
Regular Languages

Natural Language Processing
CS 4120/6120—Spring 2016

Northeastern University

David Smith
with material from Jason Eisner, Andrew McCallum,

and Lari Karttunen

Brief History: 1950s
• Early NLP on machines less powerful than pocket

calculators

✤ E.g., how to compress a word list into memory

• Foundational work on automata, formal languages,
information theory

• First speech systems (Bell Labs)

• Machine translation heavily funded by military, basically
just word substitution

• Little formalization of syntax, semantics, pragmatics

Brief History: 1960s

• ALPAC report (Alvey, 1966) ends funding for
MT in U.S.

✤ Lack of practical results, recommends basic
research

• ELIZA and other early AI dialogue systems

✤ Risibly easy Turing tests

• Early corpora: Brown Corpus (Kučera &
Francis)

Brief History: 1970s

• Winograd’s SHRDLU (1971): existence proof of
NLP (in tangled Lisp code)

✤ Interpreted language about “blocks world”

• Which cube is sitting on the table?

• The large green one which supports the red pyramid.

• Is there a large block behind the pyramid?

• Yes, three of them. A large red one, a large green cube, and the blue one.

• Put a small one onto the green cube which supports a pyramid.

• OK.

• Hidden Markov models for speech recognition

Brief History: 1980s

• Procedural → declarative

✤ Grammars, logic programming

✤ Separation of processing (parser) from description of linguistic
knowledge

• Representations of meaning: procedural semantics (SHRDLU),
semantic nets (Schank), logic (starting in 1970s, Montague, Partee)

• Knowledge representation (Lenat: Cyc, still going!)

• MT in limited domains (METEO)

• HMMs for part-of-speech tagging (independently, Church &
DeRose)

Brief History: 1990s

• Probabilistic paradigm shift

✤ Speech recognition methods take over the world

• IR-style evaluations take over the world

• Finite-state methods in speech and beyond

• Large amounts of monolingual and multilingual
text become available, esp. on WWW

• Classification problems and ambiguity resolution
(in syntax, lexical semantics, translation, etc.)

Brief History: Now
• Even more machine learning

✤ Successful unsupervised systems

• Even more data, and tasks

• Widely usable—and used—speech recognition and
machine translation

• Widely usable syntactic parsing

• Some usable dialog systems

• Convergence with IR, question answering, probabilistic
knowledge representation

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Noam Chomsky
1928 -

Chomsky Hierarchy
Generative Grammar
Liberatarian-Socialist

The most cited person alive.

Noam
Chomsky

1928–
Formal languages

(Chomsky hierarchy)

Generative grammar

Anarcho-Socialist

A Language

• Some sentences in the language

✤ The man took the book.

✤ Colorless green ideas sleep furiously.

✤ This sentence is false.

• Some sentences not in the language

✤ *The girl, the sidewalk, the chalk, drew.

✤ *Backwards is sentence this.

✤ *Je parle anglais.

Languages as Rewriting Systems

• Start with some “non-terminal” symbol S

• Expand that symbol, using a rewrite rule.

• Keep applying rules until all non-terminals
are expanded to terminals.

• The string of terminals is a sentence of the
language.

Chomsky Hierarchy
• Let Caps = nonterminals; lower = terminals; Greek = strings

of terms/nonterms

• Recursively enumerable (Turing equivalent)

✤ Rules: α →β

• Context-sensitive

✤ Rules: αAβ→αγβ

• Context-free

✤ Rules: A→α

• Regular (finite-state)

✤ Rules: A→aB ; A→a

Regular Language Example

• Nonterminals: S, X

• Terminals: m, o

• Rules:

• S→mX

• X→oX

• X→o

• Start symbol: S

One expansion

S
mX
moX
mooX
mooo

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Example: Sheep Language

• In the language:
“ba!”, “baa!”, “baaaaa!”

• Not in the language:

• “ba”, “b!”, “ab!”, “bbaaa!”, “alibaba!”

s1 s2 s3 s4

b a !

a

double circle

indicates “accept state”

Finite-state Automata

Strings in and out of the example Regular Language:

Regular Expression

baa*

Another Regular Language

• Strings in and not in this language

✤ In the language:

• “ba!”, “baa!”, “baaaaaaaa!”

✤ Not in the language:

• “ba”, “b!”, “ab!”, “bbaaa!”, “alibaba!”

• Regular expression: baa*!

• Finite state automaton

Regular Languages

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Regular Languages: related concepts

Regular Languages
the accepted strings

Regular Expressions
a way to type the automata

Finite-state Automata
machinery for accepting

Finite-State Automata
• A (deterministic) finite-state automaton is a 5-tuple (Q, Σ, q0, F, δ(q,i))

✤ Q: finite set of states q0, q1, q2, ..., qN

✤ Σ: finite set of terminals

✤ δ(q,i): transition function (relation if non-deterministic)

✤ q0: start state

✤ F: set of final states

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Finite State Automata, more formally

• A finite state automata is a 5-tuple: (Q, Σ, q0, F, δ(q,i))

– Q : finite set of N states, q0, q1, q2,... qN (non-terminals)

– Σ : finite set of (terminals)

– δ(q,i) : transition function, given state and input, returns next state

(production rules)

– q0: the start state

– F: the set of final states

We will later return to a
probabilistic version of this

with Hidden Markov Models!

q0 q1 q2 q3

b a !

a

b a a a a !

q1

The FSA

State marker

Input tape

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Finite State Automata, more formally

• A finite state automata is a 5-tuple: (Q, Σ, q0, F, δ(q,i))

– Q : finite set of N states, q0, q1, q2,... qN (non-terminals)

– Σ : finite set of (terminals)

– δ(q,i) : transition function, given state and input, returns next state

(production rules)

– q0: the start state

– F: the set of final states

We will later return to a
probabilistic version of this

with Hidden Markov Models!

q0 q1 q2 q3

b a !

a

b a a a a !

q1

The FSA

State marker

Input tape

Transition Table

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Transition Table, δ

State

Input

b a !

0 1 ∅ ∅

1 ∅ 2 ∅

2 ∅ 2 3
3 ∅ ∅ ∅

Regular Expressions
• Two types of characters

• Literal

✤ Every “normal” alphanumeric character is an RE, and matches
itself

• Meta-characters

✤ Special characters that allow you to combine REs in various ways

• Example:

✤ a matches a

✤ a* matches ε or a or aa or aaa or ...

Regular Expressions

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Regular Expressions

The “foundational” operations

Concatenation abc abc

Disjunction a|b a b

(a|bb)d ad bbd

Kleene star a* ε a aa aaa ...

c(a|bb)* ca cbba

Regular expressions / Finite-state automata are “closed under these operations”

 Pattern Matches

The empty string

Regular expressions / FSAs are closed
under these operations

Practical Applications
• Word processing find & replace

• Validate fields in database (dates, email, ...)

• Searching for linguistic patterns

• Finite-state machines

✤ Language modeling in speech recognition (where
things need to be real-time or better)

✤ Information extraction

✤ Morphology

Syntactic Sugar

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Basic Regular Expressions

Character Concat went went

Alternatives (go|went) go went

[aeiou] a o u

disjunc. negation [^aeiou] b c d f g

wildcard char . a z &

Loops & skips a* ε a aa aaa ...

one or more a+ a aa aaa

zero or one colou?r color colour

 Pattern Matches

Syntactic Sugar

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

More Fancy Regular Expressions
• Special characters

– \t tab \v vertical tab

– \n newline \r carriage return

• Aliases (shorthand)
– \d digits [0-9]

– \D non-digits [^0-9]

– \w alphabetic [a-zA-Z]

– \W non-alphabetic [^a-zA-Z]

– \s whitespace [\t\n\r\f\v]

– \w alphabetic [a-zA-Z]

• Examples
– \d+ dollars 3 dollars, 50 dollars, 982 dollars

– \w*oo\w* food, boo, oodles

• Escape character
– \ is the general escape character; e.g. \. is not a wildcard,

but matches a period .

– if you want to use \ in a string it has to be escaped \\

Syntactic Sugar

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Yet More Fancy Regular Expressions

• Anchors. AKA, “zero width characters”.

• They match positions in the text.
– ^ beginning of line

– $ end of line

– \b word boundary, i.e. location with \w on one
side but not on the other.

– \B negated word boundary, i.e. any location
that would not match \b

• Examples:
– \bthe\b the together

• Counters {1}, {1,2}, {3,}

Syntactic Sugar

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Even More Fancy Regular Expressions

• Grouping
– a (good|bad) movie

– He said it (again and)*again.

• Parens also indicate Registers (saved contents)
– b(\w+)h\1

matches boohoo and baha, but not boohaa
The digit after the \ indicates which of multiple paren
groups, as ordered by when then were opened.

• Grouping without the cost of register saving
– He went (?:this|that) way.

