
Northeastern University, Khoury College of Computer Science

CS 6120 — Assignment 5
Due: February 27, 2025 (100 points)

YOUR NAME + LDAP

There are several word embedding vector approaches. In this homework, we will be exploring
three of them: (1) collaboratively filtered (SVD) embeddings, (2) the bag of words neural net-
work, and the popular word2vec algorithm.

The Dataset: We will make use of nearly 3 million arXiv papers that currently reside on
http://arxiv.org. This set of papers has served the scientific community for over 30 years, and
the subject matter is diverse, ranging from physics, math, computational biology, and yes, ma-
chine learning and artificial intelligence. The dataset arxiv-titles-dataset.txt that I provide is
not shuffled presently; it is ordered according to topics, and it is formatted where each line in
the text file is the title of a particular paper.

Question 1: Pre-Processing

The dataset is downloaded directly from http://arxiv.org, and is unprocessed, except that I
have extracted only the titles, and each line is the unfiltered title of the text.

First, we will create the vocabulary of words and the frequency of their occurrences that we
can sample from. Since many of the scientific words are not used frequently, we can cut off
those that do not appear in the corpus enough and those that appear too many times. The
remaining words will be in our vocabulary and the word frequencies, the first of our return
values (word_freqs). You decide what these thresholds are; there are no wrong answers. but
you will notice a tradeoff between accuracy and computation time.

Second, once we have built our word distributions and determined the appropriate vocabulary,
it is beneficial to create an alternative dataset without the out of vocabulary (OOV) words.
Fortunately, the dataset is small enough to fit in memory, where each title is an element of a
list. Therefore, the second return value (dataset) will be a list of titles, where OOV are words
removed. Also, a title isn’t all that informative without enough words, and so we’ve added a
min_title_len to filter out short titles. In later sections, you’ll be using a window to look

1

http://arxiv.org
https://course.ccs.neu.edu/cs6120s25/data/arxiv/
http://arxiv.org

for context words, which will need to be less than or equal to min_title_len.

Write the function process_data. Use the below function signature. The file that we’ll be
processing is the arxiv-titles.txt, where each line is the title of a scientific article, which
will constitute a single training sample that we will sample from in the subsequent questions.

def process_data(filename, min_cnt, max_cnt, min_win = 5, min_letters = 3):
’’’
Preprocesses and builds the distribution of words in sorted order
(from maximum occurrence to minimum occurrence) after reading the
file. Preprocessing will include filtering out:

* words that have non-letters in them,

* words that are too short (under minletters)

Arguments:

* filename: name of file

* min_cnt: min occurrence of words to include

* max_cnt: max occurrence of words to include

* min_win: minimum number of words in a title after word filtering

* min_letters: min length of words to include (3)

Returns:

* word_freqs: A sorted (max to min) list of tuples of form -
[(word1, count1), (wordN, countN), ... (wordN, countN)]

* dataset: A list of strings with OOV words removed -
["this is title 1", "this is title 2", ...]

’’’

You can test your function out with the following code.

word_freqs, dataset = process_data("arxiv_titles.txt", 10, 150000)

Plot the distribution of words. This is called a Zipfian distribution, and is common in natural
language processing. (Zipf’s law is an empirical law stating that when a list of measured values
is sorted in decreasing order, the value of the nth entry is often approximately inversely propor-
tional to n.)

Submission Artifacts: process_data, word_freqs, distribution plot.

Note: In later sections, we will be using a window when sampling each title. It is acceptable
for the window size to be effectively larger than it technically should be. For example, consider
the sentence: “Many articles of note specify a co-author in the same department”, where we’ve
specified a window of size 3 and sampled so that the center word is “note”. Let us say that
the OOV words are {“of”, “a”, “in”, “the”}. Then, removing OOV words yields “many articles
note specify co-author”, and it is acceptable to have a context window of 3 surrounding “note”
include the words “articles” and “specify”.

Question 2: Matrix Factorization

One of the easiest ways to create dense representations of words is by using matrix factorization.
In this question, we will need to create an adjacency matrix and then subsequently factorize it.

2

Q 2.1: Create an Adjacency Matrix

Create an adjacency matrix where entry (i, j) is the number of times word i co-occurs with
word j in a single article title within a specified maximum window size (defaulted to ten).
The maximum window size is simply used to make computation feasible, where we would only
increment a count if i and j are both within max_win. Assuming you have built the word
distributions, you will need to create and pass in word2index as a dictionary of vocabulary
words and their indices. We will expect the adjacency matrix to be in the order specified by
word2index, the dictionary that assigns a word to the index.

def create_adjacency(dataset, word2index, win = 10):
’’’
Builds an adjacency matrix based on word co-occurrence within a window.

