
Northeastern University, Khoury College of Computer Science

CS 6120 — Assignment 4
Due: February 20, 2025 (100 points)

YOUR NAME + LDAP

In this assignment, we will implement an auto-correct algorithm that can be used (in real-time)
to determine the most logical correct word substitute for a misspelled word. We will be using
the Twitter corpus, which has nearly 50k lines of text to parse through. The dataset is at:

https://course.ccs.neu.edu/cs6120s25/data/twitter/en_US.twitter.txt

We will be preprocessing the sentences, building bigram and trigram distributions, and subse-
quently autocompleting words.

Question 1: Preprocessing and Vocabulary

In this question, you will prepare the data for training and inference. Your training data will
consist of tweets in en_US.twitter.txt. because each tweet is delineated by a line break, \n,
split the data into sentences using the \n as the delimiter, where each training sample is a line in
the data. You will be filling out the sub-functions calls (read_and_tokenize_sentences,
get_words_with_nplus_frequencies and replace_oov_words_by_unk) in the fol-
lowing preprocess_data method.

def preprocess_data(filename, count_threshold, special_tokens,
sample_delimiter=’\n’, split_ratio=0.8):

"""
Ungraded: You do not need to change this function.

Preprocess data, i.e.,
- Find tokens that appear at least N times in the training data.
- Replace tokens that appear less than N times by "<unk>" .

Args:
count_threshold: Words whose count is less than this are

treated as unknown.

Returns:
training_data = list of lists denoting tokenized sentence. This looks like

the following:

1

https://course.ccs.neu.edu/cs6120s25/data/twitter/en_US.twitter.txt

[["this", "<unk>", "example"],
["another", "sentence", "<unk>", "right"],

...
]

test_data = Same format as above.
vocabulary = list of vocabulary words. This looks like the following:

["vocab-word-1", "vocab-word-2", etc.]
"""

Create sentences and tokenize the data to create a list of strings.
tokenized_data = read_and_tokenize_sentences(filename, sample_delimiter)

Create the training / test splits
train_size = int(len(tokenized_data) * split_ratio)
train_data = tokenized_data[0:train_size]
test_data = tokenized_data[train_size:]

Get the closed vocabulary using the train data
vocabulary = get_words_with_nplus_frequency(train_data, count_threshold)

For the train data, replace less common words with unknown token
train_data_replaced = replace_oov_words_by_unk(

train_data, vocabulary, unknown_token = special_tokens.unknown_token)

For the test data, replace less common words with "<unk>"
test_data_replaced = replace_oov_words_by_unk(

test_data, vocabulary, unknown_token = special_tokens.unknown_token)

return train_data_replaced, test_data_replaced, vocabulary

Note: in the code that you are to implement, you will notice an argument called special_tokens.
We can create such an object with:

class SpecialTokens:
def __init__(self, start_token = "<s>", end_token = "<e>", unknown_token = "<unk>"):
self.start_token = start_token
self.end_token = end_token
self.unknown_token = unknown_token

special_tokens = SpecialTokens()

Q 1.1: Read and Tokenize Data

Language Models rely on tokens, where algorithms (like ChatGPT) predict the next token
based on what tokens appeared before it. There are several tools that are highly optimized
and industry standard for removing punctuation and delimiting words. In this homework,
build the language model for tweets by tokenizing each tweet with the NLTK library (i.e.,
nltk.word_tokenize(tweet)). While each token is typically delimited by spaces, punctu-
ation, and numbers, we define a data sample as a tweet delimited by a newline.

You will notice that there can be an inordinate number of words in the English lexicon, but
many don’t often get used, and therefore we should not be recommending them as the next
predicted word. That is, we should be practical by choosing words that occur frequently enough
that they are worth modeling and adding to our vocabulary. Since the corpus is relatively small,

2

let us use a minimum frequency of 2.

We will be using words as tokens, but we must also add special tokens that are more for data
processing and not a part of the English language. These denote specific contextual information
about the sequence of words. We will use a start token (i.e., <s>) and an end token (i.e., <e>)
for words that occur at the beginning or end of the sentence. These are the additional special
tokens (along with the <unk> token.)

