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Language as Structure
• So far, we’ve talked about structure

• What structures are more probable?

• Language modeling: Good sequences of words/
characters

• Text classification: Good sequences in defined 
contexts

• How can we recover hidden structure?

• Tagging: hidden word classes

• Parsing: hidden word relations
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What Does It All Mean?

• Studying phonology, morphology, syntax, 
etc. independent of meaning is 
methodologically very useful

• We can study the structure of languages we 
don’t understand

• We can use HMMs and CFGs to study 
protein structure and music, which don’t 
bear meaning in the same way as language
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What Does It All Mean?

• How would you know if a computer 
“understood” the “meaning” of an (English) 
utterance (even in some weak “scare-
quoted” way)?

• How would you know if a person 
understood the meaning of an utterance?
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What Does It All Mean?

• Paraphrase, “state in your own 
words” (English to English translation)

• Translation into another language

• Reading comprehension questions

• Drawing appropriate inferences

• Carrying out appropriate actions

• Open-ended dialogue (Turing test)
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§What is meaning of 3+5*6?
§First parse it into 3+(5*6)

Programming Language 
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What Counts as Understanding?
   some notions
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§ We understand if we can respond appropriately
§ ok for commands, questions (these demand response)
§ “Computer, warp speed 5”
§ “throw axe at dwarf”
§ “put all of my blocks in the red box”
§ imperative programming languages
§ SQL database queries and other questions

§ We understand statement if we can determine its 
truth
§ ok, but if you knew whether it was true, why did anyone 

bother telling it to you?
§ comparable notion for understanding NP is to compute 

what the NP refers to, which might be useful

What Counts as Understanding?
   some notions
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§ We understand statement if we know how  one could (in 
principle) determine its truth
§ What are exact conditions under which it would be true?

§ necessary + sufficient

§ Equivalently, derive all its consequences 
§ what else must be true if we accept the statement?

§ Match statements with a “domain theory”

§ Philosophers tend to use this definition
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principle) determine its truth
§ What are exact conditions under which it would be true?

§ necessary + sufficient

§ Equivalently, derive all its consequences 
§ what else must be true if we accept the statement?

§ Match statements with a “domain theory”

§ Philosophers tend to use this definition

§ We understand statement if we can use it to answer 
questions  [very similar to above – requires reasoning]

§ Easy: John ate pizza.  What was eaten by John?
§ Hard: White’s first move is P-Q4.  Can Black checkmate?
§ Constructing a procedure  to get the answer is enough

What Counts as Understanding?
   some notions
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What Does It All Mean?

• Paraphrase, “state in your own words” (English to 
English translation)

• Translation into another language

• Reading comprehension questions

• Drawing appropriate inferences

• Carrying out appropriate actions

• Open-ended dialogue (Turing test)

• Translation to logical form that we can reason about 
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(First Order) Logic
Some Preliminaries
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3. Functions of various types 
§ Functions from booleans to booleans (and, or, not)
§ A function from entity to boolean is called a 

“predicate” – e.g., frog(x), green(x)
§ Functions might return other functions!
§ Function might take other functions as arguments!

(First Order) Logic
Some Preliminaries
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§ Lambda terms: 
§A way of writing “anonymous functions” 

§No function header or function name
§But defines the key thing: behavior of the function
§Just as we can talk about 3 without naming it “x”

§Let square = λp p*p   
§Equivalent to int square(p) { return p*p; }
§But we can talk about λp p*p without naming it
§Format of a lambda term: λ variable expression

Logic: Lambda Terms

14



Logic: Lambda Terms

15



§ Lambda terms:

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   
§ Then square(3)  =  (λp p*p)(3) = 3*3

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   
§ Then square(3)  =  (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function!  It’s just the value x*x.

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   
§ Then square(3)  =  (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function!  It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)? )

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   
§ Then square(3)  =  (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function!  It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)? )

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   
§ Then square(3)  =  (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function!  It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)? )

§ Let even = λp (p mod 2 == 0)    a predicate: returns true/false

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   
§ Then square(3)  =  (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function!  It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)? )

§ Let even = λp (p mod 2 == 0)    a predicate: returns true/false

§ even(x) is true if x is even

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   
§ Then square(3)  =  (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function!  It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)? )

§ Let even = λp (p mod 2 == 0)    a predicate: returns true/false

§ even(x) is true if x is even
§ How about even(square(x))?  
§ λx even(square(x)) is true of numbers with even squares

§ Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)

Logic: Lambda Terms

15



§ Lambda terms:
§ Let square = λp p*p   
§ Then square(3)  =  (λp p*p)(3) = 3*3
§ Note: square(x) isn’t a function!  It’s just the value x*x.
§ But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)? )
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§ even(x) is true if x is even
§ How about even(square(x))?  
§ λx even(square(x)) is true of numbers with even squares

§ Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)
§ This happens to denote the same predicate as even does
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Logic: Multiple Arguments

§ All lambda terms have one argument
§ But we can fake multiple arguments ...

