
An Introduction toBinary Decision DiagramsHenrik Reif Andersen

01

x

y

y

z

Lecture notes for 49285 Advanced Algorithms E97, October 1997.(Minor revisions, Apr. 1998)E-mail: hra@it.dtu.dk. Web: http://www.it.dtu.dk/�hraDepartment of Information Technology, Technical University of DenmarkBuilding 344, DK-2800 Lyngby, Denmark.

1

2PrefaceThis note is a short introduction to Binary Decision Diagrams. It provides some back-ground knowledge and describes the core algorithms. More details can be found inBryant's original paper on Reduced Ordered Binary Decision Diagrams [Bry86] and thesurvey paper [Bry92]. A recent extension called Boolean Expression Diagrams is describedin [AH97].This note is a revision of an earlier version from fall 1996 (based on versions from1995 and 1994). The major di�erences are as follows: Firstly, ROBDDs are now viewedas nodes of one global graph with one �xed ordering to reect state-of-the-art of e�cientBDD packages. The algorithms have been changed (and simpli�ed) to reect this fact.Secondly, a proof of the canonicity lemma has been added. Thirdly, the sections presentingthe algorithms have been completely restructured. Finally, the project proposal has beenrevised.AcknowledgementsThanks to the students on the courses of fall 1994, 1995, and 1996 for helping me debugand improve the notes. Thanks are also due to Hans Rischel, Morten Ulrik S�rensen,Niels Maretti, J�rgen Staunstrup, Kim Skak Larsen, Henrik Hulgaard, and various peopleon the Internet who found typos and suggested improvements.

3

CONTENTS 4Contents1 Boolean Expressions 62 Normal Forms 73 Binary Decision Diagrams 84 Constructing and Manipulating ROBDDs 154.1 Mk . 154.2 Build . 174.3 Apply . 194.4 Restrict . 204.5 SatCount, AnySat, AllSat . 224.6 Simplify . 254.7 Existential Quanti�cation and Substitution 255 Implementing the ROBDD operations 276 Examples of problem solving with ROBDDs 276.1 The 8 Queens problem . 276.2 Correctness of Combinational Circuits . 296.3 Equivalence of Combinational Circuits . 297 Veri�cation with ROBDDs 317.1 Knights tour . 338 Project: An ROBDD Package 35References 36

CONTENTS 5

1 BOOLEAN EXPRESSIONS 61 Boolean ExpressionsThe classical calculus for dealing with truth values consists of Boolean variables x; y; :::,the constants true 1 and false 0, the operators of conjunction ^, disjunction _, negation:, implication), and bi-implication , which together form the Boolean expressions.Sometimes the variables are called propositional variables or propositional letters and theBoolean expressions are then known as Propositional Logic.Formally, Boolean expressions are generated from the following grammar:t ::= x j 0 j 1 j :t j t ^ t j t _ t j t) t j t, t;where x ranges over a set of Boolean variables. This is called the abstract syntax of Booleanexpressions. The concrete syntax includes parentheses to solve ambiguities. Moreover, asa common convention it is assumed that the operators bind according to their relativepriority. The priorities are, with the highest �rst: :, ^, _, ,,). Hence, for example:x1 ^ x2 _ x3) x4 = (((:x1) ^ x2) _ x3)) x4 :A Boolean expression with variables x1; : : : ; xn denotes for each assignment of truth valuesto the variables itself a truth value according to the standard truth tables, see �gure 1.Truth assignments are written as sequences of assignments of values to variables, e.g.,[0=x1; 1=x2; 0=x3; 1=x4] which assigns 0 to x1 and x3, 1 to x2 and x4. With this particulartruth assignment the above expression has value 1, whereas [0=x1; 1=x2; 0=x3; 0=x4] yields0. :0 11 0 ^ 0 10 0 01 0 1 _ 0 10 0 11 1 1) 0 10 1 11 0 1 , 0 10 1 01 0 1Figure 1: Truth tables.The set of truth values is often denoted B = f0; 1g. If we �x an ordering of thevariables of a Boolean expression t we can view t as de�ning a function from B n to Bwhere n is the number of variables. Notice, that the particular ordering chosen for thevariables is essential for what function is de�ned. Consider for example the expressionx) y. If we choose the ordering x < y then this is the function f(x; y) = x) y, true ifthe �rst argument implies the second, but if we choose the ordering y < x then it is thefunction f(y; x) = x) y, true if the second argument implies the �rst. When we laterconsider compact representations of Boolean expressions, such variable orderings play acrucial role.Two Boolean expressions t and t0 are said to be equal if they yield the same truthvalue for all truth assignments. A Boolean expression is a tautology if it yields true forall truth assignments; it is satis�able if it yields true for at least one truth assignment.Exercise 1.1 Show how all operators can be encoded using only : and _. Use thisto argue that any Boolean expression can be written using only _, ^, variables, and :applied to variables.