Q 1.2: Handling OOV

If your model encounters a word that it never saw during training, it won’t have an input word
to help it determine the next word to suggest. The model will not be able to predict the next
word because there are no counts for the current word.

This ’new’ word is called an ’unknown word’, or out of vocabulary (OOV) words. The percent-
age of unknown words in the test set is called the OOV rate. To handle unknown words during
prediction, use a special token to represent all unknown words ’unk’.

Modify the training data so that it has some ’unknown’ words to train on. Words to convert
into ”unknown” words are those that do not occur very frequently in the training set. Create
a list of the most frequent words in the training set, called the closed vocabulary . Convert all
the other words that are not part of the closed vocabulary to the token ’unk’.

Question 2: N-Gram Counting

You will find that the easiest estimate of word distributions is simply to count the frequency
of words relative to the corpus. In this section, you will implement a function that returns a
dictionary of n-gram counts, given the tokens and data extracted in Q1.

def count_n_grams(data, n, special_tokens):
"""
Count all n-grams in the data

Args:
data: List of lists of words
n: Number of words in a sequence
special_tokens: A structure that contains:
- start_token = "<s>"
- end_token = "<e>"
- unknown_token = "<unk>"

Returns:
A dictionary that maps a tuple of n-words to its frequency

"""

Initialize dictionary of n-grams and their counts
n_grams = {}
<YOUR-CODE-HERE>
return n_grams

To visualize how one transitions from n-grams to n+ 1-grams, it is sometimes easier and more
intuitive to print out a probability matrix, which can be constructed from counts. We have

3

borrowed a function called make_count_matrix on the the course website, which you can
leverage. Test your functions out with a probability matrix. The vertical axis of the matrix will
be the current n-grams and the horizontal axis of the matrix will be a new word that is added
to make the n+ 1-gram. Test using very small sets to understand if it is working. Once you’ve
downloaded utils.py, the following code will help you with debugging:

!wget -nc https://course.ccs.neu.edu/cs6120s25/data/twitter/utils.py

import utils

def make_probability_matrix(n_plus1_gram_counts, vocabulary, k):
count_matrix = utils.make_count_matrix(n_plus1_gram_counts, unique_words)
count_matrix += k
prob_matrix = count_matrix.div(

count_matrix.sum(axis=1) + k*len(vocabulary), axis=0)
return prob_matrix

sentences = [[’i’, ’like’, ’a’, ’cat’],
[’this’, ’dog’, ’is’, ’like’, ’a’, ’cat’]]

unique_words = list(set(sentences[0] + sentences[1]))
bigram_counts = count_n_grams(sentences, 2, SpecialTokens())

print("bigram counts")
display(utils.make_count_matrix(bigram_counts, unique_words))

print("bigram probabilities")
display(make_probability_matrix(bigram_counts, unique_words, k=1))

Your count matrix should look like this:

Question 3: Estimate the Probabilities

Estimate the probability of a word given the prior n words using the n-gram counts.

P̂ (wt|wt−n . . . wt−1) =
C(wt−n . . . wt−1, wt) + k

C(wt−n . . . wt−1) + k|V |
(3.1)

Note the introduction of the parameter k = 1.0. This is a smoothing parameter for when
there are no occurrences of a sequence of words. We will incorporate k into our model object.

4

https://course.ccs.neu.edu/cs6120s25/data/twitter/utils.py
https://course.ccs.neu.edu/cs6120s25/data/twitter/utils.py

Write the function that estimates the probabilities of the next possible word given a prior n-
gram. That is, complete the code in estimate_probabilities with the following function
signature:

def estimate_probabilities(context_tokens, ngram_model):
"""
Estimate the probabilities of a next word using the n-gram counts
with k-smoothing

Args:
word: next word
previous_n_gram: A sequence of words of length n
ngram_model: a structure that contains:

- n_gram_counts: Dictionary of counts of n-grams
- n_plus1_gram_counts: Dictionary of counts of (n+1)-grams
- vocabulary_size: number of words
- k: positive constant, smoothing parameter

Returns:
A dictionary mapping from next words to probability

"""
probabilities = {}
<YOUR-CODE-HERE>
return probabilities

In the above, we pass a model object structured called ngram_model. Include all the param-
eters into the object, including k. You can save the results from Q2 into the following model
class.

