
Log-Linear Models
a.k.a.

Logistic Regression
a.k.a.

Maximum Entropy Models

Natural Language Processing
CS 4120/6120—Spring 2016

Northeastern University

David Smith
(some slides from Jason Eisner and Dan Klein)

2

Probability is Useful
summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …
! maximize p(T | I); equivalently maximize joint probability p(I,T)

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …
! maximize p(T | I); equivalently maximize joint probability p(I,T)

! often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …
! maximize p(T | I); equivalently maximize joint probability p(I,T)

! often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

! speech recognition & other tasks above are cases of this too:

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …
! maximize p(T | I); equivalently maximize joint probability p(I,T)

! often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

! speech recognition & other tasks above are cases of this too:

! we’re maximizing an appropriate p1(T) defined by p(T | I)

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …
! maximize p(T | I); equivalently maximize joint probability p(I,T)

! often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

! speech recognition & other tasks above are cases of this too:

! we’re maximizing an appropriate p1(T) defined by p(T | I)

! Pick best probability distribution (a meta-problem!)

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …
! maximize p(T | I); equivalently maximize joint probability p(I,T)

! often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

! speech recognition & other tasks above are cases of this too:

! we’re maximizing an appropriate p1(T) defined by p(T | I)

! Pick best probability distribution (a meta-problem!)
! really, pick best parameters θ: train HMM, PCFG, n-grams, clusters …

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …
! maximize p(T | I); equivalently maximize joint probability p(I,T)

! often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

! speech recognition & other tasks above are cases of this too:

! we’re maximizing an appropriate p1(T) defined by p(T | I)

! Pick best probability distribution (a meta-problem!)
! really, pick best parameters θ: train HMM, PCFG, n-grams, clusters …
! maximum likelihood; smoothing; EM if unsupervised (incomplete data)

summary of half of the course (statistics)

2

Probability is Useful
! We love probability distributions!

! We’ve learned how to define & use p(…) functions.

! Pick best output text T from a set of candidates
! speech recognition; machine translation; OCR; spell correction...

! maximize p1(T) for some appropriate distribution p1
! Pick best annotation T for a fixed input I

! text categorization; parsing; POS tagging; language ID …
! maximize p(T | I); equivalently maximize joint probability p(I,T)

! often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

! speech recognition & other tasks above are cases of this too:

! we’re maximizing an appropriate p1(T) defined by p(T | I)

! Pick best probability distribution (a meta-problem!)
! really, pick best parameters θ: train HMM, PCFG, n-grams, clusters …
! maximum likelihood; smoothing; EM if unsupervised (incomplete data)

! Bayesian smoothing: max p(θ|data) = max p(θ, data) =p(θ)p(data|θ)

summary of half of the course (statistics)

3

Probability is Flexible
summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects
! Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects
! Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
! Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects
! Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
! Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
! Vectors (clusters)

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects
! Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
! Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
! Vectors (clusters)

! NLP also includes some not-so-probabilistic stuff

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects
! Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
! Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
! Vectors (clusters)

! NLP also includes some not-so-probabilistic stuff
! Syntactic features, morph. Could be stochasticized?

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects
! Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
! Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
! Vectors (clusters)

! NLP also includes some not-so-probabilistic stuff
! Syntactic features, morph. Could be stochasticized?
! Methods can be quantitative & data-driven but not fully probabilistic:

transf.-based learning, bottom-up clustering, LSA, competitive linking

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects
! Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
! Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
! Vectors (clusters)

! NLP also includes some not-so-probabilistic stuff
! Syntactic features, morph. Could be stochasticized?
! Methods can be quantitative & data-driven but not fully probabilistic:

transf.-based learning, bottom-up clustering, LSA, competitive linking

! But probabilities have wormed their way into most things

summary of other half of the course (linguistics)

3

Probability is Flexible

! We love probability distributions!
! We’ve learned how to define & use p(…) functions.