Syntactic Sugar

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Extra Fancy Regular Expressions

• Non-consuming tests

– (?=...) - Positive lookAHEAD

– (?!...) - Negative lookAHEAD

– (?<=...) - Positive lookBEHIND

– (?<!...) - Negative lookBEHIND

• Example

– (?<=[Hh]e) \w+ed (?=\w+ly)

ELIZA (Weizenbaum 1966)

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

ELIZA (Weizenbaum 1966)

User: Men are all alike.

ELIZA: IN WHAT WAY?

User: They’re always bugging us about something or other.

ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE?

User: Well, my boyfriend made me come here.

ELIZA: YOUR BOYFRIEND MADE YOU COME HERE.

User: He say’s I’m depressed much of the time.

ELIZA: I’M SORRY TO HEAR THAT YOU ARE DEPRESSED.

Implemented with regular expression substitution!

s/.* I’m (depressed|sad) .*/I AM SORRY TO HEAR THAT YOU ARE \1/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Reading

• Karttunen, Chanod, Grefenstette, Schiller.
Regular expressions for language
engineering. JNLE, 1997.
http://www.stanford.edu/~laurik/
publications/jnle-97/rele.pdf

• RE/FSA background: Jurafsky & Martin, c.2

http://www.stanford.edu/~laurik/publications/jnle-97/rele.pdf

Finite-State Machines:
Acceptors and
Transducers

Finite state acceptors (FSAs)

a
c

ε

Finite state acceptors (FSAs)

a
c

ε

§Regexps

Finite state acceptors (FSAs)

a
c

ε

§Regexps
§Union, Kleene *,
concat, intersect,
complement,
reversal

Finite state acceptors (FSAs)

a
c

ε

§Regexps
§Union, Kleene *,
concat, intersect,
complement,
reversal

§Determinization,
minimization

Finite state acceptors (FSAs)

a
c

ε

§Regexps
§Union, Kleene *,
concat, intersect,
complement,
reversal

§Determinization,
minimization

§Pumping,  
Myhill-Nerode

A useful FSA …

/usr/dict/words
FSM

17728 states,
37100 arcs

0.6 sec

25K words
206K chars

clear
clever
ear
ever
fat

father

Wordlist

slide courtesy of L. Karttunen (modified)

A useful FSA …

/usr/dict/words
FSM

17728 states,
37100 arcs

0.6 sec

25K words
206K chars

clear
clever
ear
ever
fat

father

Wordlist

compile

rlc ae

v e
e

t h
f

a

Network

slide courtesy of L. Karttunen (modified)

Weights are useful here too!
slide courtesy of L. Karttunen (modified)

clear 0
clever 1
ear 2
ever 3
fat 4
father 5

Wordlist

compile

Network
r/0l/0c/0 a/0e/0

v/1 e/0
e/2

t/0 h/1
f/4

a/0

Computes a perfect hash!

§ Successor states partition the path set
§ Use offsets of successor states as arc weights
§ Q: Would this work for an arbitrary numbering of the words?

Example: Weighted acceptor
slide courtesy of L. Karttunen (modified)

clear 0
clever 1
ear 2
ever 3
fat 4
father 5

Wordlist

compile

Network

16 2 22 1
rlc ae

1

v e

2 2

e

t h
f

2
a

§ Compute number of paths from each state (Q: how?)

r/0l/0c/0 a/0e/0

v/1 e/0
e/2

t/0 h/1
f/4

a/0

A: recursively, like DFS

Example: Unweighted transducer

VP [head=vouloir,...]

V[head=vouloir, 
tense=Present, 
num=SG, person=P3]

...

veut

Example: Unweighted transducer

VP [head=vouloir,...]

V[head=vouloir, 
tense=Present, 
num=SG, person=P3]

...

veutthe problem

of morphology

(“word shape”) -

an area of linguistics

Example: Unweighted transducer

veut

vouloir +Pres +Sing + P3

Finite-state
transducer

slide courtesy of L. Karttunen (modified)

VP [head=vouloir,...]

V[head=vouloir, 
tense=Present, 
num=SG, person=P3]

...

veut

Example: Unweighted transducer

veut

vouloir +Pres +Sing + P3

Finite-state
transducer

slide courtesy of L. Karttunen (modified)

VP [head=vouloir,...]

V[head=vouloir, 
tense=Present, 
num=SG, person=P3]

...

veut

Example: Unweighted transducer

veut

vouloir +Pres +Sing + P3

Finite-state
transducer

inflected form

canonical form inflection codes
v o u l o i r +Pres +Sing +P3

v e u t

slide courtesy of L. Karttunen (modified)

VP [head=vouloir,...]

V[head=vouloir, 
tense=Present, 
num=SG, person=P3]

...

veut

the relevant path

veut

vouloir +Pres +Sing + P3

Finite-state
transducer

inflected form

canonical form inflection codes
v o u l o i r +Pres +Sing +P3

v e u t

Example: Unweighted transducer

§ Bidirectional: generation or analysis
§ Compact and fast
§ Xerox sells for about 20 languages

including English, German, Dutch,
French, Italian, Spanish, Portuguese,
Finnish, Russian, Turkish, Japanese, ...

§ Research systems for many other
languages, including Arabic, Malay

slide courtesy of L. Karttunen

the relevant path

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Relation: like a function, but multiple outputs ok

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Relation: like a function, but multiple outputs ok
§ Regular: finite-state

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Relation: like a function, but multiple outputs ok
§ Regular: finite-state
§ Transducer: automaton w/ outputs

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Relation: like a function, but multiple outputs ok
§ Regular: finite-state
§ Transducer: automaton w/ outputs

§ b → ? a → ?

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Relation: like a function, but multiple outputs ok
§ Regular: finite-state
§ Transducer: automaton w/ outputs

§ b → ? a → ?

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

{b}

§ Relation: like a function, but multiple outputs ok
§ Regular: finite-state
§ Transducer: automaton w/ outputs

§ b → ? a → ?

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

{b} {}

§ Relation: like a function, but multiple outputs ok
§ Regular: finite-state
§ Transducer: automaton w/ outputs

§ b → ? a → ?

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

{b} {}

{ac, aca, acab,  
acabc}

§ Relation: like a function, but multiple outputs ok
§ Regular: finite-state
§ Transducer: automaton w/ outputs

§ b → ? a → ?

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

{b} {}

§ Invertible?

{ac, aca, acab,  
acabc}

§ Relation: like a function, but multiple outputs ok
§ Regular: finite-state
§ Transducer: automaton w/ outputs

§ b → ? a → ?

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

{b} {}

§ Invertible?
§ Closed under composition?

{ac, aca, acab,  
acabc}

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Can weight the arcs: → vs. →

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Can weight the arcs: → vs. →
§ b → {b} a → {}

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Can weight the arcs: → vs. →
§ b → {b} a → {}
§ aaaaa → {ac, aca, acab,  

 acabc}

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

§ Can weight the arcs: → vs. →
§ b → {b} a → {}
§ aaaaa → {ac, aca, acab,  

 acabc}

§ How to find best outputs?

Regular Relation (of strings)

b:b

a:a

a:ε

a:c

b:ε

b:b

?:c

?:a

?:b

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true}

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true} strings

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true} strings

numbers

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true} strings

numbers (string, num) pairs

Sample functions

Acceptors (FSAs) Transducers (FSTs)

Unweighted

Weighted

{false, true} strings

numbers (string, num) pairs

Sample functions

Acceptors (FSAs) Transducers (FSTs)

Unweighted

Weighted

{false, true} strings

numbers (string, num) pairs

Grammatical?

Sample functions

Acceptors (FSAs) Transducers (FSTs)

Unweighted

Weighted

{false, true} strings

numbers (string, num) pairs

Grammatical?

How grammatical?
Better, how likely?

Sample functions

Acceptors (FSAs) Transducers (FSTs)

Unweighted

Weighted

{false, true} strings

numbers (string, num) pairs

Grammatical?

How grammatical?
Better, how likely?

Markup
Correction
Translation

Sample functions

Acceptors (FSAs) Transducers (FSTs)

Unweighted

Weighted

{false, true} strings

numbers (string, num) pairs

Grammatical?

How grammatical?
Better, how likely?

Markup
Correction
Translation

Good markups
Good corrections
Good translations

Terminology (acceptors)

String

Regexp FSA

ac
ce

pt
s

matches
matches

compiles into

implements

Regular language

defines recognizes

Terminology (acceptors)

String

Regexp FSA

ac
ce

pt
s

matches
matches

compiles into

implements

Regular language

defines recognizes

(o
r g

en
er

at
es

)

Terminology (transducers)

String pair

Regexp FST

matches
matches

compiles into

implements

Regular relation

defines recognizes

ac
ce

pt
s

(o
r g

en
er

at
es

)

Terminology (transducers)

String pair

Regexp FST

matches
matches

compiles into

implements

Regular relation

defines recognizes

(o
r,

tr
an

sd
uc

es
 

on
e s

tr
ing

 of
  

th
e p

air
 in

to
 

th
e o

th
er

)ac
ce

pt
s

(o
r g

en
er

at
es

)

Terminology (transducers)

String pair

Regexp FST

matches
matches

compiles into

implements

Regular relation

defines recognizes

(o
r,

tr
an

sd
uc

es
 

on
e s

tr
ing

 of
  

th
e p

air
 in

to
 

th
e o

th
er

)ac
ce

pt
s

(o
r g

en
er

at
es

)

?