2 NORMAL FORMS 7Exercise 1.2 Argue that t and t0 are equal if and only if t , t0 is a tautology. Is itpossible to say whether t is satis�able from the fact that :t is a tautology?2 Normal FormsA Boolean expression is in Disjunctive Normal Form (DNF) if it consists of a disjunctionof conjunctions of variables and negations of variables, i.e., if it is of the form(t11 ^ t12 ^ � � � ^ t1k1) _ � � � _ (tl1 ^ tl2 ^ � � � ^ tlkl) (1)where each tji is either a variable xji or a negation of a variable :xji . An example is(x ^ :y) _ (:x ^ y)which is a well-known function of x and y (which one?). A more succinct presentation of(1) is to write it using indexed versions of ^ and _:l_j=10@ kĵi=1 tji1A :Similarly, a Conjunctive Normal Form (CNF) is an expression that can be written asl̂j=10@ kj_i=1 tji1Awhere each tji is either a variable or a negated variable. It is not di�cult to prove thefollowing proposition:Proposition 1 Any Boolean expression is equal to an expression in CNF and an expres-sion in DNF.In general, it is hard to determine whether a Boolean expression is satis�able. This ismade precise by a famous theorem due to Cook [Coo71]:Theorem 1 (Cook) Satis�ability of Boolean expressions is NP-complete.(For readers unfamiliar with the notion of NP-completeness the following short summaryof the pragmatic consequences su�ces. Problems that are NP-complete can be solvedby algorithms that run in exponential time. No polynomial time algorithms are knownto exist for any of the NP-complete problems and it is very unlikely that polynomialtime algorithms should indeed exist although nobody has yet been able to prove theirnon-existence.)Cook's theorem even holds when restricted to expressions in CNF. For DNFs satis�-ability is decidable in polynomial time but for DNFs the tautology check is hard (co-NPcomplete). Although satis�ability is easy for DNFs and tautology check easy for CNFs,

3 BINARY DECISION DIAGRAMS 8this does not help us since the conversion between CNFs and DNFs is exponential as thefollowing example shows.Consider the following CNF over the variables x10; : : : xn0 ; x11; : : : ; xn1 :(x10 _ x11) ^ (x20 _ x21) ^ � � � ^ (xn0 _ xn1) :The corresponding DNF is a disjunction which has a disjunct for each of the n-digit binarynumbers from 000 : : : 000 to 111 : : : 111 | the i'th digit representing a choice of either xi0(for 0) or xi1 (for 1): (x10 ^ x20 ^ � � � ^ xn�10 ^ xn0) _(x10 ^ x20 ^ � � � ^ xn�10 ^ xn1) _...(x11 ^ x21 ^ � � � ^ xn�11 ^ xn0) _(x11 ^ x21 ^ � � � ^ xn�11 ^ xn1) :Whereas the original expression has size proportional to n the DNF has size proportionalto n2n.The next section introduces a normal form that has more desirable properties thanDNFs and CNFs. In particular, there are e�cient algorithms for determining the satis�-ability and tautology questions.Exercise 2.1 Describe a polynomial time algorithm for determining whether a DNF issatis�able.Exercise 2.2 Describe a polynomial time algorithm for determining whether a CNF isa tautology.Exercise 2.3 Give a proof of proposition 1.Exercise 2.4 Explain how Cook's theorem implies that checking in-equivalence betweenBoolean expressions is NP-hard.Exercise 2.5 Explain how the question of tautology and satis�ability can be decided ifwe are given an algorithm for checking equivalence between Boolean expressions.3 Binary Decision DiagramsLet x! y0; y1 be the if-then-else operator de�ned byx! y0; y1 = (x ^ y0) _ (:x ^ y1)hence, t ! t0; t1 is true if t and t0 are true or if t is false and t1 is true. We call t thetest expression. All operators can easily be expressed using only the if-then-else operatorand the constants 0 and 1. Moreover, this can be done in such a way that all tests areperformed only on (un-negated) variables and variables occur in no other places. Hencethe operator gives rise to a new kind of normal form. For example, :x is (x ! 0; 1) ,x, y is x! (y ! 1; 0); (y ! 0; 1). Since variables must only occur in tests the Booleanexpression x is represented as x! 1; 0 .