! We want p(…) to define probability of linguistic objects
! Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
! Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
! Vectors (clusters)

! NLP also includes some not-so-probabilistic stuff
! Syntactic features, morph. Could be stochasticized?
! Methods can be quantitative & data-driven but not fully probabilistic:

transf.-based learning, bottom-up clustering, LSA, competitive linking

! But probabilities have wormed their way into most things
! p(…) has to capture our intuitions about the ling. data

summary of other half of the course (linguistics)

4

An Alternative Tradition

4

An Alternative Tradition

! Old AI hacking technique:
! Possible parses (or whatever) have scores.
! Pick the one with the best score.
! How do you define the score?

! Completely ad hoc!
! Throw anything you want into the stew
! Add a bonus for this, a penalty for that, etc.

4

An Alternative Tradition

! Old AI hacking technique:
! Possible parses (or whatever) have scores.
! Pick the one with the best score.
! How do you define the score?

! Completely ad hoc!
! Throw anything you want into the stew
! Add a bonus for this, a penalty for that, etc.

! “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance. ☺

4

An Alternative Tradition

! Old AI hacking technique:
! Possible parses (or whatever) have scores.
! Pick the one with the best score.
! How do you define the score?

! Completely ad hoc!
! Throw anything you want into the stew
! Add a bonus for this, a penalty for that, etc.

! “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance. ☺

! Total kludge, but totally flexible too …
! Can throw in any intuitions you might have

4

An Alternative Tradition

! Old AI hacking technique:
! Possible parses (or whatever) have scores.
! Pick the one with the best score.
! How do you define the score?

! Completely ad hoc!
! Throw anything you want into the stew
! Add a bonus for this, a penalty for that, etc.

! “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance. ☺

! Total kludge, but totally flexible too …
! Can throw in any intuitions you might have

really so alternative?

5

An Alternative Tradition

! Old AI hacking technique:
! Possible parses (or whatever) have scores.
! Pick the one with the best score.
! How do you define the score?

! Completely ad hoc!
! Throw anything you want into the stew
! Add a bonus for this, a penalty for that, etc.

! “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance. ☺

! Total kludge, but totally flexible too …
! Can throw in any intuitions you might have

really so alternative?

5

An Alternative Tradition

! Old AI hacking technique:
! Possible parses (or whatever) have scores.
! Pick the one with the best score.
! How do you define the score?

! Completely ad hoc!
! Throw anything you want into the stew
! Add a bonus for this, a penalty for that, etc.

! “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance. ☺

! Total kludge, but totally flexible too …
! Can throw in any intuitions you might have

really so alternative?

Exposé at 9

Probabilistic Revolution
Not Really a Revolution,

Critics Say

Log-probabilities no more
than scores in disguise

“We’re just adding stuff up
like the old corrupt regime
did,” admits spokesperson

6

Nuthin’ but adding weights

6

Nuthin’ but adding weights

! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

6

Nuthin’ but adding weights

! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

! PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

6

Nuthin’ but adding weights

! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

! PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

! HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

6

Nuthin’ but adding weights

! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

! PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

! HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

! Noisy channel: [log p(source)] + [log p(data | source)]

6

Nuthin’ but adding weights

! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

! PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

! HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

! Noisy channel: [log p(source)] + [log p(data | source)]
! Cascade of FSTs:  

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …

6

Nuthin’ but adding weights

! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

! PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

! HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

! Noisy channel: [log p(source)] + [log p(data | source)]
! Cascade of FSTs:  

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …

! Naïve Bayes:  
 log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

6

Nuthin’ but adding weights

! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

! PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

! HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

! Noisy channel: [log p(source)] + [log p(data | source)]
! Cascade of FSTs:  

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …

! Naïve Bayes:  
 log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

! Note: Today we’ll use +logprob not –logprob:  
i.e., bigger weights are better.

7

Nuthin’ but adding weights
! n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

! PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

! Can regard any linguistic object as a collection of features (here,
tree = a collection of context-free rules)

! Weight of the object = total weight of features
! Our weights have always been conditional log-probs (≤ 0)

! but that is going to change in a few minutes!

! HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

! Noisy channel: [log p(source)] + [log p(data | source)]
! Cascade of FSTs:  

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …

! Naïve Bayes:  
 log(Class) + log(feature1 | Class) + log(feature2 | Class) + …

8

8

Probabilists Rally Behind Paradigm

8

Probabilists Rally Behind Paradigm
“.2, .4, .6, .8! We’re not gonna take your bait!”

8

Probabilists Rally Behind Paradigm
“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

! e.g., log p(t7 | t5, t6) (trigram tag probability)
! from supervised or unsupervised data

8

Probabilists Rally Behind Paradigm
“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

! e.g., log p(t7 | t5, t6) (trigram tag probability)
! from supervised or unsupervised data

2. Our results are more meaningful
! Can use probabilities to place bets, quantify risk
! e.g., how sure are we that this is the correct parse?

8

Probabilists Rally Behind Paradigm
“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

! e.g., log p(t7 | t5, t6) (trigram tag probability)
! from supervised or unsupervised data

2. Our results are more meaningful
! Can use probabilities to place bets, quantify risk
! e.g., how sure are we that this is the correct parse?

3. Our results can be meaningfully combined ⇒ modularity!
! Multiply indep. conditional probs – normalized, unlike scores
! p(English text) * p(English phonemes | English text) * p(Jap.

phonemes | English phonemes) * p(Jap. text | Jap. phonemes)
! p(semantics) * p(syntax | semantics) * p(morphology | syntax) *

p(phonology | morphology) * p(sounds | phonology)

8

Probabilists Rally Behind Paradigm
“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

! e.g., log p(t7 | t5, t6) (trigram tag probability)
! from supervised or unsupervised data

2. Our results are more meaningful
! Can use probabilities to place bets, quantify risk
! e.g., how sure are we that this is the correct parse?

3. Our results can be meaningfully combined ⇒ modularity!
! Multiply indep. conditional probs – normalized, unlike scores
! p(English text) * p(English phonemes | English text) * p(Jap.

phonemes | English phonemes) * p(Jap. text | Jap. phonemes)
! p(semantics) * p(syntax | semantics) * p(morphology | syntax) *

p(phonology | morphology) * p(sounds | phonology)

83% of
^

9

9

Probabilists Regret Being Bound by Principle

9

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage

9

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

9

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:
! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 8th grade
! Mentions money (use word classes and/or regexp to detect this)

9

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:
! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 8th grade
! Mentions money (use word classes and/or regexp to detect this)

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …

9

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:
! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 8th grade
! Mentions money (use word classes and/or regexp to detect this)

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

9

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:
! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 8th grade
! Mentions money (use word classes and/or regexp to detect this)

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling

10

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:

! Contains a dollar amount under $100

! Mentions money

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling

10

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:

! Contains a dollar amount under $100

! Mentions money

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling 50% of spam has this – 25x more likely than in ling

10

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:

! Contains a dollar amount under $100

! Mentions money

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling 50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling

10

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:

! Contains a dollar amount under $100

! Mentions money

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling
Naïve Bayes
claims .5*.9=45%
of spam has both
features –
25*9=225x more
likely than in
ling.

50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling

10

Probabilists Regret Being Bound by Principle

! Ad-hoc approach does have one advantage
! Consider e.g. Naïve Bayes for text categorization:

! Buy this supercalifragilistic Ginsu knife set
for only $39 today …

! Some useful features:

! Contains a dollar amount under $100

! Mentions money

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling
Naïve Bayes
claims .5*.9=45%
of spam has both
features –
25*9=225x more
likely than in
ling.

50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling
but here are the emails with both features – only 25x!