41

Perspectives on a Transducer
§ Given 0 strings, generate a new string pair (by picking a path)
§ Given one string (upper or lower), transduce it to the other

kind
§ Given two strings (upper & lower), decide whether to accept

the pair

 FST just defines the regular relation (mathematical
object: set of pairs).  
What’s “input” and “output” depends on what one asks
about the relation. 
The 0, 1, or 2 given string(s) constrain which paths you
can use.

v o u l o i r +Pres +Sing +P3

v e u t

Functions

ab?d

Functions

ab?d abcd

f

Functions

ab?d abcd

f

αβχδ

g

Functions

ab?d αβχδ

Function composition: f ° g

Functions

ab?d αβχδ

Function composition: f ° g

[first f, then g – intuitive notation, but opposite of the traditional math notation]

From Functions to Relations

ab?d abcd

f

From Functions to Relations

ab?d abcd

f
αβγδ

g

From Functions to Relations

ab?d abcd

abed

f
αβγδ

g

From Functions to Relations

ab?d abcd

αβεδabed

f
αβγδ

g

From Functions to Relations

ab?d abcd

αβεδabed

αβϵδ

...

f
αβγδ

g

From Functions to Relations

ab?d abcd

αβεδabed

abjd αβϵδ

...

f
αβγδ

g

From Functions to Relations

ab?d abcd

αβεδabed

abjd αβϵδ

...

f
αβγδ

g

From Functions to Relations

ab?d abcd

αβεδabed

abjd

3

2

6 αβϵδ

...

f
αβγδ

g

From Functions to Relations

ab?d abcd

αβεδabed

abjd

3

2

6

4

2

8
αβϵδ

...

f
αβγδ

g

From Functions to Relations

ab?d αβγδ

αβεδ

αβϵδ

...

Relation composition: f ° g

3

2

6

4

2

8

From Functions to Relations

ab?d αβγδ

αβεδ

αβϵδ

...

Relation composition: f ° g

3

2

6

4

2

8

From Functions to Relations

ab?d αβγδ

αβεδ

αβϵδ

...

Relation composition: f ° g

3+4

2+2

6+8

From Functions to Relations

ab?d

αβεδPick min-cost or max-prob output
2+2

From Functions to Relations

ab?d

αβεδ

Often in NLP, all of the functions or relations involved
can be described as finite-state machines, and
manipulated using standard algorithms.

Pick min-cost or max-prob output
2+2

Inverting Relations

ab?d abcd

αβεδabed

abjd

3

2

6

4

2

8
αβϵδ

...

f
αβγδ

g

Inverting Relations

ab?d abcd

αβεδabed

abjd

3

2

6

4

2

8
αβϵδ

...

f-1

αβγδ

g-1

Inverting Relations

ab?d αβγδ

αβεδ

αβϵδ

...

(f ° g)-1 = g-1 ° f-1

3+4

2+2

6+8

Building a lexical transducer

Regular Expression
Lexicon

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

Building a lexical transducer

Regular Expression
Lexicon

Lexicon
FSA

Compiler

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

Building a lexical transducer

Regular Expression
Lexicon

Lexicon
FSA

Compiler

Regular Expressions
for Rules

Composed  
Rule FSTs

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

Building a lexical transducer

Regular Expression
Lexicon

Lexicon
FSA

Compiler

Regular Expressions
for Rules

Composed  
Rule FSTs

Lexical Transducer
(a single FST)composition

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

b i g +Adj

r

+Comp

b i g g e

one path

Building a lexical transducer

Regular Expression
Lexicon

Lexicon
FSA

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

§ Actually, the lexicon must contain elements like  
big +Adj +Comp

Building a lexical transducer

Regular Expression
Lexicon

Lexicon
FSA

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

§ Actually, the lexicon must contain elements like  
big +Adj +Comp

§ So write it as a more complicated expression: 
(big | clear | clever | fat | ...) +Adj (ε | +Comp | +Sup) ß adjectives  
 | (ear | father | ...) +Noun (+Sing | +Pl) ß nouns  
 | ... ß ...

Building a lexical transducer

Regular Expression
Lexicon

Lexicon
FSA

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

§ Actually, the lexicon must contain elements like  
big +Adj +Comp

§ So write it as a more complicated expression: 
(big | clear | clever | fat | ...) +Adj (ε | +Comp | +Sup) ß adjectives  
 | (ear | father | ...) +Noun (+Sing | +Pl) ß nouns  
 | ... ß ...

§ Q: Why do we need a lexicon at all?

Building a lexical transducer

Regular Expression
Lexicon

Lexicon
FSA

slide courtesy of L. Karttunen (modified)

big | clear | clever | ear | fat | ...

rlc ae

v e
e

t hf a

Weighted version of transducer: Assigns
a weight to each string pair

payer+IndP+SG+P1

paie

paye

Weighted French Transducer

suis

suivre+Imp+SG + P2

suivre+IndP+SG+P2

suivre+IndP+SG+P1

être+IndP +SG + P1

“upper language”

“lower language”

slide courtesy of L. Karttunen (modified)

4
19

20

50

3

12

Constructing
Regular Languages

 concatenation EF
* + iteration E*, E+

| union E | F
& intersection E & F

~ \ - complementation, minus ~E, \x, F-E
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Xerox Regex Notation (Paper)

600.465 - Intro to NLP - J. Eisner 5

Common Regular Expression
Operators (in XFST notation)

 concatenation EF

 EF = {ef: e ∈ E, f ∈ F}

 ef denotes the concatenation of 2 strings.
 EF denotes the concatenation of 2 languages.

§ To pick a string in EF, pick e ∈ E and f ∈ F and concatenate them.
§ To find out whether w ∈ EF, look for at least one way to split w into two

“halves,” w = ef, such that e ∈ E and f ∈ F.

A language is a set of strings.
It is a regular language if there exists an FSA that accepts all the strings

in the language, and no other strings.
If E and F denote regular languages, than so does EF. 

(We will have to prove this by finding the FSA for EF!)

 concatenation EF
* + iteration E*, E+

 E* = {e1e2 … en: n≥0, e1∈ E, … en∈ E}

§ To pick a string in E*, pick any number of strings in E and concatenate
them.

§ To find out whether w ∈ E*, look for at least one way to split w into 0 or
more sections, e1e2 … en, all of which are in E.

 E+ = {e1e2 … en: n>0, e1∈ E, … en∈ E} =EE*

Common Regular Expression
Operators (in XFST notation)

 concatenation EF
* + iteration E*, E+

| union E | F

 E | F = {w: w∈ E or w∈ F} = E ∪ F

§ To pick a string in E | F, pick a string from either E or F.
§ To find out whether w ∈ E | F, check whether w ∈ E or w ∈ F.

Common Regular Expression
Operators (in XFST notation)

 concatenation EF
* + iteration E*, E+

| union E | F
& intersection E & F

 E & F = {w: w∈ E and w∈ F} = E ∩ F

§ To pick a string in E & F, pick a string from E that is also in F.
§ To find out whether w ∈ E & F, check whether w ∈ E and w ∈ F.

Common Regular Expression
Operators (in XFST notation)

 concatenation EF
* + iteration E*, E+

| union E | F
& intersection E & F

~ \ - complementation, minus ~E, \x, F-E

 ~E = {e: e ∉ E} = Σ* - E

 E – F = {e: e ∈ E and e ∉ F} = E & ~F

 \E = Σ - E (any single character not in E)

Common Regular Expression
Operators (in XFST notation)

Σ is set of all letters; so Σ* is set of all strings; ?* in XFST

Regular Expressions
A language is a set of strings.
It is a regular language if there exists an FSA that accepts

all the strings in the language, and no other strings.
If E and F denote regular languages, than so do EF, etc.

Regular expression: EF*|(F & G)+
Syntax:

E F

*

F G

concat

&

+

| Semantics:  
Denotes a regular language.
As usual, can build semantics
compositionally bottom-up.
E, F, G must be regular languages.
As a base case, e denotes {e} (a
language containing a single string),  
so ef*|(f&g)+ is regular.

600.465 - Intro to NLP - J. Eisner 11

Regular Expressions 
for Regular Relations
A language is a set of strings.
It is a regular language if there exists an FSA that accepts all

the strings in the language, and no other strings.
If E and F denote regular languages, than so do EF, etc.

A relation is a set of pairs – here, pairs of strings.
It is a regular relation if here exists an FST that accepts all the

pairs in the language, and no other pairs.
If E and F denote regular relations, then so do EF, etc.

