
Semantics
Natural Language Processing

CS 6120—Spring 2013
Northeastern University

David Smith
some slides from

Jason Eisner, Dan Klein, Stephen Clark & Eva Banik

1

Language as Structure
• So far, we’ve talked about structure

• What structures are more probable?

• Language modeling: Good sequences of words/
characters

• Text classification: Good sequences in defined
contexts

• How can we recover hidden structure?

• Tagging: hidden word classes

• Parsing: hidden word relations

2

What Does It All Mean?

• Studying phonology, morphology, syntax,
etc. independent of meaning is
methodologically very useful

• We can study the structure of languages we
don’t understand

• We can use HMMs and CFGs to study
protein structure and music, which don’t
bear meaning in the same way as language

3

What Does It All Mean?

• How would you know if a computer
“understood” the “meaning” of an (English)
utterance (even in some weak “scare-
quoted” way)?

• How would you know if a person
understood the meaning of an utterance?

4

What Does It All Mean?

• Paraphrase, “state in your own
words” (English to English translation)

• Translation into another language

• Reading comprehension questions

• Drawing appropriate inferences

• Carrying out appropriate actions

• Open-ended dialogue (Turing test)

5

§What is meaning of 3+5*6?
§First parse it into 3+(5*6)

Programming Language
Interpreter

+

3 *

5 6

6

§What is meaning of 3+5*6?
§First parse it into 3+(5*6)

Programming Language
Interpreter

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

6

§What is meaning of 3+5*6?
§First parse it into 3+(5*6)
§Now give a meaning to
each node in the tree
(bottom-up)

Programming Language
Interpreter

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

7

§What is meaning of 3+5*6?
§First parse it into 3+(5*6)
§Now give a meaning to
each node in the tree
(bottom-up)

Programming Language
Interpreter

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

3

5 6

30

33

7

§What is meaning of 3+5*6?
§First parse it into 3+(5*6)
§Now give a meaning to
each node in the tree
(bottom-up)

Programming Language
Interpreter

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

3

5 6

30

33

3

5 6

30

33

add
mult

7

Interpreting in an Environment
+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

8

§How about 3+5*x?

Interpreting in an Environment
+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

8

§How about 3+5*x?
§Same thing: the meaning
of x is found from the
environment (it’s 6)

Interpreting in an Environment
+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

8

§How about 3+5*x?
§Same thing: the meaning
of x is found from the
environment (it’s 6)

§Analogies in language?

Interpreting in an Environment
+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

8

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+

9

§How about 3+5*x?

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+

9

§How about 3+5*x?
§Don’t know x at compile time

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+

9

§How about 3+5*x?
§Don’t know x at compile time
§ “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+

9

§How about 3+5*x?
§Don’t know x at compile time
§ “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

9

§How about 3+5*x?
§Don’t know x at compile time
§ “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression
that produces equivalent code

9

§How about 3+5*x?
§Don’t know x at compile time
§ “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression
that produces equivalent code
(can be converted to the
previous code by optimization)

9

§How about 3+5*x?
§Don’t know x at compile time
§ “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression
that produces equivalent code
(can be converted to the
previous code by optimization)
Analogies in language?

9

What Counts as Understanding?
 some notions

10

§ We understand if we can respond appropriately
§ ok for commands, questions (these demand response)
§ “Computer, warp speed 5”
§ “throw axe at dwarf”
§ “put all of my blocks in the red box”
§ imperative programming languages
§ SQL database queries and other questions

§ We understand statement if we can determine its
truth
§ ok, but if you knew whether it was true, why did anyone

bother telling it to you?
§ comparable notion for understanding NP is to compute

what the NP refers to, which might be useful

What Counts as Understanding?
 some notions

10

What Counts as Understanding?
 some notions

11

§ We understand statement if we know how one could (in
principle) determine its truth
§ What are exact conditions under which it would be true?

§ necessary + sufficient

§ Equivalently, derive all its consequences
§ what else must be true if we accept the statement?

§ Match statements with a “domain theory”

§ Philosophers tend to use this definition

What Counts as Understanding?
 some notions

11

§ We understand statement if we know how one could (in
principle) determine its truth
§ What are exact conditions under which it would be true?

§ necessary + sufficient

§ Equivalently, derive all its consequences
§ what else must be true if we accept the statement?

§ Match statements with a “domain theory”

§ Philosophers tend to use this definition

§ We understand statement if we can use it to answer
questions [very similar to above – requires reasoning]

§ Easy: John ate pizza. What was eaten by John?
§ Hard: White’s first move is P-Q4. Can Black checkmate?
§ Constructing a procedure to get the answer is enough

What Counts as Understanding?
 some notions

11

What Does It All Mean?

• Paraphrase, “state in your own words” (English to
English translation)

• Translation into another language

• Reading comprehension questions

• Drawing appropriate inferences

• Carrying out appropriate actions

• Open-ended dialogue (Turing test)

• Translation to logical form that we can reason about

12

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects
1. Booleans

§ Roughly, the semantic values of sentences

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects
1. Booleans

§ Roughly, the semantic values of sentences
2. Entities

§ Values of NPs, e.g., objects like this slide
§ Maybe also other types of entities, like times

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects
1. Booleans

§ Roughly, the semantic values of sentences
2. Entities

§ Values of NPs, e.g., objects like this slide
§ Maybe also other types of entities, like times

3. Functions of various types
§ Functions from booleans to booleans (and, or, not)
§ A function from entity to boolean is called a

“predicate” – e.g., frog(x), green(x)
§ Functions might return other functions!

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects
1. Booleans

§ Roughly, the semantic values of sentences
2. Entities

§ Values of NPs, e.g., objects like this slide
§ Maybe also other types of entities, like times

3. Functions of various types
§ Functions from booleans to booleans (and, or, not)
§ A function from entity to boolean is called a

“predicate” – e.g., frog(x), green(x)
§ Functions might return other functions!
§ Function might take other functions as arguments!

(First Order) Logic
Some Preliminaries

13

§ Lambda terms:
§A way of writing “anonymous functions”

§No function header or function name
§But defines the key thing: behavior of the function
§Just as we can talk about 3 without naming it “x”

§Let square = λp p*p
§Equivalent to int square(p) { return p*p; }
§But we can talk about λp p*p without naming it
§Format of a lambda term: λ variable expression

Logic: Lambda Terms

14

Logic: Lambda Terms

15

§ Lambda terms:

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p
§ Then square(3) = (λp p*p)(3) = 3*3

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p
§ Then square(3) = (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function! It’s just the value x*x.

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p
§ Then square(3) = (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function! It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p
§ Then square(3) = (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function! It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p
§ Then square(3) = (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function! It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

§ Let even = λp (p mod 2 == 0) a predicate: returns true/false

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p
§ Then square(3) = (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function! It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

§ Let even = λp (p mod 2 == 0) a predicate: returns true/false

§ even(x) is true if x is even

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p
§ Then square(3) = (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function! It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

§ Let even = λp (p mod 2 == 0) a predicate: returns true/false

§ even(x) is true if x is even
§ How about even(square(x))?
§ λx even(square(x)) is true of numbers with even squares

§ Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)

Logic: Lambda Terms

15

§ Lambda terms:
§ Let square = λp p*p
§ Then square(3) = (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function! It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

§ Let even = λp (p mod 2 == 0) a predicate: returns true/false

§ even(x) is true if x is even
§ How about even(square(x))?
§ λx even(square(x)) is true of numbers with even squares

§ Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)
§ This happens to denote the same predicate as even does

Logic: Lambda Terms

15

Logic: Multiple Arguments

16

§All lambda terms have one argument

Logic: Multiple Arguments

16

§All lambda terms have one argument
§But we can fake multiple arguments ...

Logic: Multiple Arguments

16

§All lambda terms have one argument
§But we can fake multiple arguments ...

Logic: Multiple Arguments

16

§All lambda terms have one argument
§But we can fake multiple arguments ...

§Suppose we want to write times(5,6)

Logic: Multiple Arguments

16

§All lambda terms have one argument
§But we can fake multiple arguments ...

