
Northeastern University, Khoury College of Computer Science

CS 6120 — Assignment 7
Due: March 20, 2025 (100 points)

Attention Modeling

Figure 1: The Transformer Architecture

In this homework, we will be implement-
ing and training a transformer neural net-
work, similar to the algorithms described in
class. This model is slightly different than
others you have already implemented. It
is heavily based on attention and does not
rely on sequences, which can ultimately al-
low for parallel computing. Transformers are
compute heavy, and it is much easier to
train if you’re on GPU hardware. There
are a variety of ways that you can use
GPU’s.

In this assignment you will explore summariza-
tion using the transformer model. Summa-
rization in natural language processing is use-
ful for multiple consumer enterprise applications.
Bots can be used to scrape articles, summa-
rize them, and then you can use sentiment
analysis to identify the sentiment about certain
stocks.

You will be guided through all the steps and will find numerous hints to assist you. By the end of
this homework, you will have implemented the full transformer (both encoder and decoder), but
you will only be graded on the implementation of the decoder as the encoder is provided for you.

We will be working with the SAMSum dataset, which contains about 16k messenger-like con-
versations with summaries. Conversations were created and written down by linguists fluent
in English. Linguists were asked to create conversations similar to those they write on a daily
basis, reflecting the proportion of topics of their real-life messenger conversations. The style

1

and register are diversified - conversations could be informal, semi-formal or formal, they may
contain slang words, emoticons and typos. Then, the conversations were annotated with sum-
maries. It was assumed that summaries should be a concise brief of what people talked about
in the conversation in third person. Go ahead and download it from the course website. You
can unzip and extract it with:

$> wget -nc https://course.ccs.neu.edu/cs6120s25/data/samsum/util.py
$> wget -nc https://course.ccs.neu.edu/cs6120s25/data/samsum/corpus.tar.gz
$> tar -xvzf corpus.tar.gz

Transformers Utilities: Provided Functions

There are a number of necessary but provided functions interspersed throughout the templated
code. Some of these, we may have implemented in class, and others we have directly written
here. The functions in these sections are not graded.

Preprocessing Data

The preprocessing step is a combination of steps that includes tokenization, training / test
splits, filtering, padding, and document processing. In contrast to many other datasets, the
vocabulary and tokenization is derived from both the input text sequences and the output
annotations, which happen to be text sequences themselves. Ultimately, the processing will
produce a tf.Dataset, which is a very common dataset iterator that is quite commonly used
in production systems.

Masking

There are two types of masks that are useful when building your Transformer network: the
padding mask and the look-ahead mask. Both help the softmax computation give the appropri-
ate weights to the words in your input sentence. You have already learned how to implement
and use them in one of this week’s labs. Here they are implemented for you.

Positional Encoding

In sequence to sequence tasks, the relative order of your data is extremely important to its
meaning. When you were training sequential neural networks such as RNNs, you fed your in-
puts into the network in order. Information about the order of your data was automatically fed
into your model. However, when you train a Transformer network using multi-head attention,
you feed your data into the model all at once. While this dramatically reduces training time,
there is no information about the order of your data. This is where positional encoding is useful.

You have learned how to implement the positional encoding in one of this week’s labs. Here you
will use the positional_encoding function to create positional encodings for your trans-
former. The function is already implemented for you.

The Transformer Encoder layer pairs self-attention and convolutional neural network style of
processing to improve the speed of training and passes K and V matrices to the Decoder, which
you’ll build later in the assignment. In this section of the assignment, you will implement the
Encoder by pairing multi-head attention and a feed forward neural network in Fig. 2.

2

https://course.ccs.neu.edu/cs6120s25/assets/python/assignment7.py
https://course.ccs.neu.edu/cs6120s25/assets/python/assignment7.py

Encoder Layer

Figure 2: Encoder Layer

MultiHeadAttention you can think of as comput-
ing the self-attention (that you will be implement-
ing in Q1) several times to detect different fea-
tures.

Feed forward neural network contains two Dense layers
which we’ll implement as the function FullyConnected.