EF = {(ef,e’f’): (e,e’) ∈ E, (f,f’) ∈ F}
Can you guess the definitions for E*, E+, E | F, E & F  

when E and F are regular relations?
Surprise: E & F isn’t necessarily regular in the case of relations; so not supported.

 concatenation EF
* + iteration E*, E+

| union E | F
& intersection E & F

~ \ - complementation, minus ~E, \x, F-E
.x. crossproduct E .x. F

 E .x. F = {(e,f): e ∈ E, f ∈ F}

§ Combines two regular languages into a regular relation.

Common Regular Expression
Operators (in XFST notation)

 concatenation EF
* + iteration E*, E+
| union E | F

& intersection E & F
~ \ - complementation, minus ~E, \x, F-E
.x. crossproduct E .x. F
.o. composition E .o. F

 E .o. F = {(e,f): ∃m. (e,m) ∈ E, (m,f) ∈ F}
§ Composes two regular relations into a regular relation.
§ As we’ve seen, this generalizes ordinary function composition.

Common Regular Expression
Operators (in XFST notation)

 concatenation EF
* + iteration E*, E+

| union E | F
& intersection E & F

~ \ - complementation, minus ~E, \x, F-E
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

 E.u = {e: ∃m. (e,m) ∈ E}

Common Regular Expression
Operators (in XFST notation)

 concatenation EF
* + iteration E*, E+

| union E | F
& intersection E & F

~ \ - complementation, minus ~E, \x, F-E
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Common Regular Expression
Operators (in XFST notation)

Finite-State
Programming

Finite-state “programming”

Finite-state “programming”

Finite-state “programming”

$ containment
=> restriction
-> @-> replacement

Make it easier to describe complex languages and
relations without extending the formal power of
finite-state systems.

Some Xerox Extensions
slide courtesy of L. Karttunen (modified)

Containment

Containment

$[ab*c]

“Must contain a substring 
that matches ab*c.”

Accepts xxxacyy
Rejects bcba

Containment

$[ab*c]

“Must contain a substring 
that matches ab*c.”

Accepts xxxacyy
Rejects bcba

b

c

a

a,b,c,?

a,b,c,?

Containment

$[ab*c]

“Must contain a substring 
that matches ab*c.”

Accepts xxxacyy
Rejects bcba

?* [ab*c] ?*

Equivalent expression

b

c

a

a,b,c,?

a,b,c,?

Containment

$[ab*c]

“Must contain a substring 
that matches ab*c.”

Accepts xxxacyy
Rejects bcba

?* [ab*c] ?*

Equivalent expression

b

c

a

a,b,c,?

a,b,c,?

Warning: ? in regexps means  
“any character at all.”

But ? in machines means  
“any character not explicitly

mentioned anywhere  
in the machine.”

Restriction
slide courtesy of L. Karttunen (modified)

Restriction

a => b _ c

“Any a must be preceded by b
and followed by c.”

Accepts bacbbacde
Rejects baca

slide courtesy of L. Karttunen (modified)

Restriction

?
c

b

b

c? a

c

a => b _ c

“Any a must be preceded by b
and followed by c.”

Accepts bacbbacde
Rejects baca

slide courtesy of L. Karttunen (modified)

Restriction

?
c

b

b

c? a

c

a => b _ c

“Any a must be preceded by b
and followed by c.”

Accepts bacbbacde
Rejects baca

~[~[?* b] a ?*] & ~[?* a ~[c ?*]]
Equivalent expression

slide courtesy of L. Karttunen (modified)

Restriction

?
c

b

b

c? a

c

a => b _ c

“Any a must be preceded by b
and followed by c.”

Accepts bacbbacde
Rejects baca

~[~[?* b] a ?*] & ~[?* a ~[c ?*]]
Equivalent expression

slide courtesy of L. Karttunen (modified)

contains a not preceded by b

Restriction

?
c

b

b

c? a

c

a => b _ c

“Any a must be preceded by b
and followed by c.”

Accepts bacbbacde
Rejects baca

~[~[?* b] a ?*] & ~[?* a ~[c ?*]]
Equivalent expression

slide courtesy of L. Karttunen (modified)

contains a not preceded by b

contains a not followed by c

Replacement
slide courtesy of L. Karttunen (modified)

Replacement

a b -> b a

“Replace ‘ab’ by ‘ba’.”

Transduces abcdbaba  
 to bacdbbaa

slide courtesy of L. Karttunen (modified)

Replacement

a:b

b

a

?

?

b:a

a

a:b

a b -> b a

“Replace ‘ab’ by ‘ba’.”

Transduces abcdbaba  
 to bacdbbaa

slide courtesy of L. Karttunen (modified)

Replacement

a:b

b

a

?

?

b:a

a

a:b

a b -> b a

“Replace ‘ab’ by ‘ba’.”

Transduces abcdbaba  
 to bacdbbaa

[~$[a b] [[a b] .x. [b a]]]* ~$[a b]
Equivalent expression

slide courtesy of L. Karttunen (modified)

Replacement is Nondeterministic

Replacement is Nondeterministic

a b -> b a | x

“Replace ‘ab’ by ‘ba’ or ‘x’, nondeterministically.”

Transduces abcdbaba  
 to {bacdbbaa, bacdbxa, xcdbbaa, xcdbxa}

Replacement is Nondeterministic

[a b -> b a | x] .o. [x => _ c]

“Replace ‘ab’ by ‘ba’ or ‘x’, nondeterministically.”

Transduces abcdbaba  
 to {bacdbbaa, bacdbxa, xcdbbaa, xcdbxa}

Replacement is Nondeterministic

[a b -> b a | x] .o. [x => _ c]

“Replace ‘ab’ by ‘ba’ or ‘x’, nondeterministically.”

Transduces abcdbaba  
 to {bacdbbaa, bacdbxa, xcdbbaa, xcdbxa}

Replacement is Nondeterministic

a b | b | b a | a b a -> x

applied to “aba”
Four overlapping substrings match; we haven’t told

it which one to replace so it chooses
nondeterministically

a b a a b a a b a
a b a

a x a a x x a
x

slide courtesy of L. Karttunen (modified)

§Optional replacement: a b (->) b a

§Directed replacement
§guarantees a unique result by constraining the
factorization of the input string by
§Direction of the match (rightward or leftward)
§Length (longest or shortest)

More Replace Operators
slide courtesy of L. Karttunen

@-> Left-to-right, Longest-match Replacement

a b | b | b a | a b a @-> x

applied to “aba”

a b a a b a a b a
a b a

a x a a x x a
x

slide courtesy of L. Karttunen

@-> left-to-right, longest match (cf. perl s///)
@> left-to-right, shortest match
->@ right-to-left, longest match
>@ right-to-left, shortest match

Using “…” for marking

0:[

[

0:]

?

a

e

i
o

u
]

a|e|i|o|u -> [...]

slide courtesy of L. Karttunen (modified)

Using “…” for marking

0:[

[

0:]

?

a

e

i
o

u
]

a|e|i|o|u -> [...]

p o t a t o
p[o]t[a]t[o]

slide courtesy of L. Karttunen (modified)

Using “…” for marking

0:[

[

0:]

?

a

e

i
o

u
]

a|e|i|o|u -> [...]

p o t a t o
p[o]t[a]t[o]

Note: actually have to write as -> %[... %]
 or -> “[” ... “]”
since [] are parens in the regexp language

slide courtesy of L. Karttunen (modified)

Using “…” for marking

0:[

[

0:]

?

a

e

i
o

u
]

a|e|i|o|u -> [...]

p o t a t o
p[o]t[a]t[o]

Which way does the FST transduce potatoe?

slide courtesy of L. Karttunen (modified)

p o t a t o e
p[o]t[a]t[o][e]

p o t a t o e
p[o]t[a]t[o e]

vs.

Using “…” for marking

0:[

[

0:]

?

a

e

i
o

u
]

a|e|i|o|u -> [...]

p o t a t o
p[o]t[a]t[o]

Which way does the FST transduce potatoe?

slide courtesy of L. Karttunen (modified)

How would you change it to get the other answer?

p o t a t o e
p[o]t[a]t[o][e]

p o t a t o e
p[o]t[a]t[o e]

vs.

Example: Finnish Syllabification

slide courtesy of L. Karttunen

Example: Finnish Syllabification

define C [b | c | d | f ...
define V [a | e | i | o | u | y | ä | ...

slide courtesy of L. Karttunen

Example: Finnish Syllabification

define C [b | c | d | f ...
define V [a | e | i | o | u | y | ä | ...

[C* V+ C*] @-> ... "-" || _ [C V]

“Insert a hyphen after the longest instance of the
 C* V+ C* pattern in front of a C V pattern.”

slide courtesy of L. Karttunen

Example: Finnish Syllabification

define C [b | c | d | f ...
define V [a | e | i | o | u | y | ä | ...

s t r u k t u r a l i s m i
s t r u k - t u - r a - l i s - m i

[C* V+ C*] @-> ... "-" || _ [C V]

“Insert a hyphen after the longest instance of the
 C* V+ C* pattern in front of a C V pattern.”

slide courtesy of L. Karttunen

Example: Finnish Syllabification

define C [b | c | d | f ...
define V [a | e | i | o | u | y | ä | ...

s t r u k t u r a l i s m i
s t r u k - t u - r a - l i s - m i

[C* V+ C*] @-> ... "-" || _ [C V]

“Insert a hyphen after the longest instance of the
 C* V+ C* pattern in front of a C V pattern.”

slide courtesy of L. Karttunen

why?