11

! But ad-hoc approach does have one advantage

! Can adjust scores to compensate for feature overlap …
! Some useful features of this message:

! Contains a dollar amount under $100

! Mentions money

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

.5 .02

.9 .1

spam ling

11

! But ad-hoc approach does have one advantage

! Can adjust scores to compensate for feature overlap …
! Some useful features of this message:

! Contains a dollar amount under $100

! Mentions money

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

.5 .02

.9 .1

spam ling

-1 -5.6

-.15 -3.3

spam ling
log prob

11

! But ad-hoc approach does have one advantage

! Can adjust scores to compensate for feature overlap …
! Some useful features of this message:

! Contains a dollar amount under $100

! Mentions money

! Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
! What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

.5 .02

.9 .1

spam ling

-1 -5.6

-.15 -3.3

spam ling
log prob

-.85 -2.3

-.15 -3.3

spam ling
adjusted

12

12

Revolution Corrupted by Bourgeois Values

12

Revolution Corrupted by Bourgeois Values
! Naïve Bayes needs overlapping but independent features

12

Revolution Corrupted by Bourgeois Values
! Naïve Bayes needs overlapping but independent features
! But not clear how to restructure these features like that:

! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 7th grade
! Mentions money (use word classes and/or regexp to detect this)
! …

12

Revolution Corrupted by Bourgeois Values
! Naïve Bayes needs overlapping but independent features
! But not clear how to restructure these features like that:

! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 7th grade
! Mentions money (use word classes and/or regexp to detect this)
! …

! Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

12

Revolution Corrupted by Bourgeois Values
! Naïve Bayes needs overlapping but independent features
! But not clear how to restructure these features like that:

! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 7th grade
! Mentions money (use word classes and/or regexp to detect this)
! …

! Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

! Well, maybe we can add up scores and pretend like we
got a log probability:

13

Revolution Corrupted by Bourgeois Values
! Naïve Bayes needs overlapping but independent features
! But not clear how to restructure these features like that:

! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 7th grade
! Mentions money (use word classes and/or regexp to detect this)
! …

! Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

! Well, maybe we can add up scores and pretend like we
got a log probability: log p(feats | spam) = 5.77

+4
+0.2
+1
+2
 -3
+5
 …

total: 5.77

13

Revolution Corrupted by Bourgeois Values
! Naïve Bayes needs overlapping but independent features
! But not clear how to restructure these features like that:

! Contains Buy
! Contains supercalifragilistic
! Contains a dollar amount under $100
! Contains an imperative sentence
! Reading level = 7th grade
! Mentions money (use word classes and/or regexp to detect this)
! …

! Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

! Well, maybe we can add up scores and pretend like we
got a log probability: log p(feats | spam) = 5.77

+4
+0.2
+1
+2
 -3
+5
 …

total: 5.77

! Oops, then p(feats | spam) = exp 5.77 = 320.5

14

Renormalize by 1/Z to get a  
 Log-Linear Model

! p(feats | spam) = exp 5.77 = 320.5

14

Renormalize by 1/Z to get a  
 Log-Linear Model

! p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

Renormalize by 1/Z to get a  
 Log-Linear Model

! p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message

λi is weight of feature i

fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1  
(summed over all possible messages m! hard to find!)

! p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

Renormalize by 1/Z to get a  
 Log-Linear Model

! p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message

λi is weight of feature i

fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1  
(summed over all possible messages m! hard to find!)

! The weights we add up are basically arbitrary.

! p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

Renormalize by 1/Z to get a  
 Log-Linear Model

! p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message

λi is weight of feature i

fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1  
(summed over all possible messages m! hard to find!)

! The weights we add up are basically arbitrary.

! They don’t have to mean anything, so long as they give us a good
probability.

! p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

Renormalize by 1/Z to get a  
 Log-Linear Model

! p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message

λi is weight of feature i

fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1  
(summed over all possible messages m! hard to find!)

! The weights we add up are basically arbitrary.

! They don’t have to mean anything, so long as they give us a good
probability.

! Why is it called “log-linear”?

! p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

15

Why Bother?

15

Why Bother?
! Gives us probs, not just scores.

! Can use ’em to bet, or combine w/ other probs.