Args:
dataset: List of processed titles
word2index: Dictionary mapping word to index
win: The window size for co-occurrence.

Returns:
adjacency_matrix: A NumPy array representing the adjacency matrix.

’’’

Submission Artifacts: create_adjacency

Q 2.2: Create SVD Word Vectors

Using the adjacency matrix calculated in Q2.1 and parameters specifying the minimum and max-
imum index of the singular values, write a function that creates an embedding space with a spec-
ified number of components, determined by embedding_dim = max_index - max_index.
Now, using the, we can create word embeddings. You may use any numpy or scipy library for
the matrix decomposition (e.g., eig, svd, or svds). For example,

from scipy.sparse.linalg import svds

def train_svd(adjacency_matrix, min_index = 3, max_index = 103):
"""
Creates an embedding space using SVD on the adjacency matrix.

Args:
adjacency_matrix: The adjacency matrix.
embedding_dim: The desired dimensionality of the embedding space.

Returns:
A NumPy array representing the embedding space (num_words x embedding_dim)

"""

After training, save out your vectors into assignment5.pkl as V_svd. In assignment5.pdf,
print out the ten nearest neighbors to “neural”, “machine”, “dark”, “string”, and “black”.

Submission Artifacts: train_svd, V_svd, nearest neighbors to specified words

3

Note: The larger the matrix you have, the longer the decomposition will take. Test your word
vectors out by finding the nearest neighbors to any given word. For example, one of the closest
words to the word “neural” should “networks”. You will save these word embeddings to a file,
labeled V_svd.

Question 3: Word2Vec

In this question, we are going to implement the popular word2vec paper, which originally was
written in C. There are two main components that make word2vec an effective optimization.
These two components comprise the curricula for this week’s homework assignment:

1. Positive and Negative Sampling

• Skip-gram positive sampling from context.

• Negative sampling from the word distribution

2. Optimizing vectors in matrices Vi and Vo

• You will maximize similarity between vi and vo.

• You will maximize the distance between vi and each vn

In word2vec, we optimize two sets of vectors, which we store in matrices Vi and Vo, both of size
Rd×|V |, where d is a chosen dimensionality of the vectors (e.g., 100) and |V | is the size of the
vocabulary. The first set of vectors is stored in the input matrix Vi, where each column vi is a
vector sampled from target words. When training / optimizing, we will be randomly sampling
titles from the dataset, and then we’ll randomly sample any word in the title to obtain the
target vector vi. The second set of vectors is stored in the output matrix Vo, whose columns
comprise the context that complements the target words. For each randomly sampled target
vector, you will also randomly sample both a positive context vector vo within a window of the
target word and multiple negative irrelevant vectors {vn} from this matrix.

In order to optimize vectors in the matrices Vi and Vo, we will be pulling those vectors belonging
to words that we say are similar (i.e., in a given window) closer to each other closer. Simul-
taneously, we will be pushing those vectors belonging to words that we say are dissimilar (any
word from the distribution of all words) further apart. This process is a much simpler version of
noise contrastive estimation, because we are getting signal by contrasting our targets with noise.

Because we are deriving gradients, you may use numpy only. Please do not use any special
libraries like Torch or Tensorflow.

Q 3.1: Negative Sampling

For this question, we will write sample_w2v to prepare us for training the word2vec algo-
rithm. We will need to sample the target word, a single word from the window, i.e. the positive
context, and multiple negative samples, i.e. the negative context. In the original paper, we
obtain the negative samples from a function of the distribution of words excluding the words in
the window, notably U(w)

3
4 for w /∈ W (target). The function they use is the distribution you

calculated in Q1 normalized to one raised to the 3
4 power. In practice for this homework and

for expediency, we can sample from the entire uniform distribution (including the target and
words in the window), since the sampled words are unlikely to contain the positive samples.

4

https://arxiv.org/abs/1310.4546
https://code.google.com/archive/p/word2vec/source/default/source
https://code.google.com/archive/p/word2vec/source/default/source
https://arxiv.org/abs/1310.4546

def sample_w2v(data, word2index, neg_samples=5, win=10):
’’’
Randomly samples a title and a window within that title, returning
one-hot and multi-hot vectors.

Args:
dataset: A list of preprocessed titles.
word2index: A dictionary of words and their indices
neg_samples: Number of negative samples
win: The size of the context window.