§ If we write times(5,6), it’s just syntactic sugar for 
times(5)(6) or perhaps times(6)(5)  [notation varies]
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      = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30
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§ So we can always get away with 1-arg functions ...
§ ... which might return a function to take the next 

argument.  Whoa.
§ Remember: square can be written as λx square(x)

§ And now times can be written as λx λy times(x,y)
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§ How do we get from times(5,6) to 30 ?

§ Whether times(5,6) = 30 depends on whether symbol * actually 
denotes the multiplication function!

§ Well, maybe * was defined as another lambda term, so 
substitute to get *(5,6) = (blah blah blah)(5)(6) 

§ But we can’t keep doing substitutions forever!
§ Eventually we have to ground out in a primitive term
§ Primitive terms are bound to object code

§ Maybe *(5,6) just executes a multiplication function
§ What is executed by loves(john, mary) ?
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§Thus, have “constants” that name some of the 
entities and functions (e.g., *):
§GeorgeWBush  - an entity
§ red – a predicate on entities

§holds of just the red entities: red(x) is true if x is red!
§ loves – a predicate on 2 entities

§ loves(GeorgeWBush, LauraBush)
§Question: What does loves(LauraBush) denote?

§Constants used to define meanings of words
§Meanings of phrases will be built from the 
constants

Logic: Interesting Constants
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§most – a predicate on 2 predicates on entities
§most(pig, big)  = “most pigs are big”

§Equivalently,  most(λx pig(x), λx big(x))
§ returns true if most of the things satisfying the first 
predicate also satisfy the second predicate
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§most – a predicate on 2 predicates on entities
§most(pig, big)  = “most pigs are big”

§Equivalently,  most(λx pig(x), λx big(x))
§ returns true if most of the things satisfying the first 
predicate also satisfy the second predicate

§ similarly for other quantifiers
§all(pig,big)   (equivalent to ∀x pig(x) ⇒ big(x))
§exists(pig,big)   (equivalent to ∃x pig(x) AND big(x))
§ can even build complex quantifiers from English phrases:

§ “between 12 and 75”; “a majority of”; “all but the smallest 2”

Logic: Interesting Constants
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§Gilly swallowed a goldfish
§First attempt: swallowed(Gilly, goldfish)

§Returns true or false.  Analogous to 
§prime(17)
§equal(4,2+2)
§ loves(GeorgeWBush, LauraBush)
§ swallowed(Gilly, Jilly)

§… or is it analogous?

A reasonable representation?
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§ Gilly swallowed a goldfish
§ First attempt: swallowed(Gilly, goldfish)

§ But we’re not paying attention to a!
§ goldfish isn’t the name of a unique object the 

way Gilly is

§ In particular, don’t want
Gilly swallowed a goldfish and Milly 
swallowed a goldfish
to translate as
swallowed(Gilly, goldfish) AND swallowed(Milly, goldfish) 
since probably not the same goldfish …

A reasonable representation?
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Use a Quantifier
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§ “In the set of goldfish there exists one swallowed by Gilly”

§ Here goldfish is a predicate on entities
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§ Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g)
§ Now we can write:
∃t past(t) AND exists(goldfish, swallow(t,Gilly))

§ “There was some time in the past such that a goldfish was among the 
objects swallowed by Gilly at that time”

(Simplify Notation)
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§ [Gilly] swallowed [a goldfish] [on a dare] 
[in a telephone booth] [with 30 other 
freshmen] [after many bottles of vodka had 
been consumed].
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says that there’s only one event
with a single goldfish getting swallowed

that took place in a lot of booths ...
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§ Groucho Marx celebrates quantifier order ambiguity:
§ In this country a woman gives birth every 15 min.  Our 
job is to find that woman and stop her.

§ ∃woman (∀15min gives-birth-during(woman, 15min))
§∀15min (∃woman gives-birth-during(15min, woman))
§ Surprisingly, both are possible in natural language!
§ Which is the joke meaning (where it’s always the same woman) and 

why?

Quantifier Order
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§Does this mean what we’d expect??
§ It’s ∃e ∀b which means same event for every booth

§ Probably false unless Gilly can be in every booth during 
her swallowing of a single goldfish
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§ ∃e past(e), act(e,swallowing), swallower(e,Gilly), 
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

§Other reading (∀b ∃e) involves quantifier raising:
§ all(booth, λb [∃e past(e), act(e,swallowing), swallower 

(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])
§ “for all booths b, there was such an event in b”
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§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy), 
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

§ “Willy wants any event e’ in which Lilly gets married”
§ Here the wantee is a type of event
§ Sentence doesn’t claim that such an event exists

§ Intensional verbs besides want: hope, doubt, believe,…
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§ ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))   
§ “Willy wants anything that satisfies the unicorn predicate” 
§ here the wantee is a type of entity 

§ Problem (a fine point I’ll gloss over):

§ λg unicorn(g) is defined by the actual set of unicorns (“extension”)
§ But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
§ Then wants a unicorn = wants a dodo.  Oops!