3 BINARY DECISION DIAGRAMS 9An If-then-else Normal Form (INF) is a Boolean expression built entirelyfrom the if-then-else operator and the constants 0 and 1 such that all tests areperformed only on variables.If we by t[0=x] denote the Boolean expression obtained by replacing x with 0 in t thenit is not hard to see that the following equivalence holds:t = x! t[1=x]; t[0=x] : (2)This is known as the Shannon expansion of t with respect to x. This simple equation hasa lot of useful applications. The �rst is to generate an INF from any expression t. If tcontains no variables it is either equivalent to 0 or 1 which is an INF. Otherwise we formthe Shannon expansion of t with respect to one of the variables x in t. Thus since t[0=x]and t[1=x] both contain one less variable than t, we can recursively �nd INFs for both ofthese; call them t0 and t1. An INF for t is now simplyx! t1; t0:We have proved:Proposition 2 Any Boolean expression is equivalent to an expression in INF.Example 1 Consider the Boolean expression t = (x1 , y1) ^ (x2 , y2). If we �nd anINF of t by selecting in order the variables x1; y1; x2; y2 on which to perform Shannonexpansions, we get the expressions t = x1 ! t1; t0t0 = y1 ! 0; t00t1 = y1 ! t11; 0t00 = x2 ! t001; t000t11 = x2 ! t111; t110t000 = y2 ! 0; 1t001 = y2 ! 1; 0t110 = y2 ! 0; 1t111 = y2 ! 1; 0Figure 2 shows the expression as a tree. Such a tree is also called a decision tree. �A lot of the expressions are easily seen to be identical, so it is tempting to identify them.For example, instead of t110 we can use t000 and instead of t111 we can use t001. If wesubstitute t000 for t110 in the right-hand side of t11 and also t001 for t111, we in fact seethat t00 and t11 are identical, and in t1 we can replace t11 with t00.If we in fact identify all equal subexpressions we end up with what is known as abinary decision diagram (a BDD). It is no longer a tree of Boolean expressions but adirected acyclic graph (DAG).

3 BINARY DECISION DIAGRAMS 10x1

1 0 0 1 0

y1x2y2 y2 0 11 00

y1 x2y2 y2
Figure 2: A decision tree for (x1 , y1) ^ (x2 , y2). Dashed lines denote low-branches,solid lines high-branches.Applying this idea of sharing, t can now be written as:t = x1 ! t1; t0t0 = y1 ! 0; t00t1 = y1 ! t00; 0t00 = x2 ! t001; t000t000 = y2 ! 0; 1t001 = y2 ! 1; 0Each subexpression can be viewed as the node of a graph. Such a node is either terminalin the case of the constants 0 and 1, or non-terminal. A non-terminal node has a low-edgecorresponding to the else-part and a high-edge corresponding to the then-part. See �gure3. Notice, that the number of nodes has decreased from 9 in the decision tree to 6 inthe BDD. It is not hard to imagine that if each of the terminal nodes were other bigdecision trees the savings would be dramatic. Since we have chosen to consistently selectvariables in the same order in the recursive calls during the construction of the INF of t,the variables occur in the same orderings on all paths from the root of the BDD. In thissituation the binary decision diagram is said to be ordered (an OBDD). Figure 3 shows aBDD that is also an OBDD.Figure 4 shows four OBDDs. Some of the tests (e.g., on x2 in b) are redundant,since both the low- and high-branch lead to the same node. Such unnecessary tests canbe removed: any reference to the redundant node is simply replaced by a reference to

3 BINARY DECISION DIAGRAMS 11

y2 y2
y1 y1x2

x1

0 1Figure 3: A BDD for (x1 , y1) ^ (x2 , y2) with ordering x1 < y1 < x2 < y2. Low-edgesare drawn as dotted lines and high-edges as solid lines.