15

Why Bother?
! Gives us probs, not just scores.

! Can use ’em to bet, or combine w/ other probs.

! We can now learn weights from data!

! Choose weights λi that maximize logprob of labeled

training data = log ∏j p(cj) p(mj | cj)

! where cj∈{ling,spam} is classification of message mj

! and p(mj | cj) is log-linear model from previous slide

! Convex function – easy to maximize! (why?)

15

Why Bother?
! Gives us probs, not just scores.

! Can use ’em to bet, or combine w/ other probs.

! We can now learn weights from data!

! Choose weights λi that maximize logprob of labeled

training data = log ∏j p(cj) p(mj | cj)

! where cj∈{ling,spam} is classification of message mj

! and p(mj | cj) is log-linear model from previous slide

! Convex function – easy to maximize! (why?)

! But: p(mj | cj) for a given λ requires Z(λ): hard!

16

Attempt to Cancel out Z

16

Attempt to Cancel out Z

! Set weights to maximize ∏j p(cj) p(mj | cj)

! where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
! But normalizer Z(λ) is awful sum over all possible emails

16

Attempt to Cancel out Z

! Set weights to maximize ∏j p(cj) p(mj | cj)

! where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
! But normalizer Z(λ) is awful sum over all possible emails

! So instead: Maximize ∏j p(cj | mj)
! Doesn’t model the emails mj, only their classifications cj
! Makes more sense anyway given our feature set

16

Attempt to Cancel out Z

! Set weights to maximize ∏j p(cj) p(mj | cj)

! where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
! But normalizer Z(λ) is awful sum over all possible emails

! So instead: Maximize ∏j p(cj | mj)
! Doesn’t model the emails mj, only their classifications cj
! Makes more sense anyway given our feature set

16

Attempt to Cancel out Z

! Set weights to maximize ∏j p(cj) p(mj | cj)

! where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
! But normalizer Z(λ) is awful sum over all possible emails

! So instead: Maximize ∏j p(cj | mj)
! Doesn’t model the emails mj, only their classifications cj
! Makes more sense anyway given our feature set

! p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

16

Attempt to Cancel out Z

! Set weights to maximize ∏j p(cj) p(mj | cj)

! where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
! But normalizer Z(λ) is awful sum over all possible emails

! So instead: Maximize ∏j p(cj | mj)
! Doesn’t model the emails mj, only their classifications cj
! Makes more sense anyway given our feature set

! p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

! Z appears in both numerator and denominator

16

Attempt to Cancel out Z

! Set weights to maximize ∏j p(cj) p(mj | cj)

! where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
! But normalizer Z(λ) is awful sum over all possible emails

! So instead: Maximize ∏j p(cj | mj)
! Doesn’t model the emails mj, only their classifications cj
! Makes more sense anyway given our feature set

! p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

! Z appears in both numerator and denominator
! Alas, doesn’t cancel out because Z differs for the spam and ling models

16

Attempt to Cancel out Z

! Set weights to maximize ∏j p(cj) p(mj | cj)

! where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
! But normalizer Z(λ) is awful sum over all possible emails

! So instead: Maximize ∏j p(cj | mj)
! Doesn’t model the emails mj, only their classifications cj
! Makes more sense anyway given our feature set

! p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

! Z appears in both numerator and denominator
! Alas, doesn’t cancel out because Z differs for the spam and ling models
! But we can fix this …

17

So: Modify Setup a Bit

17

So: Modify Setup a Bit
! Instead of having separate models

 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)

17

So: Modify Setup a Bit
! Instead of having separate models

 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)
! Have just one joint model p(m,c)

 gives us both p(m,spam) and p(m,ling)

17

So: Modify Setup a Bit
! Instead of having separate models

 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)
! Have just one joint model p(m,c)

 gives us both p(m,spam) and p(m,ling)
! Equivalent to changing feature set to:

! spam
! spam and Contains Buy
! spam and Contains supercalifragilistic
! …

! ling
! ling and Contains Buy
! ling and Contains supercalifragilistic

17

So: Modify Setup a Bit
! Instead of having separate models

 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)
! Have just one joint model p(m,c)

 gives us both p(m,spam) and p(m,ling)
! Equivalent to changing feature set to:

! spam
! spam and Contains Buy
! spam and Contains supercalifragilistic
! …

! ling
! ling and Contains Buy
! ling and Contains supercalifragilistic

! No real change, but 2 categories now share single
feature set and single value of Z(λ)

17

So: Modify Setup a Bit
! Instead of having separate models

 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)
! Have just one joint model p(m,c)

 gives us both p(m,spam) and p(m,ling)
! Equivalent to changing feature set to:

! spam
! spam and Contains Buy
! spam and Contains supercalifragilistic
! …

! ling
! ling and Contains Buy
! ling and Contains supercalifragilistic

! No real change, but 2 categories now share single
feature set and single value of Z(λ)

#old spam model’s weight for “contains Buy”

#old ling model’s weight for “contains Buy”

17

So: Modify Setup a Bit
! Instead of having separate models

 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)
! Have just one joint model p(m,c)

 gives us both p(m,spam) and p(m,ling)
! Equivalent to changing feature set to:

! spam
! spam and Contains Buy
! spam and Contains supercalifragilistic
! …

! ling
! ling and Contains Buy
! ling and Contains supercalifragilistic

! No real change, but 2 categories now share single
feature set and single value of Z(λ)

weight of this feature is log p(spam) + a constant

weight of this feature is log p(ling) + a constant

#old spam model’s weight for “contains Buy”

#old ling model’s weight for “contains Buy”

18

Now we can cancel out Z

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

! Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

! Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

! New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

! Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

! New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

! Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

! New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

! Now Z cancels out of conditional probability!

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

! Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

! New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

! Now Z cancels out of conditional probability!
! p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

! Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

! New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

! Now Z cancels out of conditional probability!
! p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

 = exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

! Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

! New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

! Now Z cancels out of conditional probability!
! p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

 = exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

! Easy to compute now …

18

Now we can cancel out Z
Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

! Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

! New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

! Now Z cancels out of conditional probability!
! p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

 = exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

! Easy to compute now …

! ∏j p(cj | mj) is still convex, so easy to maximize too

Generative vs. Conditional

! What is the most likely label for a given
input?

! How likely is a given label for a given input?
! What is the most likely input value?
! How likely is a given input value?
! How likely is a given input value with a given

label?
! What is the most likely label for an input

that might have one of two values (but we
don't know which)?

19

Generative vs. Conditional

! What is the most likely label for a given
input?

! How likely is a given label for a given input?
! What is the most likely input value?
! How likely is a given input value?
! How likely is a given input value with a given

label?
! What is the most likely label for an input

that might have one of two values (but we
don't know which)?

19

20

Maximum Entropy

20

Maximum Entropy

! Suppose there are 10 classes, A through J.

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

! Suppose I tell you that 55% of all messages are in class A.

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

! Suppose I tell you that 55% of all messages are in class A.
! Question: Now what is your guess for p(C | m)?

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

! Suppose I tell you that 55% of all messages are in class A.
! Question: Now what is your guess for p(C | m)?

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

! Suppose I tell you that 55% of all messages are in class A.
! Question: Now what is your guess for p(C | m)?

! Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

! Suppose I tell you that 55% of all messages are in class A.
! Question: Now what is your guess for p(C | m)?

! Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

! Question: Now what is your guess for p(C | m),  
 if m contains Buy?

20

Maximum Entropy

! Suppose there are 10 classes, A through J.
! I don’t give you any other information.
! Question: Given message m: what is your guess for p(C | m)?

! Suppose I tell you that 55% of all messages are in class A.
! Question: Now what is your guess for p(C | m)?

! Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

! Question: Now what is your guess for p(C | m),  
 if m contains Buy?

! OUCH!