class NGramModel:
def __init__(self, n_gram_counts, n_plus1_gram_counts, vocab_size, k = 1.0):

dictionary of n grams counts
self.n_gram_counts = n_gram_counts
dictionary of n+1 grams counts
self.n_plus1_gram_counts = n_plus1_gram_counts
number of words
self.vocabulary_size = vocab_size
positive constant, smoothing parameter
self.k: k

Question 4: Infer N-Grams

Now to put it all together. Write a function that uses the models that you’ve created, and
predicts the next word (the word with the maximum probability).

def predict_next_word(sentence_beginning, model):
’’’
Argument:
sentence_beginning: a string
model: an NGramModel object

Returns:
a string with the next word that his most likely to appear after the
sentence_beginning input using the define model

’’’
return next_word

5

We will be using your function to find the next word that might appear from the beginning of
a few sentences. You can simulate this testing process by predicting the next word from our
understanding of trigrams and bigrams, which we can define via the n_gram_model model
object as below.

train_data, test_data = preprocess_data("en_US.twitter.txt", 2)

trigram_model = NGramModel(
count_n_grams(data, 2, SpecialTokens()),
count_n_grams(data, 3, SpecialTokens()),
vocabulary,
k = 1.0

)

predict_next_word("The next word is", n_gram_model)

Question 5: Extra Credit: Stylistic N-Grams

Process the three datasets:

• Earnest Hemingway(https://course.ccs.neu.edu/cs6120s25/data/hemingway/hemingway-edit.txt)

• William Shakespeare: (https://www.gutenberg.org/cache/epub/100/pg100.txt)

• Emily Dickinson (https://www.gutenberg.org/cache/epub/12242/pg12242.txt)

Using a partial sentence as the context, provide the next most probable word. Identify the
most likely writing style between the three authors, and subsequently use the n-gram modeling
approaches to provide the ten words in the most likely style that have the highest probability
of occurring next. To help with autograding, implement them in the following Class, where
we will be initializing an object of type StyleGram and subsequently running the function
write_in_style_ngram

class StyleGram:

def __init__(self, style_files):
"""
We will only be passing style_files in. All your processing and
training should be done by the time this function retunrs.
"""
self.style_files = style_files
<YOUR-CODE-HERE>
return

def write_in_style_ngram(self, passage):
"""
Takes a passage in, matches it with a style, given a list of
filenames, and predicts the next word that will appear
using a bigram model.

Args:
passage: A string that contains a passage
style_file: a list of filenames to be used to determine the style

6

https://course.ccs.neu.edu/cs6120s25/data/hemingway/hemingway-edit.txt
https://course.ccs.neu.edu/cs6120s25/data/hemingway/hemingway-edit.txt
https://www.gutenberg.org/cache/epub/100/pg100.txt
https://www.gutenberg.org/cache/epub/12242/pg12242.txt

Returns:
single word <string>
probability associated with the word <float>
index of "style" it originated from (e.g., 0 for 1st file) <int8>
probability associated with the style <float>

"""
% <YOUR-CODE_HERE>
return word, probability_word, style_file, probability_style

Hint: With the preprocessing steps, you should be able to make a rudimentary classifier similar
to what you’ve built in homework 2, that can take a single passage and determine which author
produced it.

Submission Instructions
There are several artifacts that you will need to upload to Gradescope. These include:

• Required Your code with all of the functions above in a file called assignment4.py.
The related functions and classes that we’ll be expecting are:

Q1 : Preprocessing

– preprocess_data

– read_and_tokenize_sentences

– get_words_with_nplus_frequency replace_oov_words_by_unk

Q2 : count_n_grams

Q3 : estimate_probabilities

Q4 : predict_next_word

EC - 10pts The Class StyleGram

• Optional - Any descriptions of your algorithm, considerations, and specifics in a assignment4.pdf.
If you attacked the extra credit problem, this is most useful for us to understand.

7

	Preprocessing and Vocabulary
	Read and Tokenize Data
	Handling OOV

	N-Gram Counting
	Estimate the Probabilities
	Infer N-Grams
	Extra Credit: Stylistic N-Grams