11
0 11

x1 x1x2x3
x1x2

dcbaFigure 4: Four OBDDs: a) An OBDD for 1. b) Another OBDD for 1 with two redundanttests. c) Same as b with one of the redundant tests removed. d) An OBDD for x1 _ x3with one redundant test.

3 BINARY DECISION DIAGRAMS 12xy z x < yx < z x x xFigure 5: The ordering and reducedness conditions of ROBDDs. Left: Variables mustbe ordered. Middle: Nodes must be unique. Right: Only non-redundant tests should bepresent.its subnode. If all identical nodes are shared and all redundant tests are eliminated, theOBDD is said to be reduced (an ROBDD). ROBDDs have some very convenient propertiescentered around the canonicity lemma below. (Often when people speak about BDDs theyreally mean ROBDDs.) To summarize:A Binary Decision Diagram (BDD) is a rooted, directed acyclic graph with� one or two terminal nodes of out-degree zero labeled 0 or 1, and� a set of variable nodes u of out-degree two. The two outgoing edgesare given by two functions low(u) and high(u). (In pictures, theseare shown as dotted and solid lines, respectively.) A variable var(u)is associated with each variable node.A BDD is Ordered (OBDD) if on all paths through the graph the variablesrespect a given linear order x1 < x2 < � � � < xn. An (O)BDD is Reduced(R(O)BDD) if� (uniqueness) no two distinct nodes u and v have the same variablename and low- and high-successor, i.e.,var(u) = var(v); low(u) = low(v); high(u) = high(v) implies u = v;and� (non-redundant tests) no variable node u has identical low- andhigh-successor, i.e., low(u) 6= high(u) :The ordering and reducedness conditions are shown in �gure 5.ROBDDs have some interesting properties. They provide compact representations ofBoolean expressions, and there are e�cient algorithms for performing all kinds of logicaloperations on ROBDDs. They are all based on the crucial fact that for any functionf : B n ! B there is exactly one ROBDD representing it. This means, in particular, thatthere is exactly one ROBDD for the constant true (and constant false) function on B n:the terminal node 1 (and 0 in case of false). Hence, it is possible to test in constant timewhether an ROBDD is constantly true or false. (Recall that for Boolean expressions thisproblem is NP-complete.)

3 BINARY DECISION DIAGRAMS 13To make this claimmore precise we must say what we mean for an ROBDD to representa function. First, it is quite easy to see how the nodes u of an ROBDD inductively de�nesBoolean expressions tu: A terminal node is a Boolean constant. A non-terminal nodemarked with x is an if-then-else expression where the condition is x and the two branchesare the Boolean expressions given by the low- or high-son, respectively:t0 = 0t1 = 1tu = var(u)! thigh(u); tlow(u); if u is a variable node.Moreover, if x1 < x2 < � � � < xn is the variable ordering of the ROBDD, we associatewith each node u the function fu that maps (b1; b2; : : : ; bn) 2 B n to the truth value oftu[b1=x1; b2=x2; : : : ; bn=xn]. We can now state the key lemma:Lemma 1 (Canonicity lemma)For any function f : B n ! B there is exactly one ROBDD u with variable ordering x1 <x2 < � � � < xn such that fu = f(x1; : : : ; xn).Proof: The proof is by induction on the number of arguments of f . For n = 0 thereare only two Boolean functions, the constantly false and constantly true functions. AnyROBDD containing at least one non-terminal node is non-constant. (Why?) Thereforethere is exactly one ROBDD for each of these: the terminals 0 and 1.Assume now that we have proven the lemma for all functions of n arguments. Weproceed to show it for all functions of n+1 arguments. Let f : B n+1 ! B be any Booleanfunction of n+1 arguments. De�ne the two functions f0 and f1 of n arguments by �xingthe �rst argument of f to 0 respectively 1:fb(x2; : : : ; xn+1) = f(b; x2; : : : ; xn+1) for b 2 B .(Sometimes f0 and f1 are called the negative and positive co-factors of f with respect tox1.) These functions satisfy the following equation:f(x1; : : : ; xn) = x1 ! f1(x2; : : : ; xn); f0(x2; : : : ; xn) : (3)Since f0 and f1 take only n arguments we assume by induction that there are uniqueROBDD nodes u0 and u1 with fu0 = f0 and fu1 = f1.There are two cases to consider. If u0 = u1 then fu0 = fu1 and f0 = fu0 = fu1 = f1 =f . Hence u0 = u1 is an ROBDD for f . It is also the only ROBDD for f since due tothe ordering, if x1 is at all present in the ROBDD rooted at u, x1 would need to be theroot node. However, if f = fu then f0 = fu[0=x1] = f low(u) and f1 = fu[1=x1] = f high(u).Since f0 = fu0 = fu1 = f1 by assumption, the low- and high-son of u would be the same,making the ROBDD violate the reducedness condition of non-redundant tests.If u0 6= u1 then fu0 6= fu1 by the induction hypothesis (using the names x2; : : : ; xn+1in place of x1; : : : ; xn). We take u to be the node with var(u) = x1, low(u) = u0, andhigh(u) = u1, i.e., fu = x1 ! fu1 ; fu0 which is reduced. By assumption fu1 = f1and fu0 = f0 therefore using (3) we get fu = f . Suppose that v is some other nodewith f v = f . Clearly, f v must depend on x1, i.e., f v[0=x1] 6= f v[1=x1] (otherwise also