§Suppose we want to write times(5,6)
§Suppose times is defined as λx λy (x*y)

Logic: Multiple Arguments

16

§All lambda terms have one argument
§But we can fake multiple arguments ...

§Suppose we want to write times(5,6)
§Suppose times is defined as λx λy (x*y)
§Claim that times(5)(6) is 30
§ times(5) = (λx λy x*y) (5) = λy 5*y

Logic: Multiple Arguments

16

§All lambda terms have one argument
§But we can fake multiple arguments ...

§Suppose we want to write times(5,6)
§Suppose times is defined as λx λy (x*y)
§Claim that times(5)(6) is 30
§ times(5) = (λx λy x*y) (5) = λy 5*y

§If this function weren’t anonymous, what would we call
it?

Logic: Multiple Arguments

16

§All lambda terms have one argument
§But we can fake multiple arguments ...

§Suppose we want to write times(5,6)
§Suppose times is defined as λx λy (x*y)
§Claim that times(5)(6) is 30
§ times(5) = (λx λy x*y) (5) = λy 5*y

§If this function weren’t anonymous, what would we call
it?

§ times(5)(6) = (λy 5*y)(6) = 5*6 = 30

Logic: Multiple Arguments

16

Logic: Multiple Arguments

§ All lambda terms have one argument
§ But we can fake multiple arguments ...

§ If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
§ times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

§ So we can always get away with 1-arg functions ...

Logic: Multiple Arguments

§ All lambda terms have one argument
§ But we can fake multiple arguments ...

§ If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
§ times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

§ So we can always get away with 1-arg functions ...
§ ... which might return a function to take the next

argument. Whoa.

Logic: Multiple Arguments

§ All lambda terms have one argument
§ But we can fake multiple arguments ...

§ If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
§ times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

§ So we can always get away with 1-arg functions ...
§ ... which might return a function to take the next

argument. Whoa.
§ Remember: square can be written as λx square(x)

Logic: Multiple Arguments

§ All lambda terms have one argument
§ But we can fake multiple arguments ...

§ If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
§ times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

§ So we can always get away with 1-arg functions ...
§ ... which might return a function to take the next

argument. Whoa.
§ Remember: square can be written as λx square(x)

§ And now times can be written as λx λy times(x,y)

Logic: Multiple Arguments

§ All lambda terms have one argument
§ But we can fake multiple arguments ...

§ If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
§ times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

Grounding out

18

§ So what does times actually mean???

Grounding out

18

§ So what does times actually mean???
§ How do we get from times(5,6) to 30 ?

§ Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

Grounding out

18

§ So what does times actually mean???
§ How do we get from times(5,6) to 30 ?

§ Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

Grounding out

18

§ So what does times actually mean???
§ How do we get from times(5,6) to 30 ?

§ Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

§ Well, maybe * was defined as another lambda term, so
substitute to get *(5,6) = (blah blah blah)(5)(6)

§ But we can’t keep doing substitutions forever!
§ Eventually we have to ground out in a primitive term
§ Primitive terms are bound to object code

Grounding out

18

§ So what does times actually mean???
§ How do we get from times(5,6) to 30 ?

§ Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

§ Well, maybe * was defined as another lambda term, so
substitute to get *(5,6) = (blah blah blah)(5)(6)

§ But we can’t keep doing substitutions forever!
§ Eventually we have to ground out in a primitive term
§ Primitive terms are bound to object code

§ Maybe *(5,6) just executes a multiplication function

Grounding out

18

§ So what does times actually mean???
§ How do we get from times(5,6) to 30 ?

§ Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

§ Well, maybe * was defined as another lambda term, so
substitute to get *(5,6) = (blah blah blah)(5)(6)

§ But we can’t keep doing substitutions forever!
§ Eventually we have to ground out in a primitive term
§ Primitive terms are bound to object code

§ Maybe *(5,6) just executes a multiplication function
§ What is executed by loves(john, mary) ?

Grounding out

18

§Thus, have “constants” that name some of the
entities and functions (e.g., *):
§GeorgeWBush - an entity
§ red – a predicate on entities

§holds of just the red entities: red(x) is true if x is red!
§ loves – a predicate on 2 entities

§ loves(GeorgeWBush, LauraBush)
§Question: What does loves(LauraBush) denote?

§Constants used to define meanings of words
§Meanings of phrases will be built from the
constants

Logic: Interesting Constants

19

Logic: Interesting Constants

20

§most – a predicate on 2 predicates on entities
§most(pig, big) = “most pigs are big”

§Equivalently, most(λx pig(x), λx big(x))
§ returns true if most of the things satisfying the first
predicate also satisfy the second predicate

Logic: Interesting Constants

20

§most – a predicate on 2 predicates on entities
§most(pig, big) = “most pigs are big”

§Equivalently, most(λx pig(x), λx big(x))
§ returns true if most of the things satisfying the first
predicate also satisfy the second predicate

§ similarly for other quantifiers
§all(pig,big) (equivalent to ∀x pig(x) ⇒ big(x))
§exists(pig,big) (equivalent to ∃x pig(x) AND big(x))
§ can even build complex quantifiers from English phrases:

§ “between 12 and 75”; “a majority of”; “all but the smallest 2”

Logic: Interesting Constants

20

§Gilly swallowed a goldfish
§First attempt: swallowed(Gilly, goldfish)

§Returns true or false. Analogous to
§prime(17)
§equal(4,2+2)
§ loves(GeorgeWBush, LauraBush)
§ swallowed(Gilly, Jilly)

§… or is it analogous?

A reasonable representation?

21

A reasonable representation?

22

§ Gilly swallowed a goldfish
§ First attempt: swallowed(Gilly, goldfish)

A reasonable representation?

22

§ Gilly swallowed a goldfish
§ First attempt: swallowed(Gilly, goldfish)

§ But we’re not paying attention to a!

A reasonable representation?

22

§ Gilly swallowed a goldfish
§ First attempt: swallowed(Gilly, goldfish)

§ But we’re not paying attention to a!
§ goldfish isn’t the name of a unique object the

way Gilly is

A reasonable representation?

22

§ Gilly swallowed a goldfish
§ First attempt: swallowed(Gilly, goldfish)

§ But we’re not paying attention to a!
§ goldfish isn’t the name of a unique object the

way Gilly is

A reasonable representation?

22

§ Gilly swallowed a goldfish
§ First attempt: swallowed(Gilly, goldfish)

§ But we’re not paying attention to a!
§ goldfish isn’t the name of a unique object the

way Gilly is

§ In particular, don’t want
Gilly swallowed a goldfish and Milly
swallowed a goldfish
to translate as
swallowed(Gilly, goldfish) AND swallowed(Milly, goldfish)
since probably not the same goldfish …

A reasonable representation?

22

Use a Quantifier

23

§ Gilly swallowed a goldfish

§ First attempt: swallowed(Gilly, goldfish)

Use a Quantifier

23

§ Gilly swallowed a goldfish

§ First attempt: swallowed(Gilly, goldfish)

§ Better: ∃g goldfish(g) AND swallowed(Gilly, g)

Use a Quantifier

23

§ Gilly swallowed a goldfish

§ First attempt: swallowed(Gilly, goldfish)

§ Better: ∃g goldfish(g) AND swallowed(Gilly, g)
§ Or using one of our quantifier predicates:

§ exists(λg goldfish(g), λg swallowed(Gilly,g))
§ Equivalently: exists(goldfish, swallowed(Gilly))

§ “In the set of goldfish there exists one swallowed by Gilly”

Use a Quantifier

23

§ Gilly swallowed a goldfish

§ First attempt: swallowed(Gilly, goldfish)

§ Better: ∃g goldfish(g) AND swallowed(Gilly, g)
§ Or using one of our quantifier predicates:

§ exists(λg goldfish(g), λg swallowed(Gilly,g))
§ Equivalently: exists(goldfish, swallowed(Gilly))

§ “In the set of goldfish there exists one swallowed by Gilly”

§ Here goldfish is a predicate on entities
§ This is the same semantic type as red
§ But goldfish is noun and red is adjective .. #@!?