21

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55 (“55% of all messages are in class A”)

22

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55
! Row Buy sums to 0.1 (“10% of all messages contain Buy”)

23

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55
! Row Buy sums to 0.1
! (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

23

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55
! Row Buy sums to 0.1
! (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

! Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

23

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55
! Row Buy sums to 0.1
! (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

! Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …

23

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55
! Row Buy sums to 0.1
! (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

! Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …
Largest if probabilities are evenly distributed

24

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

! Column A sums to 0.55
! Row Buy sums to 0.1
! (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

! Given these constraints, fill in cells “as equally as possible”:
maximize the entropy

! Now p(Buy, C) = .029 and p(C | Buy) = .29
! We got a compromise: p(C | Buy) < p(A | Buy) < .55

25

Generalizing to More Features

A B C D E F G H …
Buy 0.051 0.0025 0.029 0.0025 0.0025 0.0025 0.0025 0.0025

Other 0.499 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446 0.0446

<$100
Other

26

What we just did

26

What we just did
! For each feature (“contains Buy”), see what

fraction of training data has it

26

What we just did
! For each feature (“contains Buy”), see what

fraction of training data has it
! Many distributions p(c,m) would predict these

fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

26

What we just did
! For each feature (“contains Buy”), see what

fraction of training data has it
! Many distributions p(c,m) would predict these

fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

! Of these, pick distribution that has max entropy

26

What we just did
! For each feature (“contains Buy”), see what

fraction of training data has it
! Many distributions p(c,m) would predict these

fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

! Of these, pick distribution that has max entropy

26

What we just did
! For each feature (“contains Buy”), see what

fraction of training data has it
! Many distributions p(c,m) would predict these

fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

! Of these, pick distribution that has max entropy

! Amazing Theorem: This distribution has the form
p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c)

! So it is log-linear. In fact it is the same log-linear
distribution that maximizes ∏j p(mj, cj) as before!

26

What we just did
! For each feature (“contains Buy”), see what

fraction of training data has it
! Many distributions p(c,m) would predict these

fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

! Of these, pick distribution that has max entropy

! Amazing Theorem: This distribution has the form
p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c)

! So it is log-linear. In fact it is the same log-linear
distribution that maximizes ∏j p(mj, cj) as before!

! Gives another motivation for the log-linear approach.

27 26

Log-linear form derivation

• Say we are given some constraints in the form of
feature expectations:

• In general, there may be many distributions p(x) that
satisfy the constraints. Which one to pick?

• The one with maximum entropy (making fewest possible
additional assumptions---Occum’s Razor)

• This yields an optimization problem

28 27

Log-linear form derivation

29 28

MaxEnt = Max Likelihood

30 30

31 31

32 32

33 33

34 34

35 35

36 36

By gradient ascent or conjugate gradient.

37 37

38 38

39

Overfitting

! If we have too many features, we can choose
weights to model the training data perfectly.

! If we have a feature that only appears in spam
training, not ling training, it will get weight ∞ to
maximize p(spam | feature) at 1.

! These behaviors overfit the training data.
! Will probably do poorly on test data.

40

Solutions to Overfitting

40

Solutions to Overfitting

1. Throw out rare features.
! Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

40

Solutions to Overfitting

1. Throw out rare features.
! Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

2. Only keep 1000 features.
! Add one at a time, always greedily picking the one

that most improves performance on held-out data.

40

Solutions to Overfitting

1. Throw out rare features.
! Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

2. Only keep 1000 features.
! Add one at a time, always greedily picking the one

that most improves performance on held-out data.

3. Smooth the observed feature counts.

40

Solutions to Overfitting

1. Throw out rare features.
! Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

2. Only keep 1000 features.
! Add one at a time, always greedily picking the one

that most improves performance on held-out data.

3. Smooth the observed feature counts.
4. Smooth the weights by using a prior.

! max p(λ|data) = max p(λ, data) =p(λ)p(data|λ)

! decree p(λ) to be high when most weights close to 0

41 41

42 42

43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters. Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