3 BINARY DECISION DIAGRAMS 14f0 = f v[0=x1] = f v[1=x1] = f1, a contradiction). Due to the ordering this means thatvar(v) = x1 = var(u). Moreover, from f v = f it follows that f low(v) = f0 = fu0 andf high(v) = f1 = fu1, which by the induction hypothesis implies that low(v) = u0 = low(u)and high(v) = u1 = high(u). From the reducedness property of uniqueness it follows thatu = v. �An immediate consequence is the following. Since the terminal 1 is an ROBDD for allvariable orderings it is the only ROBDD that is constantly true. So in order to checkwhether an ROBDD is constantly true it su�ces to check whether it is the terminal 1which is de�nitely a constant time operation. Similarly, ROBDDs that are constantlyfalse must be identical to the terminal 0. In fact, to determine whether two Booleanfunctions are the same, it su�ces to construct their ROBDDs (in the same graph) andcheck whether the resulting nodes are the same!The ordering of variables chosen when constructing an ROBDD has a great impact onthe size of the ROBDD. If we consider again the expression (x1 , y1) ^ (x2 , y2) andconstruct an ROBDD using the ordering x1 < x2 < y1 < y2 the ROBDD consists of 9nodes (�gure 6) and not 6 nodes as for the ordering x1 < y1 < x2 < y2 (�gure 3).

01
y2 y2y1 y1 y1 y1x2x2 x1

Figure 6: The ROBDD for (x1 , y1)^(x2 , y2) with variable ordering x1 < x2 < y1 < y2.Exercise 3.1 Show how to express all operators from the if-then-else operator and theconstants 0 and 1.Exercise 3.2 Draw the ROBDDs for (x1 , y1) ^ (x2 , y2) ^ (x3 , y3) with orderingsx1 < x2 < x3 < y1 < y2 < y3 and x1 < y1 < x2 < y2 < x3 < y3.

4 CONSTRUCTING AND MANIPULATING ROBDDS 15Exercise 3.3 Draw the ROBDDs for (x1 , y1) _ (x2 , y2) with orderings x1 < x2 <y1 < y2 and x1 < y1 < x2 < y2. How does it compare with the example in �gures 3 and 6?Based on the examples you have seen so far, what variable ordering would you recommendfor constructing a small ROBDD for (x1 , y1)^ (x2 , y2)^ (x3 , y3)^ � � �^ (xk , yk)?Exercise 3.4 Give an example of a sequence of ROBDDs un; 0 � n which induces expo-nentially bigger decision trees. I.e., if un has size �(n) then the decision tree should havesize �(2n).Exercise 3.5 Construct an ROBDD of maximum size over six variables.4 Constructing and Manipulating ROBDDsIn the previous section we saw how to construct an OBDD from a Boolean expressionby a simple recursive procedure. The question arises now how do we construct a reducedOBDD? One way is to �rst construct an OBDD and then proceed by reducing it. An-other more appealing approach, which we follow here, is to reduce the OBDD duringconstruction.To describe how this is done we will need an explicit representation of ROBDDs. Nodeswill be represented as numbers 0; 1; 2; : : : with 0 and 1 reserved for the terminal nodes. Thevariables in the ordering x1 < x2 < � � � < xn are represented by their indices 1; 2; : : : ; n.The ROBDD is stored in a table T : u 7! (i; l; h) which maps a node u to its threeattributes var(u) = i, low(u) = l, and high(u) = h. Figure 7 shows the representation ofthe ROBDD from �gure 3 (with the variable names changed to x1 < x2 < x3 < x4).4.1 MkIn order to ensure that the OBDD being constructed is reduced, it is necessary to deter-mine from a triple (i; l; h) whether there exists a node u with var(u) = i; low(u) = l, andhigh(u) = h. For this purpose we assume the presence of a table H : (i; l; h) 7! u mappingtriples (i; l; h) of variable indices i, and nodes l; h to nodes u. The table H is the \inverse"of the table T , i.e., for variable nodes u, T (u) = (i; l; h), if and only if, H(i; l; h) = u. Theoperations needed on the two tables are:T : u 7! (i; l; h)init(T) initialize T to contain only 0 and 1u add(T; i; l; h) allocate a new node u with attributes (i; l; h)var(u); low(u); high(u) lookup the attributes of u in TH : (i; l; h) 7! uinit(H) initialize H to be emptyb member(H; i; l; h) check if (i; l; h) is in Hu lookup(H; i; l; h) �nd H(i; l; h)insert(H; i; l; h; u) make (i; l; h) map to u in H