Conditional Replacement
slide courtesy of L. Karttunen

Conditional Replacement

The relation that replaces A by B between L and R leaving
everything else unchanged.

A -> B

Replacement

L _ R

Context

slide courtesy of L. Karttunen

Conditional Replacement

The relation that replaces A by B between L and R leaving
everything else unchanged.

A -> B

Replacement

L _ R

Context

Sources of complexity:

● Replacements and contexts may overlap

● Alternative ways of interpreting  
 “between left and right.”

slide courtesy of L. Karttunen

Hand-Coded Example:
Parsing Dates

Today is [Tuesday, July 25, 2000].

slide courtesy of L. Karttunen

Hand-Coded Example:
Parsing Dates

Today is [Tuesday, July 25, 2000].

Today is Tuesday, [July 25, 2000].
Today is [Tuesday, July 25], 2000.
Today is Tuesday, [July 25], 2000.
Today is [Tuesday], July 25, 2000.

Best result

Bad results

slide courtesy of L. Karttunen

Hand-Coded Example:
Parsing Dates

Today is [Tuesday, July 25, 2000].

Today is Tuesday, [July 25, 2000].
Today is [Tuesday, July 25], 2000.
Today is Tuesday, [July 25], 2000.
Today is [Tuesday], July 25, 2000.

Best result

Bad results

Need left-to-right, longest-match
constraints.

slide courtesy of L. Karttunen

 
Source code: Language of Dates

slide courtesy of L. Karttunen

 
Source code: Language of Dates

Day = Monday | Tuesday | ... | Sunday
Month = January | February | ... | December
Date = 1 | 2 | 3 | ... | 3 1
Year = %0To9 (%0To9 (%0To9 (%0To9))) - %0?*  
 from 1 to 9999

slide courtesy of L. Karttunen

 
Source code: Language of Dates

Day = Monday | Tuesday | ... | Sunday
Month = January | February | ... | December
Date = 1 | 2 | 3 | ... | 3 1
Year = %0To9 (%0To9 (%0To9 (%0To9))) - %0?*  
 from 1 to 9999

AllDates = Day | (Day “, ”) Month “ ” Date (“,
” Year))

slide courtesy of L. Karttunen

20

Object code:  
All Dates from 1/1/1 to 12/31/9999

, ,

Feb
Jan

Mar

May

Jun

Jul

Apr

Aug

Oct
Nov

Dec

Sep

3

,

,

1
2

3
4
5
6
7
8
9

0
1
2

3
4
5
6
7
8
9

0

1
2

3
4
5
6
7
8
9

01
2
3
4
5
6
7
8
9

1
2

3
4
5
6
7
8
9

0

1
0

2
1

Tue
Mon

Wed

Fri

Sat

Sun

Thu
4
5
6
7
8
9

MayJan Feb Mar Apr Jun

Jul Aug Oct Nov DecSep

13 states, 96 arcs
29 760 007 date expressions

slide courtesy of L. Karttunen

20

actually represents 7 arcs, each labeled by a string

Object code:  
All Dates from 1/1/1 to 12/31/9999

, ,

Feb
Jan

Mar

May

Jun

Jul

Apr

Aug

Oct
Nov

Dec

Sep

3

,

,

1
2

3
4
5
6
7
8
9

0
1
2

3
4
5
6
7
8
9

0

1
2

3
4
5
6
7
8
9

01
2
3
4
5
6
7
8
9

1
2

3
4
5
6
7
8
9

0

1
0

2
1

Tue
Mon

Wed

Fri

Sat

Sun

Thu
4
5
6
7
8
9

MayJan Feb Mar Apr Jun

Jul Aug Oct Nov DecSep

13 states, 96 arcs
29 760 007 date expressions

slide courtesy of L. Karttunen

 
Parser for Dates

slide courtesy of L. Karttunen (modified)

 
Parser for Dates

AllDates @-> “[DT ” ... “]”

slide courtesy of L. Karttunen (modified)

 
Parser for Dates

AllDates @-> “[DT ” ... “]”
Compiles into an

unambiguous transducer
(23 states, 332 arcs).

slide courtesy of L. Karttunen (modified)

 
Parser for Dates

AllDates @-> “[DT ” ... “]”
Compiles into an

unambiguous transducer
(23 states, 332 arcs).

Today is [DT Tuesday, July 25, 2000] because yesterday was

[DT Monday] and it was [DT July 24] so tomorrow must be [DT

Wednesday, July 26] and not [DT July 27] as it says on the

program.

slide courtesy of L. Karttunen (modified)

 
Parser for Dates

AllDates @-> “[DT ” ... “]”
Compiles into an

unambiguous transducer
(23 states, 332 arcs).

Today is [DT Tuesday, July 25, 2000] because yesterday was

[DT Monday] and it was [DT July 24] so tomorrow must be [DT

Wednesday, July 26] and not [DT July 27] as it says on the

program.

Xerox left-to-right replacement operator

slide courtesy of L. Karttunen (modified)

 
Problem of Reference

Valid dates
 Tuesday, July 25, 2000
 Tuesday, February 29, 2000
 Monday, September 16, 1996
Invalid dates
 Wednesday, April 31, 1996
 Thursday, February 29, 1900
 Tuesday, July 26, 2000

slide courtesy of L. Karttunen

Refinement by Intersection
slide courtesy of L. Karttunen (modified)

Refinement by Intersection
AllDates

slide courtesy of L. Karttunen (modified)

Refinement by Intersection
AllDates

MaxDays
In Month

“ 31” => Jan|Mar|May|… _
“ 30” => Jan|Mar|Apr|… _

slide courtesy of L. Karttunen (modified)

Refinement by Intersection
AllDates

MaxDays
In Month

“ 31” => Jan|Mar|May|… _
“ 30” => Jan|Mar|Apr|… _

slide courtesy of L. Karttunen (modified)

Xerox contextual
restriction operator

Refinement by Intersection
AllDates

MaxDays
In Month

“ 31” => Jan|Mar|May|… _
“ 30” => Jan|Mar|Apr|… _

slide courtesy of L. Karttunen (modified)

Xerox contextual
restriction operator

Q: Why do these rules
start with spaces?  
(And is it enough?)

Refinement by Intersection
AllDates

MaxDays
In Month

“ 31” => Jan|Mar|May|… _
“ 30” => Jan|Mar|Apr|… _

LeapYears
Feb 29, => _ …

slide courtesy of L. Karttunen (modified)

Xerox contextual
restriction operator

Q: Why do these rules
start with spaces?  
(And is it enough?)

Refinement by Intersection
AllDates

MaxDays
In Month

“ 31” => Jan|Mar|May|… _
“ 30” => Jan|Mar|Apr|… _

LeapYears
Feb 29, => _ …

slide courtesy of L. Karttunen (modified)

Xerox contextual
restriction operator

Q: Why do these rules
start with spaces?  
(And is it enough?)

Q: Why does this rule
end with a comma?
Q: Can we write the
whole rule?

Refinement by Intersection
AllDates

WeekdayDate

MaxDays
In Month

“ 31” => Jan|Mar|May|… _
“ 30” => Jan|Mar|Apr|… _

LeapYears
Feb 29, => _ …

slide courtesy of L. Karttunen (modified)

Xerox contextual
restriction operator

Q: Why do these rules
start with spaces?  
(And is it enough?)

Q: Why does this rule
end with a comma?
Q: Can we write the
whole rule?

Refinement by Intersection
AllDates

Valid
Dates

WeekdayDate

MaxDays
In Month

“ 31” => Jan|Mar|May|… _
“ 30” => Jan|Mar|Apr|… _

LeapYears
Feb 29, => _ …

slide courtesy of L. Karttunen (modified)

Xerox contextual
restriction operator

Q: Why do these rules
start with spaces?  
(And is it enough?)

Q: Why does this rule
end with a comma?
Q: Can we write the
whole rule?

Defining Valid Dates

AllDates
&

MaxDaysInMonth
&

LeapYears
&

WeekdayDates

= ValidDates

AllDates: 13 states, 96 arcs
29 760 007 date expressions

ValidDates: 805 states, 6472 arcs
7 307 053 date expressions

slide courtesy of L. Karttunen

Parser for Valid and Invalid Dates

[AllDates - ValidDates] @-> “[ID ” ... “]”
,

ValidDates @-> “[VD ” ... “]”

Today is [VD Tuesday, July 25, 2000],
not [ID Tuesday, July 26, 2000].

valid date

invalid date

 2688 states,
20439 arcs

slide courtesy of L. Karttunen

Parser for Valid and Invalid Dates

[AllDates - ValidDates] @-> “[ID ” ... “]”
,

ValidDates @-> “[VD ” ... “]”

Today is [VD Tuesday, July 25, 2000],
not [ID Tuesday, July 26, 2000].

valid date

invalid date

 2688 states,
20439 arcs

slide courtesy of L. Karttunen

Comma creates a single FST
that does left-to-right longest
match against either pattern

More Engineering Applications

§ Markup

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)
§ Part-of-speech tagging (use probabilities – maybe!)