§ So really the wantee should be criteria for unicornness (“intension”)

§ Traditional solution involves “possible-world semantics”

§ Can imagine other worlds where set of unicorn ≠ set of dodos
§ Other worlds also useful for:  You must pay the rent
   You can pay the rent
 If you hadn’t, you’d be homeless
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§ Same as  Willy wants Willy to get married

§ Just as easy to represent as Willy wants Lilly … 
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§ Willy wants Lilly to get married

§ ∃e present(e), act(e,wanting), wanter(e,Willy), 
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

§ Willy wants to get married

§ Same as  Willy wants Willy to get married

§ Just as easy to represent as Willy wants Lilly … 
§ The only trick is to construct the representation from the 

syntax.  The empty subject position of “to get married” is 
said to be controlled by the subject of “wants.”

Control
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§ expert
§ λg expert(g)
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§ expert
§ λg expert(g)

§ big fat expert
§ λg  big(g), fat(g), expert(g)
§ But: bogus expert

§Wrong: λg bogus(g), expert(g)
§Right: λg (bogus(expert))(g)    … bogus maps to new concept
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§ expert
§ λg expert(g)

§ big fat expert
§ λg  big(g), fat(g), expert(g)
§ But: bogus expert

§Wrong: λg bogus(g), expert(g)
§Right: λg (bogus(expert))(g)    … bogus maps to new concept

§ Baltimore expert (white-collar expert, TV expert …)

§ λg Related(Baltimore, g), expert(g) – expert from Baltimore
§ Or with different intonation: 

§ λg (Modified-by(Baltimore, expert))(g) – expert on Baltimore
§ Can’t use Related for this case: law expert and dog catcher 
= λg Related(law,g), expert(g), Related(dog, g), catcher(g) 
= dog expert and law catcher

Nouns and Their Modifiers
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Nouns and Their Modifiers

§ the goldfish that Gilly swallowed

§ every goldfish that Gilly swallowed

§ three goldfish that Gilly swallowed
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Nouns and Their Modifiers

§ the goldfish that Gilly swallowed

§ every goldfish that Gilly swallowed

§ three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)] 
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Nouns and Their Modifiers

§ the goldfish that Gilly swallowed

§ every goldfish that Gilly swallowed

§ three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)] 

§ three swallowed-by-Gilly goldfish
like an adjective!
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Nouns and Their Modifiers

§ the goldfish that Gilly swallowed

§ every goldfish that Gilly swallowed

§ three goldfish that Gilly swallowed

Or for real: λg [goldfish(g), ∃e [past(e), act(e,swallowing), 

swallower(e,Gilly), swallowee(e,g) ]] 

λg [goldfish(g), swallowed(Gilly, g)] 

§ three swallowed-by-Gilly goldfish
like an adjective!
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§ Lili passionately wants Billy
§ Wrong?: passionately(want(Lili,Billy)) = passionately(true)

§ Better: (passionately(want))(Lili,Billy)

§ Best: ∃e present(e), act(e,wanting), wanter(e,Lili), 
wantee(e, Billy), manner(e, passionate)

Adverbs
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§ Lili passionately wants Billy
§ Wrong?: passionately(want(Lili,Billy)) = passionately(true)

§ Better: (passionately(want))(Lili,Billy)

§ Best: ∃e present(e), act(e,wanting), wanter(e,Lili), 
wantee(e, Billy), manner(e, passionate)

§ Lili often stalks Billy
§ (often(stalk))(Lili,Billy)
§ many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili), 

stalkee(e, Billy), during(e,d))
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§ Lili passionately wants Billy
§ Wrong?: passionately(want(Lili,Billy)) = passionately(true)

§ Better: (passionately(want))(Lili,Billy)

§ Best: ∃e present(e), act(e,wanting), wanter(e,Lili), 
wantee(e, Billy), manner(e, passionate)

§ Lili often stalks Billy
§ (often(stalk))(Lili,Billy)
§ many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili), 

stalkee(e, Billy), during(e,d))

§ Lili obviously likes Billy
§ (obviously(like))(Lili,Billy) – one reading
§ obvious(like(Lili, Billy)) – another reading

Adverbs
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§ What is the meaning of a full sentence?
§ Depends on the punctuation mark at the end. J 
§ Billy likes Lili. à  assert(like(B,L))
§ Billy likes Lili? à  ask(like(B,L))

§ or more formally, “Does Billy like Lili?”

§ Billy, like Lili! à  command(like(B,L))
§ or more accurately, “Let Billy like Lili!”

Speech Acts
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§ What is the meaning of a full sentence?
§ Depends on the punctuation mark at the end. J 
§ Billy likes Lili. à  assert(like(B,L))
§ Billy likes Lili? à  ask(like(B,L))

§ or more formally, “Does Billy like Lili?”

§ Billy, like Lili! à  command(like(B,L))
§ or more accurately, “Let Billy like Lili!”

§ Let’s try to do this a little more precisely, using event 
variables etc.

Speech Acts
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§ What did Gilly swallow?

§ ask(λx ∃e past(e), act(e,swallowing),            
      swallower(e,Gilly), 
swallowee(e,x))

§ Argument is identical to the modifier “that Gilly swallowed”
§ Is there any common syntax?
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§ What did Gilly swallow?