Use a Quantifier

23

Tense

24

§ Gilly swallowed a goldfish

Tense

24

§ Gilly swallowed a goldfish

§ Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

Tense

24

§ Gilly swallowed a goldfish

§ Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

§ Improve to use tense:

Tense

24

§ Gilly swallowed a goldfish

§ Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

§ Improve to use tense:
§ Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g) where t is a time

Tense

24

§ Gilly swallowed a goldfish

§ Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

§ Improve to use tense:
§ Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g) where t is a time

§ Now we can write:
∃t past(t) AND exists(goldfish, λg swallow(t,Gilly,g))

Tense

24

§ Gilly swallowed a goldfish

§ Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

§ Improve to use tense:
§ Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g) where t is a time

§ Now we can write:
∃t past(t) AND exists(goldfish, λg swallow(t,Gilly,g))

§ “There was some time in the past such that a goldfish was among the
objects swallowed by Gilly at that time”

Tense

24

§ Gilly swallowed a goldfish

§ Previous attempt: exists(goldfish, swallowed(Gilly))

§ Improve to use tense:
§ Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g)
§ Now we can write:
∃t past(t) AND exists(goldfish, swallow(t,Gilly))

§ “There was some time in the past such that a goldfish was among the
objects swallowed by Gilly at that time”

(Simplify Notation)

25

Event Properties

26

§ Gilly swallowed a goldfish

§ Previous: ∃t past(t) AND exists(goldfish, swallow(t,Gilly))

Event Properties

26

§ Gilly swallowed a goldfish

§ Previous: ∃t past(t) AND exists(goldfish, swallow(t,Gilly))
§ Why stop at time? An event has other properties:

§ [Gilly] swallowed [a goldfish] [on a dare]
[in a telephone booth] [with 30 other
freshmen] [after many bottles of vodka had
been consumed].

§ Specifies who what why when …

Event Properties

26

§ Gilly swallowed a goldfish

§ Previous: ∃t past(t) AND exists(goldfish, swallow(t,Gilly))
§ Why stop at time? An event has other properties:

§ [Gilly] swallowed [a goldfish] [on a dare]
[in a telephone booth] [with 30 other
freshmen] [after many bottles of vodka had
been consumed].

§ Specifies who what why when …
§ Replace time variable t with an event variable e

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …
§ As with probability notation, a comma represents AND
§ Could define past as λe ∃t before(t,now), ended-at(e,t)

Event Properties

26

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

§ Does this mean what we’d expect??

Quantifier Order

27

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

§ Does this mean what we’d expect??

Quantifier Order

∃g goldfish(g), swallowee(e,g)

27

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

§ Does this mean what we’d expect??

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

27

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

§ Does this mean what we’d expect??

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

says that there’s only one event
with a single goldfish getting swallowed

that took place in a lot of booths ...

27

§ Groucho Marx celebrates quantifier order ambiguity:
§ In this country a woman gives birth every 15 min. Our
job is to find that woman and stop her.

§ ∃woman (∀15min gives-birth-during(woman, 15min))
§∀15min (∃woman gives-birth-during(15min, woman))
§ Surprisingly, both are possible in natural language!
§ Which is the joke meaning (where it’s always the same woman) and

why?

Quantifier Order

28

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

29

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

§Does this mean what we’d expect??

29

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

§Does this mean what we’d expect??
§ It’s ∃e ∀b which means same event for every booth

29

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

§Does this mean what we’d expect??
§ It’s ∃e ∀b which means same event for every booth

§ Probably false unless Gilly can be in every booth during
her swallowing of a single goldfish

29

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

30

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

§Other reading (∀b ∃e) involves quantifier raising:

30

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

§Other reading (∀b ∃e) involves quantifier raising:
§ all(booth, λb [∃e past(e), act(e,swallowing), swallower

(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])

30

§ Gilly swallowed a goldfish in a booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

§ Gilly swallowed a goldfish in every booth

§ ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

§Other reading (∀b ∃e) involves quantifier raising:
§ all(booth, λb [∃e past(e), act(e,swallowing), swallower

(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])
§ “for all booths b, there was such an event in b”

30

Intensional Arguments

31

Intensional Arguments
§ Willy wants a unicorn

31

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
§ “there is a particular unicorn u that Willy wants”
§ In this reading, the wantee is an individual entity

31

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
§ “there is a particular unicorn u that Willy wants”
§ In this reading, the wantee is an individual entity

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants any entity u that satisfies the unicorn predicate”
§ In this reading, the wantee is a type of entity
§ Sentence doesn’t claim that such an entity exists

31

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
§ “there is a particular unicorn u that Willy wants”
§ In this reading, the wantee is an individual entity

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants any entity u that satisfies the unicorn predicate”
§ In this reading, the wantee is a type of entity
§ Sentence doesn’t claim that such an entity exists

§ Willy wants Lilly to get married

31

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
§ “there is a particular unicorn u that Willy wants”
§ In this reading, the wantee is an individual entity

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants any entity u that satisfies the unicorn predicate”
§ In this reading, the wantee is a type of entity
§ Sentence doesn’t claim that such an entity exists

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

31

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
§ “there is a particular unicorn u that Willy wants”
§ In this reading, the wantee is an individual entity

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants any entity u that satisfies the unicorn predicate”
§ In this reading, the wantee is a type of entity
§ Sentence doesn’t claim that such an entity exists

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

§ “Willy wants any event e’ in which Lilly gets married”

31

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
§ “there is a particular unicorn u that Willy wants”
§ In this reading, the wantee is an individual entity

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants any entity u that satisfies the unicorn predicate”
§ In this reading, the wantee is a type of entity
§ Sentence doesn’t claim that such an entity exists

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

§ “Willy wants any event e’ in which Lilly gets married”
§ Here the wantee is a type of event

31

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
§ “there is a particular unicorn u that Willy wants”
§ In this reading, the wantee is an individual entity

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants any entity u that satisfies the unicorn predicate”
§ In this reading, the wantee is a type of entity
§ Sentence doesn’t claim that such an entity exists

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

§ “Willy wants any event e’ in which Lilly gets married”
§ Here the wantee is a type of event
§ Sentence doesn’t claim that such an event exists

31

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
§ “there is a particular unicorn u that Willy wants”
§ In this reading, the wantee is an individual entity

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants any entity u that satisfies the unicorn predicate”
§ In this reading, the wantee is a type of entity
§ Sentence doesn’t claim that such an entity exists

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

§ “Willy wants any event e’ in which Lilly gets married”
§ Here the wantee is a type of event
§ Sentence doesn’t claim that such an event exists

§ Intensional verbs besides want: hope, doubt, believe,…
31

Intensional Arguments

32

Intensional Arguments
§ Willy wants a unicorn

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

§ Problem (a fine point I’ll gloss over):

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

§ Problem (a fine point I’ll gloss over):

§ λg unicorn(g) is defined by the actual set of unicorns (“extension”)

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

§ Problem (a fine point I’ll gloss over):

§ λg unicorn(g) is defined by the actual set of unicorns (“extension”)
§ But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

§ Problem (a fine point I’ll gloss over):

§ λg unicorn(g) is defined by the actual set of unicorns (“extension”)
§ But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
§ Then wants a unicorn = wants a dodo. Oops!

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

§ Problem (a fine point I’ll gloss over):

§ λg unicorn(g) is defined by the actual set of unicorns (“extension”)
§ But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
§ Then wants a unicorn = wants a dodo. Oops!

§ So really the wantee should be criteria for unicornness (“intension”)

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

§ Problem (a fine point I’ll gloss over):

§ λg unicorn(g) is defined by the actual set of unicorns (“extension”)
§ But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
§ Then wants a unicorn = wants a dodo. Oops!

§ So really the wantee should be criteria for unicornness (“intension”)

§ Traditional solution involves “possible-world semantics”

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

§ Problem (a fine point I’ll gloss over):

§ λg unicorn(g) is defined by the actual set of unicorns (“extension”)
§ But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
§ Then wants a unicorn = wants a dodo. Oops!