Returns:
wi - target vector index
wo - context vector index
Wn - negative vectors index

’’’

Submission Artifacts: sample_w2v

Q 3.2: Gradient Derivation

In Mikolov’s original paper in equation (4), the loss function for word2vec can be written as
follows:

J (vi,vo, {vn}) = log σ(vT
i vo) +

k∑
vn∈Pn

log σ(−vT
i vn) (3.1)

where the vector corresponding to the target word is vi, the vector corresponding to a word
in the target’s context is vo, and there are k vectors vn that have been negatively sampled
from the words that don’t appear in the target word’s context, i.e., wn ∼ Pn(w). (In your case
Pn(w) = U(w), but that’s irrelevant to your derivations.) Derive the gradients with respect to
vi and vo, for any given i and o.

Write your solution to:

∂J
∂vi

= ??

∂J
∂vo

= ??

∂J
∂vn

= ??, ∀n

(3.2)

Submission Artifacts: Derivations for ∂J
∂vi

, ∂J
∂vo

, ∂J
∂vn

Q 3.3: Gradient Implementation

Write a function that calculates the gradients of vi, vo, and the relevant vn’s. Recall that
vi ∈ Vi and both vo and set of vn’s are all in Vn. Please use the following signature for our
auto-graders.

5

https://arxiv.org/abs/1310.4546

def w2vgrads(vi, vo, Vns):
"""
This function implements the gradient for all vectors in
input matrix Vi and output matrix Vo.

Args:
vi: Vector of shape (d,), a sample in the input word

vector matrix
vo: Vector of shape (d,), a positive sample in the output

word vector matrix
vns: Vector of shape (d, k), k negative samples in the

output word vector matrix

Returns:
dvi, dvo, dVns: the gradients of J with respect to vi

and vo.
"""

Submission Artifacts: w2v_grads

Q 3.4: Create W2V Embeddings

For this question, we will be doing gradient ascent for several epochs. You will need to use
the functions that you wrote in Q3.1 and Q3.3, i.e. your sampler and gradient implementation,
effectively applying gradients to Vi and Vo for the samples that you’ve randomly obtained.

def train_w2v(dataset, word2index, iters, negsamps = 5,
win = 5, embedding_dim = 100, learning_rate=0.01):

"""
Creates an embedding space using SVD on the adjacency matrix.

Args:
dataset: A list of preprocessed titles.
word2index: Dictinoary assigning word to index
iters: Number of iterations to run for
negsamps: Number of negative samples
win: The size of the context window for sampling.
embedding_dim: The desired dimensionality of the embedding space.
learning_rate: Learning rate or any other DNN params with defaults.

The autograder won’t touch this.

Returns:
V_w2v: an array representing the embedding space (num_words x

embedding_dim)
List of losses (to print out)

"""

You will note that this is much faster than your optimization in Q??. Play with your learn-
ing rate and see what works. Keep can track your objective function J by plotting it ev-
ery so often. To keep computations at a minimum during optimization, one trick is to plot

6

only the objective function for the positive portion of J . The word vectors are those stored
in Vi; go ahead and qualitatively analyze them with nearest neighbors of words. Save your
vectors into assignment5.pkl as V_w2v, taking care not to overwrite V_bow and V_svd.
In assignment5.pdf, print out the ten nearest neighbors to “neural”, “machine”, “dark”,
“string”, and “black”.

Submission Artifacts: train_w2v, V_w2v, loss function plot, nearest neighbors to specified
words

Submission Instructions

There are several artifacts that you will need to upload to Gradescope. You can consolidate
these into three files total. These include:

Code All your code saved in a Python file called assignment5.py. We will be expecting
multiple different functions in assignment.py, including:

• Q1 - process_data

• Q2.1 - create_adjacency

• Q2.2 - train_svd

• Q3.1 - sample_w2v

• Q3.3 - w2v_grads

• Q3.4 train_w2v

Data your model parameters saved in a pickle file called assignment5.pkl. We will be
expecting multiple parameters with the following embeddings, which you can save with
the following code.

data = {
’word_freqs’: <YOUR-DISTRIBUTION>’
’V_svd’: <YOUR-SVD-EMBEDDINGS, Vi>
’V_w2v’: <YOUR-WORD2VEC-EMEDDINGS, Vi>,

}

with open(’assignment5.pkl’, ’wb’) as f:
pickle.dump(data, f)

Plots and Derivations your plots and derivations in a PDF in a file called assignment5.pdf.
Plot the distribution of words.

• Q1 - Plots of the distribution of words

• Q2.2 - Nearest neighbors to words

• Q3.2 - Gradient derivations

• Q3.4 - Plots of loss function, nearest neighbors to words

7

	Pre-Processing
	Matrix Factorization
	Create an Adjacency Matrix
	Create SVD Word Vectors

	Word2Vec
	Negative Sampling
	Gradient Derivation
	Gradient Implementation
	Create W2V Embeddings