§ ask(λx ∃e past(e), act(e,swallowing),            
      swallower(e,Gilly), 
swallowee(e,x))

§ Argument is identical to the modifier “that Gilly swallowed”
§ Is there any common syntax?

§ Eat your fish!

§ command(λf act(f,eating), eater(f,Hearer), eatee(…))
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§ What did Gilly swallow?

§ ask(λx ∃e past(e), act(e,swallowing),            
      swallower(e,Gilly), 
swallowee(e,x))

§ Argument is identical to the modifier “that Gilly swallowed”
§ Is there any common syntax?

§ Eat your fish!

§ command(λf act(f,eating), eater(f,Hearer), eatee(…))

§ I ate my fish.

§ assert(∃e past(e), act(e,eating), eater(f,Speaker), 
      eatee(…))

Speech Acts
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§ We’ve discussed what semantic representations 
should look like.

§ But how do we get them from sentences???

§ First - parse to get a syntax tree.
§ Second - look up the semantics for each word.
§ Third - build the semantics for each constituent

§ Work from the bottom up
§ The syntax tree is a “recipe” for how to do it

Compositional Semantics
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λy λx λe act(e,wanting), 
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)
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λa a

λy λx λe act(e,loving), 
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting), 
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

assert(every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))))
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Compositional Semantics
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§ Add a “sem” feature to each context-free rule
§ S → NP loves NP

§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y] 
§ Meaning of S depends on meaning of NPs

Compositional Semantics
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§ TAG version:
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§ Add a “sem” feature to each context-free rule
§ S → NP loves NP
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§ Add a “sem” feature to each context-free rule
§ S → NP loves NP

§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y] 
§ Meaning of S depends on meaning of NPs

§ TAG version:

Compositional Semantics

NPV
loves

VP

S

NPx

y

loves(x,y)

NP
  the bucket

V
kicked

VP

S

NPx

died(x)

§ Template filling: S[sem=showflights(x,y)] → 
      I want a flight from NP[sem=x] to NP[sem=y]
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§ Instead of S → NP loves NP
§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

Compositional Semantics
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§ Instead of S → NP loves NP
§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

§ might want general rules like S → NP VP:
§ V[sem=loves] → loves
§ VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
§ S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]
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§ Instead of S → NP loves NP
§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

§ might want general rules like S → NP VP:
§ V[sem=loves] → loves
§ VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
§ S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

§ Now George loves Laura has sem=loves(Laura)(George)
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§ Instead of S → NP loves NP
§ S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

§ might want general rules like S → NP VP:
§ V[sem=loves] → loves
§ VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
§ S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

§ Now George loves Laura has sem=loves(Laura)(George)

§ In this manner we’ll sketch a version where 
§ Still compute semantics bottom-up 
§ Grammar is in Chomsky Normal Form
§ So each node has 2 children: 1 function & 1 argument
§ To get its semantics, apply function to argument!
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Compositional Semantics
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George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

λy loves(L,y)

loves(L,G)

assert(loves(L,G))

43



Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

assert(tall(J))

44



Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

assert(tall(J))
So what do we want here?
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λs assert(s)
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J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

(λadj λsubj adj(subj))(λx tall(x))
=      λsubj (λx tall(x))(subj) 
=      λsubj            tall(subj) 

44



Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving), 
lover(e,G), lovee(e,L)

45



Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving), 
lover(e,G), lovee(e,L)

   λy ∃e present(e), 
act(e,loving), 

lover(e,y), lovee(e,L)

45



Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving), 
lover(e,G), lovee(e,L)

λx λy ∃e present(e), 
act(e,loving), 

lover(e,y), lovee(e,x)

   λy ∃e present(e), 
act(e,loving), 
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Now let’s try a more 
complex example, and 

really handle tense.
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really handle tense.
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λe act(e,loving), lover(e,G), lovee(e,L)
the meaning that we 
want here: how can 
we arrange to get it?
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what function should
apply to G to yield the 
desired blue result?
         (this is like division!)
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 We’ll say that
“to” is just a bit of syntax that

changes a VPstem to a VPinf 
with the same meaning. 
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Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving), 
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving), 
lover(e,x), lovee(e,y)

L

λx λe act(e,loving), 
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))
by analogy
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving), 
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving), 
lover(e,x), lovee(e,y)

L

λx λe act(e,loving), 
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))
by analogy
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving), 
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving), 
lover(e,x), lovee(e,y)

L

λx λe act(e,loving), 
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))

λy λx λe act(e,wanting), 
wanter(e,x), wantee(e,y)

by analogy
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))

NP
George
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e 
present(e), 

v(x)(e)
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e 
present(e), 

v(x)(e)

Your account v is overdrawn, so your
rental application is rejected..
• Deposit some cash x to get v(x)
• Now show you’ve got the money:

∃e present(e), v(x)(e)
• Now you can withdraw x again:

λx ∃e present(e), v(x)(e)
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Better analogy: How would you modify the 
second object on a stack (λx,λe,act…)?