§ So really the wantee should be criteria for unicornness (“intension”)

§ Traditional solution involves “possible-world semantics”

§ Can imagine other worlds where set of unicorn ≠ set of dodos

32

Intensional Arguments
§ Willy wants a unicorn

§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
§ “Willy wants anything that satisfies the unicorn predicate”
§ here the wantee is a type of entity

§ Problem (a fine point I’ll gloss over):

§ λg unicorn(g) is defined by the actual set of unicorns (“extension”)
§ But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
§ Then wants a unicorn = wants a dodo. Oops!

§ So really the wantee should be criteria for unicornness (“intension”)

§ Traditional solution involves “possible-world semantics”

§ Can imagine other worlds where set of unicorn ≠ set of dodos
§ Other worlds also useful for: You must pay the rent
 You can pay the rent
 If you hadn’t, you’d be homeless

32

Control

33

§ Willy wants Lilly to get married

Control

33

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

Control

33

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

Control

33

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

§ Willy wants to get married

Control

33

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

§ Willy wants to get married

§ Same as Willy wants Willy to get married

Control

33

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

§ Willy wants to get married

§ Same as Willy wants Willy to get married

§ Just as easy to represent as Willy wants Lilly …

Control

33

§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

§ Willy wants to get married

§ Same as Willy wants Willy to get married

§ Just as easy to represent as Willy wants Lilly …
§ The only trick is to construct the representation from the

syntax. The empty subject position of “to get married” is
said to be controlled by the subject of “wants.”

Control

33

Nouns and Their Modifiers

34

§ expert
§ λg expert(g)

Nouns and Their Modifiers

34

§ expert
§ λg expert(g)

§ big fat expert
§ λg big(g), fat(g), expert(g)
§ But: bogus expert

§Wrong: λg bogus(g), expert(g)
§Right: λg (bogus(expert))(g) … bogus maps to new concept

Nouns and Their Modifiers

34

§ expert
§ λg expert(g)

§ big fat expert
§ λg big(g), fat(g), expert(g)
§ But: bogus expert

§Wrong: λg bogus(g), expert(g)
§Right: λg (bogus(expert))(g) … bogus maps to new concept

§ Baltimore expert (white-collar expert, TV expert …)

§ λg Related(Baltimore, g), expert(g) – expert from Baltimore
§ Or with different intonation:

§ λg (Modified-by(Baltimore, expert))(g) – expert on Baltimore
§ Can’t use Related for this case: law expert and dog catcher
= λg Related(law,g), expert(g), Related(dog, g), catcher(g)
= dog expert and law catcher

Nouns and Their Modifiers

34

Nouns and Their Modifiers

§ the goldfish that Gilly swallowed

§ every goldfish that Gilly swallowed

§ three goldfish that Gilly swallowed

35

Nouns and Their Modifiers

§ the goldfish that Gilly swallowed

§ every goldfish that Gilly swallowed

§ three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)]

35

Nouns and Their Modifiers

§ the goldfish that Gilly swallowed

§ every goldfish that Gilly swallowed

§ three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)]

§ three swallowed-by-Gilly goldfish
like an adjective!

35

Nouns and Their Modifiers

§ the goldfish that Gilly swallowed

§ every goldfish that Gilly swallowed

§ three goldfish that Gilly swallowed

Or for real: λg [goldfish(g), ∃e [past(e), act(e,swallowing),

swallower(e,Gilly), swallowee(e,g)]]

λg [goldfish(g), swallowed(Gilly, g)]

§ three swallowed-by-Gilly goldfish
like an adjective!

35

Adverbs

36

§ Lili passionately wants Billy
§ Wrong?: passionately(want(Lili,Billy)) = passionately(true)

§ Better: (passionately(want))(Lili,Billy)

§ Best: ∃e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

Adverbs

36

§ Lili passionately wants Billy
§ Wrong?: passionately(want(Lili,Billy)) = passionately(true)

§ Better: (passionately(want))(Lili,Billy)

§ Best: ∃e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

§ Lili often stalks Billy
§ (often(stalk))(Lili,Billy)
§ many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili),

stalkee(e, Billy), during(e,d))

Adverbs

36

§ Lili passionately wants Billy
§ Wrong?: passionately(want(Lili,Billy)) = passionately(true)

§ Better: (passionately(want))(Lili,Billy)

§ Best: ∃e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

§ Lili often stalks Billy
§ (often(stalk))(Lili,Billy)
§ many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili),

stalkee(e, Billy), during(e,d))

§ Lili obviously likes Billy
§ (obviously(like))(Lili,Billy) – one reading
§ obvious(like(Lili, Billy)) – another reading

Adverbs

36

Speech Acts

37

§ What is the meaning of a full sentence?
§ Depends on the punctuation mark at the end. J
§ Billy likes Lili. à assert(like(B,L))
§ Billy likes Lili? à ask(like(B,L))

§ or more formally, “Does Billy like Lili?”

§ Billy, like Lili! à command(like(B,L))
§ or more accurately, “Let Billy like Lili!”

Speech Acts

37

§ What is the meaning of a full sentence?
§ Depends on the punctuation mark at the end. J
§ Billy likes Lili. à assert(like(B,L))
§ Billy likes Lili? à ask(like(B,L))

§ or more formally, “Does Billy like Lili?”

§ Billy, like Lili! à command(like(B,L))
§ or more accurately, “Let Billy like Lili!”

§ Let’s try to do this a little more precisely, using event
variables etc.

Speech Acts

37

Speech Acts

38

§ What did Gilly swallow?

§ ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly),
swallowee(e,x))

§ Argument is identical to the modifier “that Gilly swallowed”
§ Is there any common syntax?

Speech Acts

38

§ What did Gilly swallow?

§ ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly),
swallowee(e,x))

§ Argument is identical to the modifier “that Gilly swallowed”
§ Is there any common syntax?

§ Eat your fish!

§ command(λf act(f,eating), eater(f,Hearer), eatee(…))

Speech Acts

38

§ What did Gilly swallow?

§ ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly),
swallowee(e,x))

§ Argument is identical to the modifier “that Gilly swallowed”
§ Is there any common syntax?

§ Eat your fish!

§ command(λf act(f,eating), eater(f,Hearer), eatee(…))

§ I ate my fish.

§ assert(∃e past(e), act(e,eating), eater(f,Speaker),
 eatee(…))

Speech Acts

38

§ We’ve discussed what semantic representations
should look like.

§ But how do we get them from sentences???

§ First - parse to get a syntax tree.
§ Second - look up the semantics for each word.
§ Third - build the semantics for each constituent

§ Work from the bottom up
§ The syntax tree is a “recipe” for how to do it

Compositional Semantics

39

Compositional Semantics

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

40

Compositional Semantics

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

40

Compositional Semantics

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

assert(every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))))

40

Compositional Semantics

41

§ Add a “sem” feature to each context-free rule
§ S → NP loves NP

§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]
§ Meaning of S depends on meaning of NPs

Compositional Semantics

41

§ Add a “sem” feature to each context-free rule
§ S → NP loves NP

§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]
§ Meaning of S depends on meaning of NPs

§ TAG version:

Compositional Semantics

41

§ Add a “sem” feature to each context-free rule
§ S → NP loves NP

§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]
§ Meaning of S depends on meaning of NPs

§ TAG version:

Compositional Semantics

NPV
loves

VP

S

NPx

y

loves(x,y)

41

§ Add a “sem” feature to each context-free rule
§ S → NP loves NP

§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]
§ Meaning of S depends on meaning of NPs

§ TAG version:

Compositional Semantics

NPV
loves

VP

S

NPx

y

loves(x,y)

NP
 the bucket

V
kicked

VP

S

NPx

died(x)

41

§ Add a “sem” feature to each context-free rule
§ S → NP loves NP

§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]
§ Meaning of S depends on meaning of NPs

§ TAG version:

Compositional Semantics

NPV
loves

VP

S

NPx

y

loves(x,y)

NP
 the bucket

V
kicked

VP

S

NPx

died(x)

§ Template filling: S[sem=showflights(x,y)] →
 I want a flight from NP[sem=x] to NP[sem=y]

41

Compositional Semantics

42

§ Instead of S → NP loves NP
§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

Compositional Semantics

42

§ Instead of S → NP loves NP
§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

§ might want general rules like S → NP VP:
§ V[sem=loves] → loves
§ VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
§ S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

Compositional Semantics

42

§ Instead of S → NP loves NP
§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

§ might want general rules like S → NP VP:
§ V[sem=loves] → loves
§ VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
§ S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

§ Now George loves Laura has sem=loves(Laura)(George)

Compositional Semantics

42

§ Instead of S → NP loves NP
§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

§ might want general rules like S → NP VP:
§ V[sem=loves] → loves
§ VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
§ S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

§ Now George loves Laura has sem=loves(Laura)(George)

§ In this manner we’ll sketch a version where
§ Still compute semantics bottom-up
§ Grammar is in Chomsky Normal Form
§ So each node has 2 children: 1 function & 1 argument
§ To get its semantics, apply function to argument!