Your input sentence first passes through a multi-head at-
tention layer, where the encoder looks at other words in
the input sentence as it encodes a specific word. The
outputs of the multi-head attention layer are then fed
to a feed forward neural network. The exact same feed
forward network is independently applied to each posi-
tion.

For the MultiHeadAttention layer, you will use the MultiHeadAttention implemented in
Keras1. If you’re curious about how to split the query matrix Q, key matrix K, and value
matrix V into different heads, you can look through the implementation. You will also use the
Sequential API with two dense layers to built the feed forward neural network layers.

Full Encoder

Now you can pair multi-head attention and feed forward neural network together in an encoder
layer! You will also use residual connections and layer normalization to help speed up training.

The encoder block is already implemented for you. Take a very close look at its implementation,
as you will later have to create the decoder yourself, and a lot of the code is very similar. The
encoder block performs the following steps:

1. It takes the Q, V , K matrices and a boolean mask to a multi-head attention layer.
Remember that to compute self -attention Q, V and K are the same. You will also
perform Dropout in this multi-head attention layer during training.

2. There is a skip connection to add your original input x and the output of the multi-head
attention layer.

3. After adding the skip connection, the output passes through the first normalization layer.

4. Finally, steps 1-3 are repeated but with the feed-forward neural network with a dropout
layer instead of the multi-head attention layer.

Question 1: Self Attention

The use of self-attention paired with traditional convolutional networks allows for parallelization
which speeds up training. You will implement scaled dot product attention which takes in

1The multi-head attention module differs between Keras v3.6 and v3.7. You will notice special cases in the test
functions, which will not test certain functionality if the versioning is lower that v3.7.

3

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MultiHeadAttention
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential

a query, key, value, and a mask as inputs to return rich, attention-based vector representations
of the words in your sequence. This type of self-attention can be mathematically expressed as:

Attention (Q,K, V) = softmax

(
QKT

√
dk

+M

)
V (1.1)

• Q is the matrix of queries

• K is the matrix of keys

• V is the matrix of values

• M is the optional mask you choose to apply

• dk is the dimension of the keys, which is used to scale everything down so the softmax
doesn’t explode

In this question, you will fill out the function scaled_dot_product_attention to create
attention-based representations. The boolean mask parameter M can be passed in as None or
as either padding or look-ahead. Because M is applied additively, you will need to multiply
(1.0 - mask) by -1e9 before adding it to the scaled attention logits.

Question 2: Decoder Layer

In this section, we’ll learn to use tensorflow.keras’s multi-head attention model, which
you will reference at the source code website.

Figure 3: Decoder Layer

We have covered elements of the decoder layer in lecture,
and it is very similar to the provided Encoder implementa-
tion. The Decoder layer takes the K and V matrices gen-
erated by the Encoder and computes the second multi-head
attention layer with the Q matrix from the output (Figure
3a).

In Fig. 3 pair multi-head attention with a feed forward neural
network, but this time you’ll implement two multi-head attention
layers. You will also use residual connections and layer normal-
ization to help speed up training (Figure 3a).
Implement DecoderLayer() using the call() method

1. Block 1 is a multi-head attention layer with a resid-
ual connection, and look-ahead mask. Like in the
EncoderLayer, Dropout is defined within the multi-head
attention layer.

2. Block 2 will take into account the output of the Encoder,
so the multi-head attention layer will receive K and V from
the encoder, and Q from the Block 1. You will then ap-
ply a normalization layer and a residual connection, just like you did before with the
EncoderLayer.

4

https://keras.io/2.16/api/layers/attention_layers/multi_head_attention/

3. Finally, Block 3 is a feed forward neural network with
dropout and normalization layers and a residual connec-
tion.

The first two blocks are fairly similar to the EncoderLayer except you will return attention_scores
when computing self-attention. Implement the call() method in DecoderLayer() to utilize
multiple attention head layers and output layers.

Question 3: Full Decoder

In this question you will use your DecoderLayer to build the full Transformer Decoder.
You will embed your output, add positional encodings, and then feed your encoded embeddings
to a stack of Decoder layers.