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e 
present(e), 

v(x)(e)

Your account v is overdrawn, so your
rental application is rejected..
• Deposit some cash x to get v(x)
• Now show you’ve got the money:

∃e present(e), v(x)(e)
• Now you can withdraw x again:

λx ∃e present(e), v(x)(e)
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L)))

55



NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L)))

λp every(nation, p)
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L)))

λp every(nation, p)

nation
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting), 
wanter(e,x), wantee(e, λe’ 

act(e’,loving), 
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L)))

λp every(nation, p)

λn λp 
every(n, p)

nation
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NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

NP
George

every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L)))

λs assert(s)
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In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving), 
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting), 
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)
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In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP
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Det
Every

START
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.

G

λa a

λy λx λe act(e,loving), 
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting), 
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)
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In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving), 
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting), 
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

assert(every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))))
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§ Temporal logic
§ Gilly had swallowed eight goldfish 
   before Milly reached the bowl

§ Billy said Jilly was pregnant

§ Billy said, “Jilly is pregnant.”

§ Generics
§ Typhoons arise in the Pacific

§ Children must be carried

§ Presuppositions
§ The king of France is bald.

§ Have you stopped beating your wife?

§ Pronoun-Quantifier Interaction (“bound anaphora”)
§ Every farmer who owns a donkey beats it.

§ If you have a dime, put it in the meter.

§ The woman who every Englishman loves is his mother.

§ I love my mother and so does Billy.

Other Fun Semantic Stuff: 
A Few Much-Studied Miscellany
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In Summary

§How do we judge a good meaning 
representation?

§How can we represent sentence meaning 
with first-order logic?

§How can logical representations of 
sentences be composed from logical forms 
of words?

§Next time: can we train models to recover 
logical forms?
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Computational 
Semantics
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Overview
• So far: What is semantics?

• First order logic and lambda calculus for compositional 
semantics

• Now: How do we infer semantics?

• Minimalist (not in Chomskyan sense) approach

• Semantic role labeling

• Semantically informed grammar

• Combinatory categorial grammar (CCG)

• Tree adjoining grammar (TAG)
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Semantic Role Labeling
• Characterize predicates (e.g., verbs, nouns, adjectives) as relations with roles 

(slots)

[Judge She] blames [Evaluee the Government] [Reason for failing to do enough to 
help] .

Holman would characterize this as blaming [Evaluee the poor] .

The letter quotes Black as saying that [Judge white and Navajo ranchers] 
misrepresent their livestock losses and blame [Reason everything] [Evaluee on 
coyotes] .

• We want a bit more than which NP is the subject (but not much more):

• Relations like subject are syntactic, relations like agent or experiencer are 
semantic (think of passive verbs)

• Typically, SRL is performed in a pipeline on top of constituency or dependency 
parsing and is much easier than parsing.
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SRL Example







 

 

 



 


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PropBank Example






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PropBank Example






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PropBank Example






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Shared Arguments






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Path Features







 
 

 

 

 

 

 

 

 
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SRL Accuracy
• Features

• Path from target to role-filler

• Filler’s syntactic type, headword, case

• Target’s identity

• Sentence voice, etc.

• Lots of other second-order features

• Gold vs. parsed source trees

• SRL is fairly easy on gold trees

• Harder on automatic parses

• Joint inference of syntax and semantics not a helpful as expected







 
 

 

 

 

 

 

 

 
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Interaction with Empty Elements







 

 

 


 


 

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Empty Elements

• In Penn Treebank, 3 kinds of empty elem.

• Null items

• Movement traces (WH, topicalization, 
relative clause and heavy NP extraposition)

• Control (raising, passives, control, shared 
arguments)

• Semantic interpretation needs to reconstruct 
these and resolve indices
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English Example






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German Example






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Combinatory 
Categorial Grammar
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Combinatory Categorial Grammar (CCG)

• Categorial grammar (CG) is one of the 
oldest grammar formalisms

• Combinatory Categorial Grammar now well 
established and computationally well 
founded (Steedman, 1996, 2000)

• Account of syntax; semantics; prodody 
and information structure; automatic 
parsers; generation
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• CCG is a lexicalized grammar 

• An elementary syntactic structure – for CCG a lexical 
category – is assigned to each word in a sentence

walked: S\NP “give me an NP to my left and I return a 
sentence”

• A small number of rules define how categories can 
combine

• Rules based on the combinators from Combinatory 
Logic

Combinatory Categorial Grammar (CCG)

77



CCG Lexical Categories
• Atomic categories: S , N , NP , PP , . . . (not many more) 

• Complex categories are built recursively from atomic categories 
and slashes, which indicate the directions of arguments 

• Complex categories encode subcategorisation information 

• intransitive verb: S \NP walked 

• transitive verb: (S \NP )/NP respected 

• ditransitive verb: ((S \NP )/NP )/NP gave 

• Complex categories can encode modification 

• PP nominal: (NP \NP )/NP 

• PP verbal: ((S \NP )\(S \NP ))/NP
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Simple CCG Derivationccg Grammar 21

A Simple ccg Derivation

interleukin � 10 inhibits production

NP (S\NP)/NP NP
>

S\NP
<

S

> forward application
< backward application

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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Function Application Schemata
ccg Grammar 22