Compositional Semantics

42

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

43

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

λy loves(L,y)

43

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

λy loves(L,y)

loves(L,G)

43

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

λy loves(L,y)

loves(L,G)

assert(loves(L,G))

43

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

assert(tall(J))

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

assert(tall(J))
So what do we want here?

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)tall(J)

assert(tall(J))

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

tall(J)

assert(tall(J))

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

tall(J)

assert(tall(J))

So what do we want here?

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

So what do we want here?

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

λadj λsubj adj(subj)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

λadj λsubj adj(subj)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

(λadj λsubj adj(subj))(λx tall(x))
= λsubj (λx tall(x))(subj)
= λsubj tall(subj)

44

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving),
lover(e,G), lovee(e,L)

45

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving),
lover(e,G), lovee(e,L)

 λy ∃e present(e),
act(e,loving),

lover(e,y), lovee(e,L)

45

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving),
lover(e,G), lovee(e,L)

λx λy ∃e present(e),
act(e,loving),

lover(e,y), lovee(e,x)

 λy ∃e present(e),
act(e,loving),

lover(e,y), lovee(e,L)

45

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

Now let’s try a more
complex example, and

really handle tense.

46

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

Now let’s try a more
complex example, and

really handle tense.

46

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

Now let’s try a more
complex example, and

really handle tense.

Treat –s like
yet another
auxiliary

verb

46

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)
the meaning that we
want here: how can
we arrange to get it?

47

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

G

48

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

G

48

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

G
what function should
apply to G to yield the
desired blue result?
 (this is like division!)

48

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

G

49

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

49

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a
λx λe act(e,loving),

lover(e,x), lovee(e,L)

50

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a
λx λe act(e,loving),

lover(e,x), lovee(e,L)

 We’ll say that
“to” is just a bit of syntax that

changes a VPstem to a VPinf
with the same meaning.

50

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a
λx λe act(e,loving),

lover(e,x), lovee(e,L)

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

51

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λx λe act(e,loving),
lover(e,x), lovee(e,L)

52

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λx λe act(e,loving),
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))
by analogy

52

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λx λe act(e,loving),
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))
by analogy

53

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λx λe act(e,loving),
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

by analogy

53

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

NP
George

54

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

54

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e
present(e),

v(x)(e)

54

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e
present(e),

v(x)(e)

Your account v is overdrawn, so your
rental application is rejected..
• Deposit some cash x to get v(x)
• Now show you’ve got the money:

∃e present(e), v(x)(e)
• Now you can withdraw x again:

λx ∃e present(e), v(x)(e)
54

Better analogy: How would you modify the
second object on a stack (λx,λe,act…)?

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e
present(e),

v(x)(e)

Your account v is overdrawn, so your
rental application is rejected..
• Deposit some cash x to get v(x)
• Now show you’ve got the money:

∃e present(e), v(x)(e)
• Now you can withdraw x again:

λx ∃e present(e), v(x)(e)
54

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

55

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

55

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

λp every(nation, p)

55

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

λp every(nation, p)

nation

56

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

λp every(nation, p)

λn λp
every(n, p)

nation

56

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

λs assert(s)

57

In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

58

In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

58

In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

assert(every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))))

58

§ Temporal logic
§ Gilly had swallowed eight goldfish
 before Milly reached the bowl

§ Billy said Jilly was pregnant

§ Billy said, “Jilly is pregnant.”

§ Generics
§ Typhoons arise in the Pacific

§ Children must be carried

§ Presuppositions
§ The king of France is bald.

§ Have you stopped beating your wife?

§ Pronoun-Quantifier Interaction (“bound anaphora”)
§ Every farmer who owns a donkey beats it.

§ If you have a dime, put it in the meter.

§ The woman who every Englishman loves is his mother.

§ I love my mother and so does Billy.

Other Fun Semantic Stuff:
A Few Much-Studied Miscellany

59

In Summary

§How do we judge a good meaning
representation?

§How can we represent sentence meaning
with first-order logic?

§How can logical representations of
sentences be composed from logical forms
of words?

§Next time: can we train models to recover
logical forms?

60

Computational
Semantics

61

Overview
• So far: What is semantics?

• First order logic and lambda calculus for compositional
semantics

• Now: How do we infer semantics?

• Minimalist (not in Chomskyan sense) approach

• Semantic role labeling

• Semantically informed grammar

• Combinatory categorial grammar (CCG)

• Tree adjoining grammar (TAG)

62

Semantic Role Labeling
• Characterize predicates (e.g., verbs, nouns, adjectives) as relations with roles

(slots)

[Judge She] blames [Evaluee the Government] [Reason for failing to do enough to
help] .

Holman would characterize this as blaming [Evaluee the poor] .

The letter quotes Black as saying that [Judge white and Navajo ranchers]
misrepresent their livestock losses and blame [Reason everything] [Evaluee on
coyotes] .

• We want a bit more than which NP is the subject (but not much more):

• Relations like subject are syntactic, relations like agent or experiencer are
semantic (think of passive verbs)

• Typically, SRL is performed in a pipeline on top of constituency or dependency
parsing and is much easier than parsing.

63

SRL Example







 

 

 



 



64

PropBank Example







65

PropBank Example







66

PropBank Example







67

Shared Arguments







68

Path Features







 
 

 

 

 

 

 

 

 

69

SRL Accuracy
• Features

• Path from target to role-filler

• Filler’s syntactic type, headword, case

• Target’s identity

• Sentence voice, etc.

• Lots of other second-order features

• Gold vs. parsed source trees

• SRL is fairly easy on gold trees

• Harder on automatic parses

• Joint inference of syntax and semantics not a helpful as expected







 
 

 

 

 

 

 

 

 

70

Interaction with Empty Elements







 

 

 


 


 


71

Empty Elements

• In Penn Treebank, 3 kinds of empty elem.

• Null items

• Movement traces (WH, topicalization,
relative clause and heavy NP extraposition)

• Control (raising, passives, control, shared
arguments)

• Semantic interpretation needs to reconstruct
these and resolve indices

72

English Example







73

German Example







74

Combinatory
Categorial Grammar

75

Combinatory Categorial Grammar (CCG)

• Categorial grammar (CG) is one of the
oldest grammar formalisms

• Combinatory Categorial Grammar now well
established and computationally well
founded (Steedman, 1996, 2000)

• Account of syntax; semantics; prodody
and information structure; automatic
parsers; generation

76

• CCG is a lexicalized grammar

• An elementary syntactic structure – for CCG a lexical
category – is assigned to each word in a sentence

walked: S\NP “give me an NP to my left and I return a
sentence”

• A small number of rules define how categories can
combine

• Rules based on the combinators from Combinatory
Logic

Combinatory Categorial Grammar (CCG)

77

CCG Lexical Categories
• Atomic categories: S , N , NP , PP , . . . (not many more)

• Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments

• Complex categories encode subcategorisation information

• intransitive verb: S \NP walked

• transitive verb: (S \NP)/NP respected

• ditransitive verb: ((S \NP)/NP)/NP gave

• Complex categories can encode modification

• PP nominal: (NP \NP)/NP

• PP verbal: ((S \NP)\(S \NP))/NP

78

Simple CCG Derivationccg Grammar 21

A Simple ccg Derivation

interleukin � 10 inhibits production

NP (S\NP)/NP NP
>

S\NP
<

S

> forward application
< backward application

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

79

Function Application Schemata
ccg Grammar 22

Function Application Rule Schemata

• Forward (>) and backward (<) application:

X /Y Y ⇥ X (>)
Y X \Y ⇥ X (<)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

80

Classical Categorial Grammar
ccg Grammar 23

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10 inhibits production

NP (S\NP)/NP NP

S\NP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200981

Classical Categorial Grammar
ccg Grammar 24

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10 inhibits production

NP V NP

VP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200982

ccg Grammar 25

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
NP S/(S\NP)

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

83

ccg Grammar 26

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
S/NP

NP\NP
NP

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

84

ccg Grammar 27

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
>B

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

85

ccg Grammar 28

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

NP\NP
NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

86

ccg Grammar 29

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

87

ccg Grammar 30

Forward Composition and Type-Raising

• Forward composition (>B):

X /Y Y /Z ⇥ X /Z (>B)

• Type-raising (T):

X ⇥ T/(T\X) (>T)
X ⇥ T\(T/X) (<T)

• Extra combinatory rules increase the weak generative power to
mild context -sensitivity

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

88

ccg Grammar 31

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
S/NP S/NP

S/NP
S

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

89

ccg Grammar 32

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
S/NP

S

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

90

ccg Grammar 33

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<�>

S/NP
S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

91

ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<�>

S/NP
>

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

92

ccg Grammar 35

Combinatory Categorial Grammar

• ccg is mildly context sensitive

• Natural language is provably non-context free
• Constructions in Dutch and Swiss German (Shieber, 1985) require

more than context free power for their analysis
• these have crossing dependencies (which ccg can handle)

Type 0 languages

Context sensitive languages

Context free languages

Regular languages

Mildly context sensitive languages =

natural languages (?)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

93

CCG Semantics

• Categories encode argument sequences

• Parallel syntactic combinator operations
and lambda calculus semantic operations





 

 


 


  

 


 


 

 






 


 



 



 



 






 

 


 


  

 


 


 

 






 


 



 



 



 


94

CCG Semantics
Left arg. Right arg. Operation Result

X/Y : f Y : a Forward
application

X : f(a)

Y : a X\Y : f Backward
application

X : f(a)

X/Y : f Y/Z : g Forward
composition

X/Z : λx.f(g(x))

X : a Type raising T/(T\X) : λf.f(a)

etc.
95

Tree Adjoining
Grammar

96

TAG Building Blocks

TAG Building Blocks

Harry likes peanuts passionately.

�1 NP

Harry

�2 S

�����

⇥⇥⇥⇥⇥

NP� VP
����

⇥⇥⇥⇥

V

likes
NP�

�3 NP

peanuts

⇥ VP

������

⇥⇥⇥⇥⇥⇥

VP* Adv

passionately

3

• Elementary trees (of many depths)

• Substitution at ↓

• Tree Substitution Grammar equivalent to
CFG

TAG Building Blocks

Harry likes peanuts passionately.

�1 NP

Harry

�2 S

�����

⇥⇥⇥⇥⇥

NP� VP
����

⇥⇥⇥⇥

V

likes
NP�

�3 NP

peanuts

⇥ VP

������

⇥⇥⇥⇥⇥⇥

VP* Adv

passionately

3

97

TAG Building Blocks

• Auxiliary trees for adjunction

• Adds extra power beyond CFG
TAG Building Blocks

Harry likes peanuts passionately.

�1 NP

Harry

�2 S

�����

⇥⇥⇥⇥⇥

NP� VP
����

⇥⇥⇥⇥

V

likes
NP�

�3 NP

peanuts

⇥ VP

������

⇥⇥⇥⇥⇥⇥

VP* Adv

passionately

3

TAG Building Blocks

Harry likes peanuts passionately.

�1 NP

Harry

�2 S

�����

⇥⇥⇥⇥⇥

NP� VP
����

⇥⇥⇥⇥

V

likes
NP�

�3 NP

peanuts

⇥ VP

������

⇥⇥⇥⇥⇥⇥

VP* Adv

passionately

3

98

Derivation Tree Derived Tree

�1

�������������

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

�2
Harry

⇥
passionately

�3
peanuts

S

����������

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

NP

Harry

VP1

���������

⇥⇥⇥⇥⇥⇥⇥⇥⇥

VP2

�����
⇥⇥⇥⇥⇥

V

likes

NP

peanuts

Adv

passionately

Semantics

Harry(x) � likes(e, x, y) � peanuts(y) � passionately(e)

4

TAG Building Blocks

Harry likes peanuts passionately.

�1 NP

Harry

�2 S

�����

⇥⇥⇥⇥⇥

NP� VP
����

⇥⇥⇥⇥

V

likes
NP�

�3 NP

peanuts

⇥ VP

������

⇥⇥⇥⇥⇥⇥

VP* Adv

passionately

3

99

Semantic representation - derived or derivation tree?

Derived tree

• not monotonic (e.g. immediate domination)

• contains nodes that are not needed for semantics

Derivation tree in TAG shows

• what elementary and auxiliary trees were used

• how the trees were combined

• where the trees were adjoined / substituted

⇥ Derivation tree provides a natural representation for compo-
sitional semantics

5

100

Elementary Semantic Representations

• description of meaning (conjunction of formulas)

• list of argument variables

�say S
����

⇥⇥⇥⇥

NP VP
��� ⇥⇥⇥

V

say

S�

say(e1, x, e2)
arg: < x,00 >, < e2,011 >

10

101

Composition of Semantic Representations

• sensitive to way of composition indicated in the derivation
tree

• sensitive to order of traversal

Substitution: a new argument is inserted in ⇥(�)

• unify the variable corresponding to the argument node (e.g.
x in thought(e, x)) with the variable in the substituted tree
(e.g. NP: Peter(x5))

• semantic representations are merged

11

102

Adjoining: ⇤(⇥) applied to ⇤(�)

• predicate: semantic representation of adjoined auxiliary tree

• argument: a variable in the ’host’ tree

12

103

Harry likes peanuts passionately.

Harry(x)
arg: -

likes(e, x, y)
arg: < x,00 >, < y,011 >

peanuts(y)
arg: -

passionately(e)
arg: e

Result:

likes(e, x, y)�
Harry(x)�
peanuts(y)�
passionately(e)
arg: -

13

104

Extensions and Multi-Component LTAG

To what extent can we obtain a compositional semantics by
using derivation trees?

Problem: Representation of Scope

Every boy saw a girl.

(suppose there are 5 boys in the world, how many girls have to
exist for the sentence to be true?)

14

105

Quantifiers have two parts:

• predicate-argument structure

• scope information

The two parts don’t necessarily stay together in the final seman-
tic representation.

15

106

Multi-Component Lexicalized Tree Adjoining Grammar

• Building blocks are sets of trees (roughly corresponding to
split-up LTAG elementary trees)

• Locality constraint: a multi-component elementary tree has
to be combined with only one elementary tree (tree locality;
Tree local MC-TAG is as powerful as LTAG)

• We use at most two components in each set

• Constraint on multiple adjunction

16

107

Representation of Quantifiers in MC-TAG

�
⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

⌥⌥⌥⌥⌥⌥⌥⌥⌥⇤

⇥1 �4

S� ,
NP

���
⇥⇥⇥

Det

every

N⇥

⇥
⌥⌥⌥⌥⌥⌥⌥⌥⌥⌃

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌅

17

108

Derivation Tree with Two Quantifiers - underspecified scope

Some student loves every course.