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)
§ Part-of-speech tagging (use probabilities – maybe!)

§ Translation

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)
§ Part-of-speech tagging (use probabilities – maybe!)

§ Translation
§ Spelling correction / edit distance

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)
§ Part-of-speech tagging (use probabilities – maybe!)

§ Translation
§ Spelling correction / edit distance
§ Phonology, morphology: series of little fixups? constraints?

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)
§ Part-of-speech tagging (use probabilities – maybe!)

§ Translation
§ Spelling correction / edit distance
§ Phonology, morphology: series of little fixups? constraints?
§ Speech

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)
§ Part-of-speech tagging (use probabilities – maybe!)

§ Translation
§ Spelling correction / edit distance
§ Phonology, morphology: series of little fixups? constraints?
§ Speech
§ Transliteration / back-transliteration

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)
§ Part-of-speech tagging (use probabilities – maybe!)

§ Translation
§ Spelling correction / edit distance
§ Phonology, morphology: series of little fixups? constraints?
§ Speech
§ Transliteration / back-transliteration
§ Machine translation?

More Engineering Applications

§ Markup
§ Dates, names, places, noun phrases; spelling/grammar errors?
§ Hyphenation
§ Informative templates for information extraction (FASTUS)
§ Word segmentation (use probabilities!)
§ Part-of-speech tagging (use probabilities – maybe!)

§ Translation
§ Spelling correction / edit distance
§ Phonology, morphology: series of little fixups? constraints?
§ Speech
§ Transliteration / back-transliteration
§ Machine translation?

§ Learning …

More Engineering Applications

Input: Bridgestone Sports Co. said Friday it has set up a joint venture in
Taiwan with a local concern and a Japanese trading house to produce
golf clubs to be shipped to Japan. The joint venture, Bridgestone Sports
Taiwan Co., capitalized at 20 million new Taiwan dollars, will start
production in January 1990 with …

Output:

Relationship: TIE-UP

Entities: “Bridgestone Sports Co.”

 “A local concern”

 “A Japanese trading house”

Joint Venture Company: “Bridgestone Sports Taiwan Co.”

Amount: NT$20000000

FASTUS – Information Extraction  
 Appelt et al, 1992-?

Tokenization
.o.

Multiwords
.o.

Basic phrases (noun groups, verb groups …)
.o.

Complex phrases
.o.

Semantic Patterns
.o.

Merging different references

FASTUS: Successive Markups 
(details on subsequent slides)

§ Spaces, hyphens, etc.
§ wouldn’t à would not
§ their à them ’s
§ company. à company . 

 but  
Co. à Co.

FASTUS: Tokenization

§ “set up”
§ “joint venture”
§ “San Francisco Symphony Orchestra,”
“Canadian Opera Company”

§… use a specialized regexp to match musical
groups.

§ ... what kind of regexp would match
company names?

FASTUS: Multiwords

Output looks like this (no nested brackets!):
… [NG it] [VG had set_up] [NP a joint_venture] [Prep in] …

Company Name: Bridgestone Sports Co.
Verb Group: said
Noun Group: Friday
Noun Group: it
Verb Group: had set up
Noun Group: a joint venture
Preposition: in
Location: Taiwan
Preposition: with
Noun Group: a local concern

FASTUS : Basic phrases

Build FSA to recognize phrases like
approximately 5 kg
more than 30 people
the newly elected president
the largest leftist political force
a government and commercial project

Use the FSA for left-to-right longest-match markup

What does FSA look like? See next slide …

FASTUS: Noun Groups

Described with a kind of non-recursive CFG …
(a regexp can include names that stand for other regexps)

NG à Pronoun | Time-NP | Date-NP
NG à (Det) (Adjs) HeadNouns
…
Adjs à sequence of adjectives maybe with commas,

conjunctions, adverbs
…
Det à DetNP | DetNonNP
DetNP à detailed expression to match “the only five, another

three, this, many, hers, all, the most …”
…

FASTUS: Noun Groups

BusinessRelationship = 
NounGroup(Company/ies) VerbGroup(Set-up)
NounGroup(JointVenture) with NounGroup(Company/ies)
| …

ProductionActivity =  
VerbGroup(Produce) NounGroup(Product)

NounGroup(Company/ies) à NounGroup & …  
 is made easy by the processing done at a previous level

Use this for spotting references to put in the database.

FASTUS: Semantic patterns

Weighted FSMs

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true}

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true} strings

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true} strings

numbers

Function from strings to ...

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
c/.7

ε/.5
.3

{false, true} strings

numbers (string, num) pairs

Weighted Relations

§ If we have a language [or relation], we can ask it: 
Do you contain this string [or string pair]?

§ If we have a weighted language [or relation], we ask: 
What weight do you assign to this string [or string pair]?

§ Pick a semiring: all our weights will be in that semiring.
§What?!

Semirings
Set ⊕ ⊗ 0 1

Prob R+ + x 0 1

Max R+ max x 0 1

Log R∪{±∞} log+ + -∞ 0

“Tropical” R∪{±∞} max + -∞ 0

Shortest path R∪{±∞} min + ∞ 0

Boolean {0,1} ∨ ∧ F T

String Σ* ∪ {∞} longest common
prefix concat ∞ ε

Weighted Relations

§ If we have a language [or relation], we can ask it: 
Do you contain this string [or string pair]?

§ If we have a weighted language [or relation], we ask: 
What weight do you assign to this string [or string pair]?

§ Pick a semiring: all our weights will be in that semiring.
§ Don’t panic! We will cover this again when we get to HMMs and parsing.
§ The unweighted case is the boolean semiring {true, false}.
§ If a string is not in the language, it has weight �.
§ If an FST or regular expression can choose among multiple ways to match,

use ⊕ to combine the weights of the different choices.
§ If an FST or regular expression matches by matching multiple substrings, use
⊗ to combine those different matches.

§ Remember, ⊕ is like “or” and ⊗ is like “and”!

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

⊕ to sum over 2 choices

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

⊕ to sum over 2 choices

⊗ to combine
the matches
against E and F

| union E | F

 E | F = {w: w∈ E or w∈ F} = E ∪ F

§ Weighted case: Let’s write E(w) to denote the weight of

w in the weighted language E.

 (E|F)(w) = E(w) ⊕ F(w)

Common Regular Expression
Operators (in XFST notation)

⊕ to sum over 2 choices

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

⊕ to sum over 2 choices

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

⊕ to sum over 2 choices

⊗ to combine
the matches
against E and F

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

need both ⊕ and
⊗

⊕ to sum over 2 choices

⊗ to combine
the matches
against E and F

 concatenation EF
• + iteration E*, E+

 EF = {ef: e ∈ E, f ∈ F}

§ Weighted case must match two things (⊗), but there’s
a choice (⊕) about which two things:

 (EF)(w) = (E(e) ⊗ F(f))

Which Semiring Operators are Needed?

need both ⊕ and
⊗

⊕
e,f such  

that w=ef

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

need both ⊕ and
⊗

⊕ to sum over 2 choices

⊗ to combine
the matches
against E and F

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

need both ⊕ and
⊗

⊕ to sum over 2 choices

⊗ to combine
the matches
against E and F

both ⊕ and ⊗ (why?)

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

Which Semiring Operators are Needed?

need both ⊕ and
⊗

⊕ to sum over 2 choices

⊗ to combine
the matches
against E and F

both ⊕ and ⊗ (why?)

⊕

⊕

Definition of FSTs

§ [Red material shows differences from FSAs.]

Definition of FSTs

§ [Red material shows differences from FSAs.]
§ Simple view:

§ An FST is simply a finite directed graph, with some labels.
§ It has a designated initial state and a set of final states.
§ Each edge is labeled with an “upper string” (in Σ*).

Definition of FSTs

§ [Red material shows differences from FSAs.]
§ Simple view:

§ An FST is simply a finite directed graph, with some labels.
§ It has a designated initial state and a set of final states.
§ Each edge is labeled with an “upper string” (in Σ*).
§ Each edge is also labeled with a “lower string” (in Δ*).
§ [Upper/lower are sometimes regarded as input/output.]

Definition of FSTs

§ [Red material shows differences from FSAs.]
§ Simple view:

§ An FST is simply a finite directed graph, with some labels.
§ It has a designated initial state and a set of final states.
§ Each edge is labeled with an “upper string” (in Σ*).
§ Each edge is also labeled with a “lower string” (in Δ*).
§ [Upper/lower are sometimes regarded as input/output.]
§ Each edge and final state is also labeled with a semiring weight.