4 CONSTRUCTING AND MANIPULATING ROBDDS 16

2 3

4

5 6

7

x4 x4
x2 x3

x1

0 1
x2 T : u 7! (i; l; h)u var low high0 51 52 4 1 03 4 0 14 3 2 35 2 4 06 2 0 47 1 5 6

Figure 7: Representing an ROBDD with ordering x1 < x2 < x3 < x4. The numbersinside the vertices are the identities used in the representation. The numbers 0 and 1are reserved for the terminal nodes. The numbers to the right of the ROBDD shows theindex of the variables in the ordering. The constants are assigned an index which is thenumber of variables in the ordering plus one (here 4+1 = 5). This makes some subsequentalgorithms easier to present. The low- and high-�elds are unused for the terminal nodes.
Mk[T;H](i; l; h)1: if l = h then return l2: else if member(H; i; l; h) then3: return lookup(H; i; l; h)4: else u add(T; i; l; h)5: insert(H; i; l; h; u)6: return uFigure 8: The function mk[T;H](i; l; h).

4 CONSTRUCTING AND MANIPULATING ROBDDS 17Build[T;H](t)1: function build'(t; i) =2: if i > n then3: if t is false then return 0 else return 14: else v0 build'(t[0=xi]; i+ 1)5: v1 build'(t[1=xi]; i+ 1)6: return mk(i; v0; v1)7: end build'8:9: return build'(t; 1)Figure 9: Algorithm for building an ROBDD from a Boolean expression tusing the ordering x1 < x2 < � � � < xn. In a call build'(t; i), i is the lowestindex that any variable of t can have. Thus when the test i > n succeeds, tcontains no variables and must be either constantly false or true.We shall assume that all these operations can be performed in constant time, O(1). Section5 will show how such a low complexity can be achieved.The function mk[T;H](i; l; h) (see �gure 8) searches the table H for a node withvariable index i and low-, high-branches l; h and returns a matching node if one exists.Otherwise it creates a new node u, inserts it into H and returns the identity of it. Therunning time of mk is O(1) due to the assumptions on the basic operations on T and H.The OBDD is ensured to be reduced if nodes are only created through the use of mk. Indescribing mk and subsequent algorithms, we make use of the notation [T;H] to indicatethat mk depends on the global data structures T and H, but we leave out the argumentswhen invoking it as part of other algorithms.4.2 BuildThe construction of an ROBDD from a given Boolean expression t proceeds as in theconstruction of an if-then-else normal form (INF) in section 2. An ordering of the variablesx1 < � � � < xn is �xed. Using the Shannon expansion t = x1 ! t[1=x1]; t[0=x1], a node for tis constructed by a call to mk, after the nodes for t[0=x1] and t[1=x1] have been constructedby recursion. The algorithm is shown in �gure 9. The call build'(t; i) constructs anROBDD for a Boolean expression t with variables in fxi; xi+1; : : : ; xng. It does so by �rstrecursively constructing ROBDDs v0 and v1 for t[0=xi] and t[1=xi] in lines 4 and 5, andthen proceeding to �nd the identity of the node for t in line 6. Notice that if v0 and v1 areidentical, or if there already is a node with the same i, v0 and v1, no new node is created.An example of using build to compute an ROBDD is shown in �gure 10. The runningtime of build is bad. It is easy to see that for a variable ordering with n variables therewill always be generated on the order of 2n calls .