�
�
��⇤

⌃
⌃
⌃⌃�

⇧ ⇧

⌥⌥
⌥⌥

⌥⌥
⌥⌥

⇥⇥
⇥⇥
⇥⇥
⇥⇥⌅

00 011 0

�5�4

�1

�2 �3

0

⇥2⇥1

01 01

18

109

CCG & TAG

• Lexicon is encoded as categories or trees

• Extended domain of locality: information is
localized in the lexicon and “spread out”
during derivation

• Greater than context-free power;
polynomial-time parsing; O(n5) and up

• Spurious ambiguity: multiple derivations for a
single derived tree

110

Lexical Semantics

111

Overview

• Semantics so far: compositional semantics

• How to put together propositions from
atomic meanings (lexicon)?

• Now: lexical semantics

• What are those atomic meanings?

• Clustering words with similar senses

• Sense disambiguation, functional clustering

112

A Concordance for “party”

§ thing. She was talking at a party thrown at Daphne's restaurant in
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1
§ in the 1983 general election for a party which, when it could not bear to
§ to attack the Scottish National Party, who look set to seize Perth and
§ that had been passed to a second party who made a financial decision
§ the by-pass there will be a street party. "Then," he says, "we are going
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic
§ he told Tony Blair's modernised party they must not retreat into "warm
§ "Oh no, I'm just here for the party," they said. "I think it's terrible
§ A future obliges each party to the contract to fulfil it by
§ be signed by or on behalf of each party to the contract." Mr David N

113

http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3771338/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3771338/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4720961/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4720961/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/8577598/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/8577598/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/9304413/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/9304413/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4924950/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4924950/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2168669/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2168669/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3360748/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3360748/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4339985/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4339985/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/9759381/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/9759381/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1348310/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1348310/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2213866/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2213866/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1300851/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1300851/5

What Good are Word Senses?

§ thing. She was talking at a party thrown at Daphne's restaurant in
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1
§ in the 1983 general election for a party which, when it could not bear to
§ to attack the Scottish National Party, who look set to seize Perth and
§ that had been passed to a second party who made a financial decision
§ the by-pass there will be a street party. "Then," he says, "we are going
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic
§ he told Tony Blair's modernised party they must not retreat into "warm
§ "Oh no, I'm just here for the party," they said. "I think it's terrible
§ A future obliges each party to the contract to fulfil it by
§ be signed by or on behalf of each party to the contract." Mr David N

114

What Good are Word Senses?

§ thing. She was talking at a party thrown at Daphne's restaurant in
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1
§ the by-pass there will be a street party. "Then," he says, "we are going
§ "Oh no, I'm just here for the party," they said. "I think it's terrible

§ in the 1983 general election for a party which, when it could not bear to
§ to attack the Scottish National Party, who look set to seize Perth and
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic
§ he told Tony Blair's modernised party they must not retreat into "warm

§ that had been passed to a second party who made a financial decision
§ A future obliges each party to the contract to fulfil it by
§ be signed by or on behalf of each party to the contract." Mr David N

115

What Good are Word Senses?

§ John threw a “rain forest” party last
December. His living room was full of plants
and his box was playing Brazilian music …

116

What Good are Word Senses?

§Replace word w with sense s
§Splits w into senses: distinguishes this token of w
from tokens with sense t

§Groups w with other words: groups this token of
w with tokens of x that also have sense s

117

What Good are Word Senses?
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic
§ he told Tony Blair's modernised party they must not retreat into "warm
§ thing. She was talking at a party thrown at Daphne's restaurant in
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1
§ the by-pass there will be a street party. "Then," he says, "we are going
§ "Oh no, I'm just here for the party," they said. "I think it's terrible

§ an appearance at the annual awards bash , but feels in no fit state to
§ -known families at a fundraising bash on Thursday night for Learning
§ Who was paying for the bash? The only clue was the name Asprey,
§ Mail, always hosted the annual bash for the Scottish Labour front-
§ popular. Their method is to bash sense into criminals with a short,
§ just cut off people's heads and bash their brains out over the floor,

118

http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4

What Good are Word Senses?
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic
§ he told Tony Blair's modernised party they must not retreat into "warm

§ thing. She was talking at a party thrown at Daphne's restaurant in
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1
§ the by-pass there will be a street party. "Then," he says, "we are going
§ "Oh no, I'm just here for the party," they said. "I think it's terrible
§ an appearance at the annual awards bash, but feels in no fit state to
§ -known families at a fundraising bash on Thursday night for Learning
§ Who was paying for the bash? The only clue was the name Asprey,
§ Mail, always hosted the annual bash for the Scottish Labour front-

§ popular. Their method is to bash sense into criminals with a short,
§ just cut off people's heads and bash their brains out over the floor,

119

What Good are Word Senses?

120

What Good are Word Senses?

§ Semantics / Text understanding
§ Axioms about TRANSFER apply to (some tokens of) throw

§ Axioms about BUILDING apply to (some tokens of) bank

120

What Good are Word Senses?

§ Semantics / Text understanding
§ Axioms about TRANSFER apply to (some tokens of) throw

§ Axioms about BUILDING apply to (some tokens of) bank

§ Machine translation

120

What Good are Word Senses?

§ Semantics / Text understanding
§ Axioms about TRANSFER apply to (some tokens of) throw

§ Axioms about BUILDING apply to (some tokens of) bank

§ Machine translation
§ Info retrieval / Question answering / Text categ.

§ Query or pattern might not match document exactly

120

What Good are Word Senses?

§ Semantics / Text understanding
§ Axioms about TRANSFER apply to (some tokens of) throw

§ Axioms about BUILDING apply to (some tokens of) bank

§ Machine translation
§ Info retrieval / Question answering / Text categ.

§ Query or pattern might not match document exactly

§ Backoff for just about anything
§ what word comes next? (speech recognition, language ID, …)

§ trigrams are sparse but tri-meanings might not be

§ bilexical PCFGs: p(S[devour] à NP[lion] VP[devour] | S[devour])

§ approximate by p(S[EAT] à NP[lion] VP[EAT] | S[EAT])

120

What Good are Word Senses?

§ Semantics / Text understanding
§ Axioms about TRANSFER apply to (some tokens of) throw

§ Axioms about BUILDING apply to (some tokens of) bank

§ Machine translation
§ Info retrieval / Question answering / Text categ.

§ Query or pattern might not match document exactly

§ Backoff for just about anything
§ what word comes next? (speech recognition, language ID, …)

§ trigrams are sparse but tri-meanings might not be

§ bilexical PCFGs: p(S[devour] à NP[lion] VP[devour] | S[devour])

§ approximate by p(S[EAT] à NP[lion] VP[EAT] | S[EAT])

§ Speaker’s real intention is senses; words are a noisy channel

120

Cues to Word Sense

121

Cues to Word Sense

§Adjacent words (or their senses)

121

Cues to Word Sense

§Adjacent words (or their senses)

§Grammatically related words (subject, object, …)

121

Cues to Word Sense

§Adjacent words (or their senses)

§Grammatically related words (subject, object, …)

§Other nearby words

121

Cues to Word Sense

§Adjacent words (or their senses)

§Grammatically related words (subject, object, …)

§Other nearby words
§Topic of document

121

Cues to Word Sense

§Adjacent words (or their senses)

§Grammatically related words (subject, object, …)

§Other nearby words
§Topic of document
§Sense of other tokens of the word in the same
document

121

Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token

122

Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

122

Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

122

Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

probs
from tag
bigram
model

122

Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token

Start PN Verb Det Noun Prep Noun Prep Det Noun Stop

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

probs
from tag
bigram
model

probs from
unigram
replacement

122

Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token
§Simultaneously groups and splits words
§ “party” gets split into N and V senses
§ “bash” gets split into N and V senses
§{party/N, bash/N} vs. {party/V, bash/V}
§What good are these groupings?

123

Learning Word Classes

§ Every tag is a kind of class
§ Tagger assigns a class to each word token

§ {party/N, bash/N} vs. {party/V, bash/V}
§ What good are these groupings?
§ Good for predicting next word or its class!

§ Role of forward-backward algorithm?
§ It adjusts classes etc. in order to predict sequence of

words better (with lower perplexity)

124

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

125

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

= party

125

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)

= party

125

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

= party

125

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

Arlen Specter abandoned the Republican party.
There were lots of abbots and nuns dancing at that party.
The party above the art gallery was, above all, a laboratory

for synthesizing zygotes and beer.