Definition of FSTs

§ [Red material shows differences from FSAs.]
§ Simple view:

§ An FST is simply a finite directed graph, with some labels.
§ It has a designated initial state and a set of final states.
§ Each edge is labeled with an “upper string” (in Σ*).
§ Each edge is also labeled with a “lower string” (in Δ*).
§ [Upper/lower are sometimes regarded as input/output.]
§ Each edge and final state is also labeled with a semiring weight.

§ More traditional definition specifies an FST via these:
§ a state set Q
§ initial state i
§ set of final states F
§ input alphabet Σ (also define Σ*, Σ+, Σ?)
§ output alphabet Δ

Definition of FSTs

§ [Red material shows differences from FSAs.]
§ Simple view:

§ An FST is simply a finite directed graph, with some labels.
§ It has a designated initial state and a set of final states.
§ Each edge is labeled with an “upper string” (in Σ*).
§ Each edge is also labeled with a “lower string” (in Δ*).
§ [Upper/lower are sometimes regarded as input/output.]
§ Each edge and final state is also labeled with a semiring weight.

§ More traditional definition specifies an FST via these:
§ a state set Q
§ initial state i
§ set of final states F
§ input alphabet Σ (also define Σ*, Σ+, Σ?)
§ output alphabet Δ
§ transition function d: Q x Σ? --> 2Q

Definition of FSTs

§ [Red material shows differences from FSAs.]
§ Simple view:

§ An FST is simply a finite directed graph, with some labels.
§ It has a designated initial state and a set of final states.
§ Each edge is labeled with an “upper string” (in Σ*).
§ Each edge is also labeled with a “lower string” (in Δ*).
§ [Upper/lower are sometimes regarded as input/output.]
§ Each edge and final state is also labeled with a semiring weight.

§ More traditional definition specifies an FST via these:
§ a state set Q
§ initial state i
§ set of final states F
§ input alphabet Σ (also define Σ*, Σ+, Σ?)
§ output alphabet Δ
§ transition function d: Q x Σ? --> 2Q

§ output function s: Q x Σ? x Q --> Δ?

Definition of FSTs

 concatenation EF
* + iteration E*, E+

| union E | F
~ \ - complementation, minus ~E, \x, E-F

& intersection E & F
.x. crossproduct E .x. F

.o. composition E .o. F

.u upper (input) language E.u “domain”

.l lower (output) language E.l “range”

How to implement?
slide courtesy of L. Karttunen (modified)

Concatenation
example courtesy of M. Mohri

r

Concatenation

=

example courtesy of M. Mohri

r

r

|

Union
example courtesy of M. Mohri

r

|

Union

=

example courtesy of M. Mohri

r

Closure (this example has outputs too)

*

example courtesy of M. Mohri

Closure (this example has outputs too)

=

*

example courtesy of M. Mohri

Closure (this example has outputs too)

=

*

example courtesy of M. Mohri

Closure (this example has outputs too)

=

*

example courtesy of M. Mohri

why add new start state 4?
why not just make state 0 final?

Upper language (domain)

.u

=

example courtesy of M. Mohri

Upper language (domain)

.u

=

similarly construct lower language .l

example courtesy of M. Mohri

Upper language (domain)

.u

=

similarly construct lower language .l
also called input & output languages

example courtesy of M. Mohri

Reversal
example courtesy of M. Mohri

Reversal

.r

example courtesy of M. Mohri

Reversal

.r

=

example courtesy of M. Mohri

Reversal

.r

=

example courtesy of M. Mohri

Inversion

.i

example courtesy of M. Mohri

Inversion

.i

=

example courtesy of M. Mohri

Inversion

.i

=

example courtesy of M. Mohri

Inversion

.i

=

example courtesy of M. Mohri

§Given a machine M, represent all strings not
accepted by M

§ Just change final states to non-final and
vice-versa

§Works only if machine has been
determinized and completed first

Complementation

Intersection
example adapted from M. Mohri

fat/0.5

10 2/0.8
pig/0.3 eats/0

sleeps/0.6

fat/0.2
10 2/0.5

eats/0.6

sleeps/1.3

pig/0.4

&

=

Intersection
example adapted from M. Mohri

fat/0.5

10 2/0.8
pig/0.3 eats/0

sleeps/0.6

fat/0.2
10 2/0.5

eats/0.6

sleeps/1.3

pig/0.4

&

0,0
fat/0.7

0,1 1,1
pig/0.7

2,0/0.8

2,2/1.3

eats/0.6

sleeps/1.9

=

Intersection
fat/0.5

10 2/0.8
pig/0.3 eats/0

sleeps/0.6

0,0
fat/0.7

0,1 1,1
pig/0.7

2,0/0.8

2,2/1.3

eats/0.6

sleeps/1.9

=

fat/0.2
10 2/0.5

eats/0.6

sleeps/1.3

pig/0.4

&

Paths 0012 and 0110 both accept fat pig eats
So must the new machine: along path 0,0 0,1 1,1 2,0

Intersection
fat/0.5

10 2/0.8
pig/0.3 eats/0

sleeps/0.6

0,0
fat/0.7

0,1 1,1
pig/0.7

2,0/0.8

2,2/1.3

eats/0.6

sleeps/1.9

=

fat/0.2
10 2/0.5

eats/0.6

sleeps/1.3

pig/0.4

&

Paths 0012 and 0110 both accept fat pig eats
So must the new machine: along path 0,0 0,1 1,1 2,0

fat/0.5

fat/0.2

Intersection

10 2/0.5

10 2/0.8
pig/0.3 eats/0

sleeps/0.6

eats/0.6

sleeps/1.3

pig/0.4

0,0=

&

Paths 00 and 01 both accept fat
So must the new machine: along path 0,0 0,1

fat/0.5

fat/0.2

Intersection

10 2/0.5

10 2/0.8
pig/0.3 eats/0

sleeps/0.6

eats/0.6

sleeps/1.3

pig/0.4

0,0
fat/0.7

0,1=

&

Paths 00 and 01 both accept fat
So must the new machine: along path 0,0 0,1

pig/0.3

pig/0.4

Intersection
fat/0.5

10 2/0.8
eats/0

sleeps/0.6

fat/0.2
10 2/0.5

eats/0.6

sleeps/1.3

0,0
fat/0.7

0,1=

&

Paths 00 and 11 both accept pig
So must the new machine: along path 0,1 1,1

pig/0.3

pig/0.4

Intersection
fat/0.5

10 2/0.8
eats/0

sleeps/0.6

fat/0.2
10 2/0.5

eats/0.6

sleeps/1.3

0,0
fat/0.7

0,1 pig/0.7
1,1=

&

Paths 00 and 11 both accept pig
So must the new machine: along path 0,1 1,1

sleeps/0.6

sleeps/1.3

Intersection
fat/0.5

10 2/0.8
pig/0.3 eats/0

fat/0.2
10

eats/0.6

pig/0.4

0,0
fat/0.7

0,1 1,1
pig/0.7

2/0.5

=

&

Paths 12 and 12 both accept fat
So must the new machine: along path 1,1 2,2

sleeps/0.6

sleeps/1.3

Intersection
fat/0.5

10 2/0.8
pig/0.3 eats/0

fat/0.2
10

eats/0.6

pig/0.4

0,0
fat/0.7

0,1 1,1
pig/0.7

sleeps/1.9 2,2/1.3

2/0.5

=

&

Paths 12 and 12 both accept fat
So must the new machine: along path 1,1 2,2

eats/0.6

eats/0

sleeps/0.6

sleeps/1.3

Intersection
fat/0.5

10 2/0.8
pig/0.3

fat/0.2
10

pig/0.4

0,0
fat/0.7

0,1 1,1
pig/0.7

sleeps/1.9

2/0.5

2,2/1.3

=

&

eats/0.6

eats/0

sleeps/0.6

sleeps/1.3

Intersection
fat/0.5

10 2/0.8
pig/0.3

fat/0.2
10

pig/0.4

0,0
fat/0.7

0,1 1,1
pig/0.7

sleeps/1.9

2/0.5

2,2/1.3

eats/0.6 2,0/0.8

=

&

What Composition Means

ab?d abcd

f

What Composition Means

ab?d abcd

f
αβγδ

g

What Composition Means

ab?d abcd

abed

f
αβγδ

g

What Composition Means

ab?d abcd

αβεδabed

f
αβγδ

g

What Composition Means

ab?d abcd

αβεδabed

αβ∈δ

...

f
αβγδ

g

What Composition Means

ab?d abcd

αβεδabed

abjd
αβ∈δ

...

f
αβγδ

g

What Composition Means

ab?d abcd

αβεδabed

abjd
αβ∈δ

...

f
αβγδ

g

What Composition Means

ab?d abcd

αβεδabed

abjd

3

2

6 αβ∈δ

...

f
αβγδ

g

What Composition Means

ab?d abcd

αβεδabed

abjd

3

2

6

4

2

8
αβ∈δ

...

f
αβγδ

g

What Composition Means

ab?d αβγδ

αβεδ

αβ∈δ

...