Function Application Rule Schemata

• Forward (>) and backward (<) application:

X /Y Y ⇥ X (>)
Y X \Y ⇥ X (<)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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Classical Categorial Grammar
ccg Grammar 23

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10        inhibits       production 

NP (S\NP)/NP NP

S\NP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200981



Classical Categorial Grammar
ccg Grammar 24

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10        inhibits       production 

NP V NP

VP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200982



ccg Grammar 25

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
NP S/(S\NP)

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 26

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
S/NP

NP\NP
NP

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

84



ccg Grammar 27

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
>B

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 28

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

NP\NP
NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 29

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 30

Forward Composition and Type-Raising

• Forward composition (>B):

X /Y Y /Z ⇥ X /Z (>B)

• Type-raising (T):

X ⇥ T/(T\X ) (>T)
X ⇥ T\(T/X ) (<T)

• Extra combinatory rules increase the weak generative power to
mild context -sensitivity

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 31

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
S/NP S/NP

S/NP
S

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 32

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
S/NP

S

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 33

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<�>

S/NP
S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<�>

S/NP
>

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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ccg Grammar 35

Combinatory Categorial Grammar

• ccg is mildly context sensitive

• Natural language is provably non-context free
• Constructions in Dutch and Swiss German (Shieber, 1985) require

more than context free power for their analysis
• these have crossing dependencies (which ccg can handle)

Type 0 languages

Context sensitive languages

Context free languages

Regular languages

Mildly context sensitive languages = 

natural languages (?)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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CCG Semantics

• Categories encode argument sequences

• Parallel syntactic combinator operations 
and lambda calculus semantic operations





 

 


 


  

 


 


 

 






 


 



 



 



 






 

 


 


  

 


 


 

 






 


 



 



 



 

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CCG Semantics
Left arg. Right arg. Operation Result

X/Y : f Y : a Forward 
application

X : f(a)

Y : a X\Y : f Backward 
application

X : f(a)

X/Y : f Y/Z : g Forward 
composition

X/Z : λx.f(g(x))

X : a Type raising T/(T\X) : λf.f(a)

etc.
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Tree Adjoining 
Grammar
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TAG Building Blocks

TAG Building Blocks

Harry likes peanuts passionately.

�1 NP

Harry

�2 S

�����

⇥⇥⇥⇥⇥

NP� VP
����

⇥⇥⇥⇥

V

likes
NP�

�3 NP

peanuts

⇥ VP

������

⇥⇥⇥⇥⇥⇥

VP* Adv

passionately

3

• Elementary trees (of many depths)

• Substitution at ↓

• Tree Substitution Grammar equivalent to 
CFG
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TAG Building Blocks

• Auxiliary trees for adjunction

• Adds extra power beyond CFG
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Derivation Tree Derived Tree

�1

�������������

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

�2
Harry

⇥
passionately

�3
peanuts

S

����������

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

NP

Harry

VP1

���������

⇥⇥⇥⇥⇥⇥⇥⇥⇥

VP2

�����
⇥⇥⇥⇥⇥

V

likes

NP

peanuts

Adv

passionately

Semantics

Harry(x) � likes(e, x, y) � peanuts(y) � passionately(e)

4
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Semantic representation - derived or derivation tree?

Derived tree

• not monotonic (e.g. immediate domination)

• contains nodes that are not needed for semantics

Derivation tree in TAG shows

• what elementary and auxiliary trees were used

• how the trees were combined

• where the trees were adjoined / substituted

⇥ Derivation tree provides a natural representation for compo-
sitional semantics

5
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Elementary Semantic Representations

• description of meaning (conjunction of formulas)

• list of argument variables

�say S
����

⇥⇥⇥⇥

NP VP
��� ⇥⇥⇥

V

say

S�

say(e1, x, e2)
arg: < x,00 >, < e2,011 >

10
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Composition of Semantic Representations

• sensitive to way of composition indicated in the derivation
tree

• sensitive to order of traversal

Substitution: a new argument is inserted in ⇥(�)

• unify the variable corresponding to the argument node (e.g.
x in thought(e, x)) with the variable in the substituted tree
(e.g. NP: Peter(x5))

• semantic representations are merged

11
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Adjoining: ⇤(⇥) applied to ⇤(�)

• predicate: semantic representation of adjoined auxiliary tree

• argument: a variable in the ’host’ tree

12
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Harry likes peanuts passionately.

Harry(x)
arg: -

likes(e, x, y)
arg: < x,00 >, < y,011 >

peanuts(y)
arg: -

passionately(e)
arg: e

Result:

likes(e, x, y)�
Harry(x)�
peanuts(y)�
passionately(e)
arg: -

13
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Extensions and Multi-Component LTAG

To what extent can we obtain a compositional semantics by
using derivation trees?

Problem: Representation of Scope

Every boy saw a girl.

(suppose there are 5 boys in the world, how many girls have to
exist for the sentence to be true?)

14
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Quantifiers have two parts:

• predicate-argument structure

• scope information

The two parts don’t necessarily stay together in the final seman-
tic representation.