From
corpus:

= party

125

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

count too high
(too influential)

Arlen Specter abandoned the Republican party.
There were lots of abbots and nuns dancing at that party.
The party above the art gallery was, above all, a laboratory

for synthesizing zygotes and beer.

From
corpus:

= party

125

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

count too high
(too influential)

count
too low

Arlen Specter abandoned the Republican party.
There were lots of abbots and nuns dancing at that party.
The party above the art gallery was, above all, a laboratory

for synthesizing zygotes and beer.

From
corpus:

= party

125

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

= party

126

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

= party

how might you
measure this?

126

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

= party

§ how often words appear next to each other

how might you
measure this?

126

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

= party

§ how often words appear next to each other
§ how often words appear near each other

how might you
measure this?

126

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

= party

§ how often words appear next to each other
§ how often words appear near each other
§ how often words are syntactically linked

how might you
measure this?

126

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

= party

§ how often words appear next to each other
§ how often words appear near each other
§ how often words are syntactically linked
§ should correct for commonness of word (e.g., “above”)

how might you
measure this?

126

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

127

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

§ Plot all word types in k-dimensional space

127

Words as Vectors

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary
§ the 17th coordinate of w represents strength of w’s

association with vocabulary word 17

(0, 0, 3, 1, 0, 7, . . . 1, 0)
aar

dva
rk

aba
cus

abb
ot
abd

uct
abo

ve
zyg

ote
zym

urg
y

aba
ndo

ned

§ Plot all word types in k-dimensional space
§ Look for clusters of close-together types

127

Learning Classes by Clustering

§ Plot all word types in k-dimensional space
§ Look for clusters of close-together types

Plot in k dimensions (here k=3)

128

Learning Classes by Clustering

§ Plot all word types in k-dimensional space
§ Look for clusters of close-together types

Plot in k dimensions (here k=3)

128

Learning Classes by Clustering

§ Plot all word types in k-dimensional space
§ Look for clusters of close-together types

Plot in k dimensions (here k=3)

128

Bottom-Up Clustering

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B

129

Bottom-Up Clustering – Single-Link

each word type is
a single-point cluster

example from Manning & Schütze

130

Bottom-Up Clustering – Single-Link

each word type is
a single-point cluster

merge

example from Manning & Schütze

130

Bottom-Up Clustering – Single-Link

each word type is
a single-point cluster

merge

example from Manning & Schütze

130

Bottom-Up Clustering – Single-Link

each word type is
a single-point cluster

merge

example from Manning & Schütze

130

Bottom-Up Clustering – Single-Link

each word type is
a single-point cluster

merge

example from Manning & Schütze

130

Bottom-Up Clustering – Single-Link

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
 dist(A,B) = min dist(a,b) for a∈A, b∈B

each word type is
a single-point cluster

merge

example from Manning & Schütze

130

Bottom-Up Clustering – Single-Link

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
 dist(A,B) = min dist(a,b) for a∈A, b∈B

each word type is
a single-point cluster

merge

example from Manning & Schütze

130

Bottom-Up Clustering – Single-Link

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
 dist(A,B) = min dist(a,b) for a∈A, b∈B

each word type is
a single-point cluster

merge

example from Manning & Schütze

130

example from Manning & Schütze

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
 dist(A,B) = min dist(a,b) for a∈A, b∈B

Fast, but tend to get long, stringy, meandering clusters

Bottom-Up Clustering – Single-Link

131

example from Manning & Schütze

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
 dist(A,B) = min dist(a,b) for a∈A, b∈B

Fast, but tend to get long, stringy, meandering clusters

...

Bottom-Up Clustering – Single-Link

131

example from Manning & Schütze

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
 dist(A,B) = min dist(a,b) for a∈A, b∈B

Fast, but tend to get long, stringy, meandering clusters

...

Bottom-Up Clustering – Single-Link

131

example from Manning & Schütze

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
 dist(A,B) = min dist(a,b) for a∈A, b∈B

Fast, but tend to get long, stringy, meandering clusters

...

Bottom-Up Clustering – Single-Link

131

Bottom-Up Clustering – Complete-Link
example from Manning & Schütze

132

Bottom-Up Clustering – Complete-Link

Again, merge closest pair of clusters:
Complete-link: clusters are close only if all of their points are
 dist(A,B) = max dist(a,b) for a∈A, b∈B

example from Manning & Schütze

132

Bottom-Up Clustering – Complete-Link

Again, merge closest pair of clusters:
Complete-link: clusters are close only if all of their points are
 dist(A,B) = max dist(a,b) for a∈A, b∈B

example from Manning & Schütze

132

Bottom-Up Clustering – Complete-Link

Again, merge closest pair of clusters:
Complete-link: clusters are close only if all of their points are
 dist(A,B) = max dist(a,b) for a∈A, b∈B

distance
between
clusters

example from Manning & Schütze

132

Bottom-Up Clustering – Complete-Link

Again, merge closest pair of clusters:
Complete-link: clusters are close only if all of their points are
 dist(A,B) = max dist(a,b) for a∈A, b∈B

distance
between
clusters

example from Manning & Schütze

132

Bottom-Up Clustering – Complete-Link

Again, merge closest pair of clusters:
Complete-link: clusters are close only if all of their points are
 dist(A,B) = max dist(a,b) for a∈A, b∈B

distance
between
clusters

example from Manning & Schütze

132

Bottom-Up Clustering – Complete-Link

Again, merge closest pair of clusters:
Complete-link: clusters are close only if all of their points are
 dist(A,B) = max dist(a,b) for a∈A, b∈B

example from Manning & Schütze

Slow to find closest pair – need quadratically many distances
133

Bottom-Up Clustering – Complete-Link

Again, merge closest pair of clusters:
Complete-link: clusters are close only if all of their points are
 dist(A,B) = max dist(a,b) for a∈A, b∈B

distance
between
clusters

example from Manning & Schütze

Slow to find closest pair – need quadratically many distances
133

Bottom-Up Clustering

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
§ too slow to update cluster distances after each merge; but ∃ alternatives!

134

Bottom-Up Clustering

§ Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

§ Centroid-link: dist(A,B) = dist(mean(A),mean(B))

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
§ too slow to update cluster distances after each merge; but ∃ alternatives!

134

Bottom-Up Clustering

§ Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

§ Centroid-link: dist(A,B) = dist(mean(A),mean(B))

§Stop when clusters are “big enough”
§ e.g., provide adequate support for backoff (on a development corpus)

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
§ too slow to update cluster distances after each merge; but ∃ alternatives!

134

Bottom-Up Clustering

§ Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

§ Centroid-link: dist(A,B) = dist(mean(A),mean(B))

§Stop when clusters are “big enough”
§ e.g., provide adequate support for backoff (on a development corpus)

§Some flexibility in defining dist(a,b)
§ Might not be Euclidean distance; e.g., use vector angle

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
§ too slow to update cluster distances after each merge; but ∃ alternatives!

134

EM Clustering (for k clusters)

135

EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

135

EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

135

EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to
reconstruct hidden structure

135

EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to
reconstruct hidden structure

§ Maximization step: Use that hidden structure (and observations) to
reestimate parameters

135

EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to
reconstruct hidden structure

§ Maximization step: Use that hidden structure (and observations) to
reestimate parameters

135

EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to
reconstruct hidden structure

§ Maximization step: Use that hidden structure (and observations) to
reestimate parameters

§ Parameters: k points representing cluster centers

135

EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to
reconstruct hidden structure

§ Maximization step: Use that hidden structure (and observations) to
reestimate parameters

§ Parameters: k points representing cluster centers
§ Hidden structure: for each data point (word type),

which center generated it?

135

Learning syntactic patterns for

automatic hypernym discovery

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.

136

137

138

139

140

141

142

143

VERBOCEAN: Mining the Web for

Fine-Grained Semantic Verb Relations

Timothy Chklovski and Patrick Pantel

144

145

146

147

148

149

150

151

152

153

154

155

http://semantics.isi.edu/ocean/

Demo

156