Relation composition: f ° g

3+4

2+2

6+8

Relation = set of pairs

ab?d abcd

αβεδabed

abjd

3

2

6

4

2

8
αβ∈δ

...

f
αβγδ

g

ab?d à abcd
ab?d à abed
ab?d à abjd
 …

abcd à αβγδ
abed à αβεδ
abed à αβ∈δ
 …

Relation = set of pairs

ab?d abcd

αβεδabed

abjd

3

2

6

4

2

8
αβ∈δ

...

f
αβγδ

g

does not contain
any pair of the
form abjd à …

ab?d à abcd
ab?d à abed
ab?d à abjd
 …

abcd à αβγδ
abed à αβεδ
abed à αβ∈δ
 …

Relation = set of pairs
ab?d à abcd
ab?d à abed
ab?d à abjd
 …

abcd à αβγδ
abed à αβεδ
abed à αβ∈δ
 …

ab?d αβγδ

αβεδ

4

2

αβ∈δ

...

8

ab?d à αβγδ
ab?d à αβεδ
ab?d à αβ∈δ
 …

Relation = set of pairs
ab?d à abcd
ab?d à abed
ab?d à abjd
 …

abcd à αβγδ
abed à αβεδ
abed à αβ∈δ
 …

ab?d αβγδ

αβεδ

4

2

αβ∈δ

...

8

ab?d à αβγδ
ab?d à αβεδ
ab?d à αβ∈δ
 …

f ° g = {xàz: ∃y (xày ∈ f and yàz ∈ g)}
where x, y, z are strings

f ° g

Wilbur:pink/0.7

Intersection vs. Composition

pig/0.3
10

pig/0.4

1 0,1 pig/0.7
1,1=&

Intersection

Composition

Wilbur:pig/0.3
10

pig:pink/0.4

1 0,1 1,1=.o.

Wilbur:gray/0.7

Intersection vs. Composition

pig/0.3
10

elephant/0.4

1 0,1 pig/0.7
1,1=&

Intersection mismatch

Composition mismatch

Wilbur:pig/0.3
10

elephant:gray/0.4

1 0,1 1,1=.o.

Composition example courtesy of M. Mohri

.o. =

Composition

.o. =

a:b .o. b:b = a:b

Composition

.o. =

a:b .o. b:a = a:a

Composition

.o. =

a:b .o. b:a = a:a

Composition

.o. =

b:b .o. b:a = b:a

Composition

.o. =

a:b .o. b:a = a:a

Composition

.o. =

a:a .o. a:b = a:b

Composition

.o. =

b:b .o. a:b = nothing
(since intermediate symbol doesn’t match)

Composition

.o. =

b:b .o. b:a = b:a

Composition

.o. =

a:a .o. a:b = a:b

Relation = set of pairs
ab?d à abcd
ab?d à abed
ab?d à abjd
 …

abcd à αβγδ
abed à αβεδ
abed à αβ∈δ
 …

ab?d αβγδ

αβεδ

4

2

αβ∈δ

...

8

ab?d à αβγδ
ab?d à αβεδ
ab?d à αβ∈δ
 …

f ° g = {xàz: ∃y (xày ∈ f and yàz ∈ g)}
where x, y, z are strings

f ° g

Composition with Sets

§ We’ve defined A .o. B where both are FSTs

Composition with Sets

§ We’ve defined A .o. B where both are FSTs
§ Now extend definition to allow one to be a FSA

Composition with Sets

§ We’ve defined A .o. B where both are FSTs
§ Now extend definition to allow one to be a FSA
§ Two relations (FSTs): 

 A ° B = {xàz: ∃y (xày ∈ A and yàz ∈ B)}

Composition with Sets

§ We’ve defined A .o. B where both are FSTs
§ Now extend definition to allow one to be a FSA
§ Two relations (FSTs): 

 A ° B = {xàz: ∃y (xày ∈ A and yàz ∈ B)}
§ Set and relation:

Composition with Sets

§ We’ve defined A .o. B where both are FSTs
§ Now extend definition to allow one to be a FSA
§ Two relations (FSTs): 

 A ° B = {xàz: ∃y (xày ∈ A and yàz ∈ B)}
§ Set and relation:
 A ° B = {xàz: x ∈ A and xàz ∈ B }

Composition with Sets

§ We’ve defined A .o. B where both are FSTs
§ Now extend definition to allow one to be a FSA
§ Two relations (FSTs): 

 A ° B = {xàz: ∃y (xày ∈ A and yàz ∈ B)}
§ Set and relation:
 A ° B = {xàz: x ∈ A and xàz ∈ B }
§ Relation and set: 

 A ° B = {xàz: xàz ∈ A and z ∈ B }

Composition with Sets

§ We’ve defined A .o. B where both are FSTs
§ Now extend definition to allow one to be a FSA
§ Two relations (FSTs): 

 A ° B = {xàz: ∃y (xày ∈ A and yàz ∈ B)}
§ Set and relation:
 A ° B = {xàz: x ∈ A and xàz ∈ B }
§ Relation and set: 

 A ° B = {xàz: xàz ∈ A and z ∈ B }
§ Two sets (acceptors) – same as intersection: 

 A ° B = {x: x ∈ A and x ∈ B }

Composition with Sets

§ Really just treats a set as identity relation on set
 {abc, pqr, …} = {abcàabc, pqràpqr, …}
§ Two relations (FSTs): 

 A ° B = {xàz: ∃y (xày ∈ A and yàz ∈ B)}
§ Set and relation is now special case (if ∃y then y=x):
 A ° B = {xàz: xàx ∈ A and xàz ∈ B }
§ Relation and set is now special case (if ∃y then y=z):
§ A ° B = {xàz: xàz ∈ A and zàz ∈ B }
§ Two sets (acceptors) is now special case: 

 A ° B = {xàx: xàx ∈ A and xàx ∈ B }

Composition and Coercion

3 Uses of Set Composition:

§ Feed string into Greek transducer:

3 Uses of Set Composition:

§ Feed string into Greek transducer:
§ {abedàabed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}

3 Uses of Set Composition:

§ Feed string into Greek transducer:
§ {abedàabed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ {abed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}

3 Uses of Set Composition:

§ Feed string into Greek transducer:
§ {abedàabed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ {abed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ [{abed} .o. Greek].l = {αβεδ, αβ∈δ}

3 Uses of Set Composition:

§ Feed string into Greek transducer:
§ {abedàabed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ {abed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ [{abed} .o. Greek].l = {αβεδ, αβ∈δ}

§ Feed several strings in parallel:

3 Uses of Set Composition:

§ Feed string into Greek transducer:
§ {abedàabed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ {abed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ [{abed} .o. Greek].l = {αβεδ, αβ∈δ}

§ Feed several strings in parallel:
§ {abcd, abed} .o. Greek  

 = {abcdàαβγδ, abedàαβεδ, abedàαβ∈δ}

3 Uses of Set Composition:

§ Feed string into Greek transducer:
§ {abedàabed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ {abed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ [{abed} .o. Greek].l = {αβεδ, αβ∈δ}

§ Feed several strings in parallel:
§ {abcd, abed} .o. Greek  

 = {abcdàαβγδ, abedàαβεδ, abedàαβ∈δ}
§ [{abcd,abed} .o. Greek].l = {αβγδ, αβεδ, αβ∈δ}

3 Uses of Set Composition:

§ Feed string into Greek transducer:
§ {abedàabed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ {abed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ [{abed} .o. Greek].l = {αβεδ, αβ∈δ}

§ Feed several strings in parallel:
§ {abcd, abed} .o. Greek  

 = {abcdàαβγδ, abedàαβεδ, abedàαβ∈δ}
§ [{abcd,abed} .o. Greek].l = {αβγδ, αβεδ, αβ∈δ}

§ Filter result via Noε = {αβγδ, αβ∈δ, …}

3 Uses of Set Composition:

§ Feed string into Greek transducer:
§ {abedàabed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ {abed} .o. Greek = {abedàαβεδ, abedàαβ∈δ}
§ [{abed} .o. Greek].l = {αβεδ, αβ∈δ}

§ Feed several strings in parallel:
§ {abcd, abed} .o. Greek  

 = {abcdàαβγδ, abedàαβεδ, abedàαβ∈δ}
§ [{abcd,abed} .o. Greek].l = {αβγδ, αβεδ, αβ∈δ}

§ Filter result via Noε = {αβγδ, αβ∈δ, …}

§ {abcd,abed} .o. Greek .o. Noε  
 = {abcdàαβγδ, abedàαβ∈δ}

3 Uses of Set Composition:

§The operations on the previous slides
combine transducers into bigger ones

§But where do we start?

§a:ε for a ∈ Σ

§ ε:x for x ∈ Δ

§Q: Do we also need a:x? How about ε:ε ?

What are the “basic”
transducers?

a:ε

ε:x