4 CONSTRUCTING AND MANIPULATING ROBDDS 18
((0 , x2) _ x3; 2) build'((x1 , x2) _ x3; 1) ((1, x2) _ x3; 2) ((1 , 1) _ x3; 3)((1 , 0) _ x3; 3)((1 , 0) _ 0; 4) ((1 , 1) _ 0; 4)((1 , 0) _ 1; 4) ((1 , 1) _ 1; 4)((0 , 1) _ x3; 3)((0 , 1) _ 0; 4)((0 , 0) _ x3; 3)((0 , 0) _ 1; 4)((0 , 0) _ 0; 4) ((0, 1) _ 1; 4)

b cd e fg
e

a
11 1 0

1 1 1 000
b c d0

e f g

x3 x2 x3
x2 x3 x2 x3 x2 x2 x1 x2x3

Figure 10: Using build on the expression (x1 , x2)_ x3. (a) The tree of calls to build.(b) The ROBDD after the call build'((0, 0)_x3; 3). (c) After the call build'((0, 1)_x3; 3). (d) After the call build'((0, x2)_x3; 2). (e) After the calls build'((1, 0)_x3; 3)and build'((1 , 1) _ x3; 3). (f) After the call build'((1 , x2) _ x3; 2). (g) The �nalresult.

4 CONSTRUCTING AND MANIPULATING ROBDDS 194.3 ApplyApply[T;H](op; u1; u2)1: init(G)2:3: function app(u1; u2) =4: if G(u1; u2) 6= empty then return G(u1; u2)5: else if u1 2 f0; 1g and u2 2 f0; 1g then u op(u1; u2)6: else if var(u1) = var(u2) then7: u mk(var(u1);app(low(u1); low(u2));app(high(u1); high(u2)))8 else if var(u1) < var(u2) then9 u mk(var(u1);app(low(u1); u2);app(high(u1); u2))10: else (� var(u1) > var(u2) �)11: u mk(var(u2);app(u1; low(u2));app(u1; high(u2)))12: G(u1; u2) u13: return u14: end app15:16: return app(u1; u2)Figure 11: The algorithm apply[T;H](op; u1; u2).All the binary Boolean operators on ROBDDs are implemented by the same generalalgorithm apply(op; u1; u2) that for two ROBDDs computes the ROBDD for the Booleanexpression tu1 op tu2. The construction of apply is based on the Shannon expansion (2):t = x! t[1=x]; t[0=x] :Observe that for all Boolean operators op the following holds:(x! t1; t2) op (x! t01; t02) = x! t1 op t01; t2 op t02 (4)If we start from the root of the two ROBDDs we can construct the ROBDD of the result byrecursively constructing the low- and the high-branches and then form the new root fromthese. Again, to ensure that the result is reduced, we create the node through a call tomk. Moreover, to avoid an exponential blow-up of recursive calls, dynamic programmingis used. The algorithm is shown in �gure 11.Dynamic programming is implemented using a table of results G. Each entry (i; j) iseither empty or contains the earlier computed result of app(i; j). The algorithm distin-guishes between four di�erent cases, the �rst of them handles the situation where botharguments are terminal nodes, the remaining three handle the situations where at leastone argument is a variable node.If both u1 and u2 are terminal, a new terminal node is computed having the value ofop applied to the two truth values. (Recall, that terminal node 0 is represented by a nodewith identity 0 and similarly for 1.)