In this exercise, you will initialize your Decoder with an Embedding layer, positional encoding,
and multiple DecoderLayers. Your call() method will perform the following steps:

1. Pass your generated output through the Embedding layer.

2. Scale your embedding by multiplying it by the square root of your embedding dimen-
sion. Remember to cast the embedding dimension to the data type tf.float32 before
computing the square root.

3. Add the position encoding: self.pos_encoding[:, :seq_len, :] to your embed-
ding.

4. Pass the encoded embedding through a dropout layer, remembering to use the training
parameter to set the model training mode.

5. Pass the output of the dropout layer through the stack of DecodingLayers using a for
loop.

Implement the call() method in Decoder() to embed your output, add positional encoding,
and implement multiple decoder layers.

Question 4: Transformer

The flow of data through the Transformer Architecture can be seen in Fig. 4 and can be reviewed
as follows:

1. First your input passes through an Encoder, which is just repeated EncoderLayers
that you implemented:

a) embedding and positional encoding of your input

b) multi-head attention on your input

c) feed forward neural network to help detect features

2. Then the predicted output passes through a Decoder, consisting of the decoder layers
that you implemented:

a) embedding and positional encoding of the output

5

Figure 4: Transformer Architecture

b) multi-head attention on your generated output

c) multi-head attention with the Q from the first multi-head attention layer and the K
and V from the Encoder

d) a feed forward neural network to help detect features

3. Finally, after the N th DecoderLayer, one dense layer and a softmax are applied to
generate prediction for the next output in your sequence.

In this question, you will implement Transformer() using the call() method. This will:

1. Pass the input through the Encoder with the appropriate mask.

2. Pass the encoder output and the target through the Decoder with the appropriate mask.

3. Apply a linear transformation and a softmax to get a prediction.

Question 5: Text Summarization

The last thing you will implement is inference. With this, you will be able to produce actual
summaries of the documents. You will use a simple method called greedy decoding, which means
you will predict one word at a time and append it to the output. You will start with an [SOS]
token and repeat the word by word inference until the model returns you the [EOS] token or
until you reach the maximum length of the sentence (you need to add this limit, otherwise a
poorly trained model could give you infinite sentences without ever producing the [EOS] token.

Write a helper function that predicts the next word, called next_word so you can use it to
write the whole sentences. Hint: this is very similar to what happens in the provided function

6

train_step (in the section of the template labeled Provided Functions: Part III),
but you have to set the training of the model to False.

Train and Test Your Model

One of the provided functions is train_step. It is a loop that will train your model for
20 epochs. On a GPU, it should take about 20 seconds per epoch (with the exception of the
first epoch, which may take twice as long). Note that after each epoch the code performs the
summarization on one of the sentences in the test set and prints it out, so you can see how your
model is improving.

If you critically examine the output of the model, you can notice a few things:

• In the training set the model output is (almost) identical to the real output (already after
20 epochs and even more so with more epochs). This might be because the training set is
relatively small and the model is relatively big and has thus learned the sentences in the
training set by heart (overfitting).

• While the performance on the training set looks amazing, it is not so good on the test
set. The model overfits, but fails to generalize. While it is a small training set and a
comparatively large model, but there might be a variety of other factors.

• Look at the test set example 3 and its summarization. Would you summarize it the same
way as it is written here? Sometimes the data may be ambiguous. And the training of
your model can only be as good as your data.

You are only using a small dataset, to show that something can be learned in a reasonable
amount of time in a relatively small environment. Generally, large transformers are trained on
more than one task and on very large quantities of data to achieve superb performance.

Go ahead and train your Transformer for 20 epochs with the provided dataset by running
train_model().

Submission Instructions

You will notice there are several unit test functions in your homework. Feel free to use them to
verify your implementation. (Note that the random initialization of neural network parameters
may depend on Tensorflow Version, where we have used TFv2.18.0).

When you have finished, submit your Python file, named assignment7.py to Gradescope.

7

http://www.gradescope.com

	Self Attention
	Decoder Layer
	Full Decoder
	Transformer
	Text Summarization