15
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Multi-Component Lexicalized Tree Adjoining Grammar

• Building blocks are sets of trees (roughly corresponding to
split-up LTAG elementary trees)

• Locality constraint: a multi-component elementary tree has
to be combined with only one elementary tree (tree locality;
Tree local MC-TAG is as powerful as LTAG)

• We use at most two components in each set

• Constraint on multiple adjunction

16
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Representation of Quantifiers in MC-TAG

�
⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

⌥⌥⌥⌥⌥⌥⌥⌥⌥⇤

⇥1 �4

S� ,
NP

���
⇥⇥⇥

Det

every

N⇥

⇥
⌥⌥⌥⌥⌥⌥⌥⌥⌥⌃

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌅

17
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Derivation Tree with Two Quantifiers - underspecified scope

Some student loves every course.

�
�
��⇤

⌃
⌃
⌃⌃�

⇧ ⇧

⌥⌥
⌥⌥

⌥⌥
⌥⌥ 

⇥⇥
⇥⇥
⇥⇥
⇥⇥⌅

00 011 0

�5�4

�1

�2 �3

0

⇥2⇥1

01 01

18
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CCG & TAG

• Lexicon is encoded as categories or trees

• Extended domain of locality: information is 
localized in the lexicon and “spread out” 
during derivation

• Greater than context-free power; 
polynomial-time parsing; O(n5) and up

• Spurious ambiguity: multiple derivations for a 
single derived tree
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Lexical Semantics
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Overview

• Semantics so far: compositional semantics

• How to put together propositions from 
atomic meanings (lexicon)?

• Now: lexical semantics

• What are those atomic meanings?

• Clustering words with similar senses

• Sense disambiguation, functional clustering
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A Concordance for “party”

§ thing. She was talking at a party thrown at Daphne's restaurant in 
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1 
§ in the 1983 general election for a party which, when it could not bear to 
§ to attack the Scottish National Party, who look set to seize Perth and 
§ that had been passed to a second party who made a financial decision
§ the by-pass there will be a street party. "Then," he says, "we are going  
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic 
§ he told Tony Blair's modernised party they must not retreat into "warm  
§ "Oh no, I'm just here for the party," they said. "I think it's terrible  
§ A future obliges each party to the contract to fulfil it by
§ be signed by or on behalf of each party to the contract." Mr David N
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What Good are Word Senses?

§ thing. She was talking at a party thrown at Daphne's restaurant in 
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1 
§ in the 1983 general election for a party which, when it could not bear to 
§ to attack the Scottish National Party, who look set to seize Perth and 
§ that had been passed to a second party who made a financial decision
§ the by-pass there will be a street party. "Then," he says, "we are going  
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic 
§ he told Tony Blair's modernised party they must not retreat into "warm  
§ "Oh no, I'm just here for the party," they said. "I think it's terrible  
§ A future obliges each party to the contract to fulfil it by
§ be signed by or on behalf of each party to the contract." Mr David N
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What Good are Word Senses?

§ thing. She was talking at a party thrown at Daphne's restaurant in 
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1 
§ the by-pass there will be a street party. "Then," he says, "we are going  
§ "Oh no, I'm just here for the party," they said. "I think it's terrible  

§ in the 1983 general election for a party which, when it could not bear to 
§ to attack the Scottish National Party, who look set to seize Perth and 
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic 
§ he told Tony Blair's modernised party they must not retreat into "warm  

§ that had been passed to a second party who made a financial decision
§ A future obliges each party to the contract to fulfil it by
§ be signed by or on behalf of each party to the contract." Mr David N
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What Good are Word Senses?

§ John threw a “rain forest” party last 
December.  His living room was full of plants 
and his box was playing Brazilian music …
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What Good are Word Senses?

§Replace word w with sense s 
§Splits w into senses: distinguishes this token of w 
from tokens with sense t

§Groups w with other words: groups this token of 
w with tokens of x that also have sense s
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What Good are Word Senses?
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic 
§ he told Tony Blair's modernised party they must not retreat into "warm  
§ thing. She was talking at a party thrown at Daphne's restaurant in 
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1 
§ the by-pass there will be a street party. "Then," he says, "we are going  
§ "Oh no, I'm just here for the party," they said. "I think it's terrible  

§  an appearance at the annual awards bash , but feels in no fit state to
§ -known families at a fundraising bash on Thursday night for Learning
§ Who was paying for the bash? The only clue was the name Asprey, 
§ Mail, always hosted the annual bash for the Scottish Labour front-
§ popular. Their method is to bash sense into criminals with a short, 
§ just cut off people's heads and bash their brains out over the floor, 
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What Good are Word Senses?
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic 
§ he told Tony Blair's modernised party they must not retreat into "warm  

§ thing. She was talking at a party thrown at Daphne's restaurant in 
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1 
§ the by-pass there will be a street party. "Then," he says, "we are going  
§ "Oh no, I'm just here for the party," they said. "I think it's terrible  
§  an appearance at the annual awards bash, but feels in no fit state to
§ -known families at a fundraising bash on Thursday night for Learning
§ Who was paying for the bash? The only clue was the name Asprey, 
§ Mail, always hosted the annual bash for the Scottish Labour front-

§ popular. Their method is to bash sense into criminals with a short, 
§ just cut off people's heads and bash their brains out over the floor, 
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What Good are Word Senses?
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What Good are Word Senses?

