or combine w/ other probs.

! We can now learn weights from data! 

! Choose weights λi that maximize logprob of labeled 

training data = log ∏j p(cj) p(mj | cj) 

! where cj∈{ling,spam} is classification of message mj 

! and p(mj | cj) is log-linear model from previous slide 

! Convex function – easy to maximize!  (why?) 

! But: p(mj | cj) for a given λ requires Z(λ): hard!
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Attempt to Cancel out Z

! Set weights to maximize  ∏j p(cj) p(mj | cj) 

! where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)  
! But normalizer Z(λ) is awful sum over all possible emails 

! So instead: Maximize  ∏j p(cj | mj) 
! Doesn’t model the emails mj, only their classifications cj 
! Makes more sense anyway given our feature set

! p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

! Z appears in both numerator and denominator
! Alas, doesn’t cancel out because Z differs for the spam and ling models
! But we can fix this …
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       p(m|spam)*p(spam)     vs.     p(m|ling)*p(ling)
! Have just one joint model p(m,c) 

       gives us both p(m,spam) and p(m,ling)
! Equivalent to changing feature set to: 

! spam         
! spam and Contains Buy 
! spam and Contains supercalifragilistic  
! … 

! ling            
! ling and Contains Buy 
! ling and Contains supercalifragilistic

! No real change, but 2 categories now share single 
feature set and single value of Z(λ)

# weight of this feature is log p(spam) + a constant

# weight of this feature is log p(ling) + a constant

#old spam model’s weight for “contains Buy”

#old ling model’s weight for “contains Buy”
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! Old: choose weights λi that maximize prob of labeled training data = 

∏j p(mj, cj)

! New: choose weights λi that maximize prob of labels given messages 

= ∏j p(cj | mj)

! Now Z cancels out of conditional probability!
! p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

   = exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

! Easy to compute now …

! ∏j p(cj | mj) is still convex, so easy to maximize too
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! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

! Suppose I tell you that 55% of all messages are in class A.
! Question: Now what is your guess for p(C | m)?

! Suppose I also tell you that 10% of all messages contain Buy 
and 80% of these are in class A or C.

! Question: Now what is your guess for p(C | m),  
  if m contains Buy?

! OUCH!
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! Column A sums to 0.55 
! Row Buy sums to 0.1 
! (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”)

! Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy  (related to cross-entropy, perplexity)
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Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55 
! Row Buy sums to 0.1 
! (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”)

! Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy  (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …
Largest if probabilities are evenly distributed
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Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55 
! Row Buy sums to 0.1 
! (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”)

! Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy 

! Now p(Buy, C) = .029  and  p(C | Buy) = .29 
! We got a compromise: p(C | Buy) < p(A | Buy) < .55
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Generalizing to More Features

A B C D E F G H …
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

<$100
Other
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What we just did
! For each feature (“contains Buy”), see what 

fraction of training data has it
! Many distributions p(c,m) would predict these 

fractions (including the unsmoothed one where all mass 
goes to feature combos we’ve actually seen)

! Of these, pick distribution that has max entropy

! Amazing Theorem: This distribution has the form 
p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) 

! So it is log-linear.  In fact it is the same log-linear 
distribution that maximizes ∏j p(mj, cj) as before! 

! Gives another motivation for the log-linear approach.
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Log-linear form derivation

• Say we are given some constraints in the form of
feature expectations:

• In general, there may be many distributions p(x) that
satisfy the constraints.  Which one to pick?

• The one with maximum entropy (making fewest possible
additional assumptions---Occum’s Razor)

• This yields an optimization problem
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Log-linear form derivation
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MaxEnt = Max Likelihood
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By gradient ascent or conjugate gradient.
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Overfitting

! If we have too many features, we can choose 
weights to model the training data perfectly. 

! If we have a feature that only appears in spam 
training, not ling training, it will get weight ∞ to 
maximize p(spam | feature) at 1. 

! These behaviors overfit the training data. 
! Will probably do poorly on test data.
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Solutions to Overfitting

1. Throw out rare features. 
! Require every feature to occur > 4 times, and > 0 

times with ling, and > 0 times with spam.

2. Only keep 1000 features.   
! Add one at a time, always greedily picking the one 

that most improves performance on held-out data.

3. Smooth the observed feature counts.
4. Smooth the weights by using a prior. 

! max p(λ|data) = max p(λ, data) =p(λ)p(data|λ) 

! decree p(λ) to be high when most weights close to 0



41 41



42 42



43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.


