
Northeastern University, Khoury College of Computer Science

CS 6120 — Assignment 3
Due: February 6, 2025 (100 points)

Name and Student E-mail

Autocorrect is a productivity tool that helps you quickly adjust any user spelling mistakes in
typing, tapping, or taking dictation. For example, if you type in the word I am lerningg,
chances are very high that you meant to write learning. You use auto-correct every day on
your cell phone and computer. In this assignment, you will implement the base algorithm that
underlies most modern systems today. Of course, your implementation differs from production
applications as they have been optimized with improvements and heuristics throughout the
years. But it is still good :-) The following questions will give us some hands-on experience
with autocorrect.

In particular, you will need to (1) get a word count given a corpus, (2) get a word probability
in the corpus, (3) manipulate and edit strings, (4) filter strings according to certain criteria,
and (5) implement the minimum edit distance to compare strings, find the optimal path for
the edits. At its heart, we will be implementing a dynamic programming solution, the basis of
many computer science problems that are complex in nature. Feel free to test your solution out
using the Shakespeare Data, called shakespeare-edit.txt, which you can download at the
course website

Question 1: Download and Process the Data

Implement the function process_data which

1. Reads in a corpus (text file)

2. Changes everything to lowercase

3. Returns the dictionary of words and probability of occurrence

The words should not have any punctuation or numbers in them. The function signature looks
like the following.

1

https://course.ccs.neu.edu/cs6120s25/data/shakespeare/shakespeare-edit.txt
https://course.ccs.neu.edu/cs6120s25/data/shakespeare/
https://course.ccs.neu.edu/cs6120s25/data/shakespeare/


def process_data(file_name):
"""
Input:

filename: A file_name which is found in your current
directory. You just have to read it in.

Output:
wordprobs: a dictionary where keys are all the processed

lowercase words and the values are the frequency
that it occurs in the corpus (text file you read).

For all words {wi}, the above function signature outlines how we arrive at the dictionary of
wi → P (wi), where the probability of wi appearing is P (wi).

Question 2: Identifying Probable Words

We identify four possible edits to our word in seeing which other words are most similar. That
is, there are four ways we can operate on a string through its characters in order to change a
word. These are:

• delete_letter: given a word, we can change it by removing one character.

• switch_letter: given a word, we can change it by switching two adjacent charac-
ters.

• replace_letter: given a word, we can replace one character by another different
letter.

• insert_letter: given a word, we can insert an additional character.

Taking advantage of lazy evaluation and other computational tricks, write a function that de-
termines all the possible words that are two edit distances away. These words must appear in
your corpus and they must be ordered according to their overall probability (calculated in the
prior question.)

The function signature looks like this:

def probable_substitutes(word, probs, maxret = 10):
"""
Input:

word - The misspelled word
probs - A dictionary of word --> prob
maxret - Maximum number of words to return

Returns:
[(word1, prob1), ... ]

"""

Question 3: Computing the Minimum Edit Distance

Now that you have implemented your auto-correct, how do you evaluate the similarity between
two strings? For example: ’waht’ and ’what’. Also how do you efficiently find the shortest path
to go from the word, ’waht’ to the word ’what’? You will implement a dynamic programming

2



system that will tell you the minimum number of edits required to convert a string into another
string.

Implement the minimum edit distance function with the following function signature.

def min_edit_distance(source, target, ins_cost = 1,
del_cost = 1, rep_cost = 2):

’’’
Input:

source: starting string
target: ending string
ins_cost: integer representing insert cost
del_cost: integer representing delete cost
rep_cost: integer representing replace cost

Output:
D: matrix of size (len(source)+1 , len(target)+1)

with minimum edit distances
med: the minimum edit distance required to convert

source to target
’’’

Recall in class the creation of the matrix of edit distances. We can build this matrix by starting
out with the following initialization:

D[0, 0] = 0

D[i, 0] = D[i− 1, 0] + del cost(source[i])

D[0, j] = D[0, j − 1] + ins cost(target[j])

Subsequently, the dynamic programming problem can build the matrix entries with the following
per cell operations:

D[i, j] = min


D[i− 1, j] + del cost

D[i, j − 1] + ins cost

D[i− 1, j − 1] +

{
rep cost; ifsrc[i] ̸= tar[j]

0; ifsrc[i] = tar[j]

Submission Instructions
Submit your Python file with the above function signatures called assignment3.py to Grade-
scope.

3

gradescope.com
gradescope.com

	Download and Process the Data
	Identifying Probable Words
	Computing the Minimum Edit Distance