§ Semantics / Text understanding
§ Axioms about TRANSFER apply to (some tokens of) throw

§ Axioms about BUILDING apply to (some tokens of) bank
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§ Axioms about BUILDING apply to (some tokens of) bank

§ Machine translation
§ Info retrieval / Question answering / Text categ.

§ Query or pattern might not match document exactly

§ Backoff for just about anything
§ what word comes next?  (speech recognition, language ID, …)

§ trigrams are sparse but tri-meanings might not be

§ bilexical PCFGs: p(S[devour] à NP[lion] VP[devour] | S[devour])

§ approximate by p(S[EAT] à NP[lion] VP[EAT] | S[EAT])

120



What Good are Word Senses?

§ Semantics / Text understanding
§ Axioms about TRANSFER apply to (some tokens of) throw

§ Axioms about BUILDING apply to (some tokens of) bank

§ Machine translation
§ Info retrieval / Question answering / Text categ.

§ Query or pattern might not match document exactly

§ Backoff for just about anything
§ what word comes next?  (speech recognition, language ID, …)

§ trigrams are sparse but tri-meanings might not be

§ bilexical PCFGs: p(S[devour] à NP[lion] VP[devour] | S[devour])

§ approximate by p(S[EAT] à NP[lion] VP[EAT] | S[EAT])

§ Speaker’s real intention is senses; words are a noisy channel
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Cues to Word Sense
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Cues to Word Sense

§Adjacent words (or their senses)

§Grammatically related words (subject, object, …)

§Other nearby words
§Topic of document
§Sense of other tokens of the word in the same 
document

121



Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token
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Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token

Start PN   Verb    Det     Noun  Prep Noun   Prep     Det  Noun Stop

Bill  directed   a    cortege  of   autos  through  the  dunes
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Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token

Start PN   Verb    Det     Noun  Prep Noun   Prep     Det  Noun Stop

Bill  directed   a    cortege  of   autos  through  the  dunes

0.4 0.6

0.001

probs
from tag
bigram
model

probs from
unigram
replacement
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Word Classes by Tagging

§Every tag is a kind of class
§Tagger assigns a class to each word token
§Simultaneously groups and splits words
§ “party” gets split into N and V senses
§ “bash” gets split into N and V senses
§{party/N, bash/N}  vs.  {party/V, bash/V}
§What good are these groupings?
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Learning Word Classes

§ Every tag is a kind of class
§ Tagger assigns a class to each word token

§ {party/N, bash/N}  vs.  {party/V, bash/V}
§ What good are these groupings?
§ Good for predicting next word or its class!

§ Role of forward-backward algorithm?
§ It adjusts classes etc. in order to predict sequence of 

words better (with lower perplexity)
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Words as Vectors 

§ Represent each word type w by a point in k-
dimensional space
§ e.g., k is size of vocabulary 
§ the 17th coordinate of w represents strength of w’s 

association with vocabulary word 17
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dimensional space
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§ how often words appear next to each other
§ how often words appear near each other
§ how often words are syntactically linked
§ should correct for commonness of word (e.g., “above”)

how might you
measure this?
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§ Plot all word types in k-dimensional space
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Learning Classes by Clustering 
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Learning Classes by Clustering 

§ Plot all word types in k-dimensional space
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Plot in k dimensions (here k=3)
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Bottom-Up Clustering 

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
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Bottom-Up Clustering – Single-Link

each word type is
a single-point cluster

example from Manning & Schütze
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example from Manning & Schütze

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
             dist(A,B) = min dist(a,b) for a∈A, b∈B

Fast, but tend to get long, stringy, meandering clusters

Bottom-Up Clustering – Single-Link
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Bottom-Up Clustering – Complete-Link
example from Manning & Schütze
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Bottom-Up Clustering – Complete-Link

Again, merge closest pair of clusters:
Complete-link: clusters are close only if all of their points are
                     dist(A,B) = max dist(a,b) for a∈A, b∈B

example from Manning & Schütze
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Bottom-Up Clustering 

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
§ too slow to update cluster distances after each merge; but ∃ alternatives!
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§ Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

§ Centroid-link: dist(A,B) = dist(mean(A),mean(B))

§Stop when clusters are “big enough”
§ e.g., provide adequate support for backoff (on a development corpus)

§Some flexibility in defining dist(a,b)
§ Might not be Euclidean distance; e.g., use vector angle

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
§ too slow to update cluster distances after each merge; but ∃ alternatives!
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EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

§ Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

§ Parameters: k points representing cluster centers
§ Hidden structure: for each data point (word type), 

which center generated it?
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Learning syntactic patterns for

automatic hypernym discovery

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.

136



137



138



139



140



141



142



143



VERBOCEAN: Mining the Web for

Fine-Grained Semantic Verb Relations

Timothy Chklovski and Patrick Pantel
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http://semantics.isi.edu/ocean/ 

Demo
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