4 CONSTRUCTING AND MANIPULATING ROBDDS 20If at least one of u1 and u2 are non-terminal, we proceed according to the variableindex. If the nodes have the same index, the two low-branches are paired and apprecursively computed on them. Similarly for the high-branches. This corresponds exactlyto the case shown in equation (4). If they have di�erent indices, we proceed by pairing thenode with lowest index with the low- and high-branches of the other. This correspondsto the equation (xi ! t1; t2) op t = xi ! t1 op t; t2 op t (5)which holds for all t. Since we have taken the index of the terminals to be one largerthan the index of the non-terminals, the last two cases, var(u1) < var(u2) and var(u1) >var(u2), take account of the situations where one of the nodes is a terminal.Figure 12 shows an example of applying the algorithm on two small ROBDDs. Noticehow pairs of nodes from the two ROBDDs are combined and computed.To analyze the complexity of apply we let juj denote the number of nodes that canbe reached from u in the ROBDD. Assume that G can be implemented with constantlookup and insertion times. (See section 5 for details on how to achieve this.) Due tothe dynamic programming at most ju1j ju2j calls to Apply are generated. Each call takesconstant time. The total running time is therefore O(ju1j ju2j).4.4 RestrictThe next operation we consider is the restriction of a ROBDD u. That is, given a truthassignment, for example [0=x3; 1=x5; 1=x6], we want to compute the ROBDD for tu underthis restriction, i.e., �nd the ROBDD for tu[0=x3; 1=x5; 1=x6]. As an example consider theROBDD of �gure 10(g) (repeated below to the left) representing the Boolean expression(x1 , x2) _ x3. Restricting it with respect to the truth assignment [0=x2] yields anROBDD for (:x1 _ x3). It is constructed by replacing each occurrence of a node withlabel x2 by its left branch yielding the ROBDD at the right:
01

x1

x2 x2

x3

01

x1

x3

The algorithm again uses mk to ensure that the resulting OBDD is reduced. Figure 13shows the algorithm in the case where only singleton truth assignments ([b=xj], b 2 f0; 1g)are allowed. Intuitively, in computing restrict(u; j; b) we search for all nodes withvar = j and replace them by their low- or high-son depending on b. Since this mightforce nodes above the point of replacemen to become equal, it is followed by a reduction(through the calls to mk). Due to the two recursive calls in line 3, the algorithm has anexponential running time, see exercise 4.7 for an improvement that reduces this to lineartime.

4 CONSTRUCTING AND MANIPULATING ROBDDS 21

x1x2x3x4x5 200 1 1 1 0 x1x2x3x4x51,1 0,0 0,1 0,0 0,0 1,0 0,0 0,02,2 0,23,2 5,3 4,0 2,0
6,3 0,30,2 5,47,40,4 0,20,1

8,5
4,2 2,23,02,0 0,1 0,2

23 456 78 453 23 45 67 89^ =

Figure 12: An example of applying the algorithm apply for computing the conjunctionof the two ROBDDs shown at the top left. The result is shown to the right. Below thetree of arguments to the recursive calls of app. Dashed nodes indicate that the value ofthe node has previously been computed and is not recomputed due to the use of dynamicprogramming. The solid ellipses show calls that �nishes by a call to mk with the variableindex indicated by the variables to the right of the tree.

4 CONSTRUCTING AND MANIPULATING ROBDDS 22Restrict[T;H](u; j; b) =1: function res(u) =2: if var(u) > j then return u3: else if var(u) < j then return mk(var(u); res(low(u)); res(high(u)))4: else (* var(u) = j *) if b = 0 then return res(low(u))5: else (* var(u) = j; b = 1 *) return res(high(u))6: end res7: return res(u)Figure 13: The algorithm restrict[T;H](u; j; b) which computes an ROBDDfor tu[j=b].4.5 SatCount, AnySat, AllSatIn this section we consider operations to examine the set of satisfying truth assignmentsof a node u. A truth assignment � satis�es a node u if tu[�] can be evaluated to 1 usingthe truth tables of the Boolean operators. Formally, the satisfying truth assignments isthe set sat(u): sat(u) = f� 2 B fx1;:::;xng j tu[�] is true g;where B fx1;:::;xng denotes the set of all truth assignments for variables fx1; : : : ; xng, i.e.,functions from fx1; : : : ; xng to the truth values B = f0; 1g. The �rst algorithm, Sat-Count, computes the size of sat(u), see �gure 14. The algorithm exploits the follow-ing fact. If u is a node with variable index var(u) then two sets of truth assignmentscan make fu true. The �rst set has varu equal to 0, the other has varu equal to1. For the �rst set, the number is found by �nding the number of truth assignmentscount(low(u)) making low(u) true. All variables between var(u) and var(low(u)) inthe ordering can be chosen arbitrarily, therefore in the case of varu being 0, a totalof 2var(low(u))�var (u)�1 � count(low(u)) satisfying truth assignments exists. To be e�cient,dynamic programming should be applied in SatCount (see exercise 4.10).The next algorithm AnySat in �gure 15 �nds a satisfying truth assignment. Someirrelevant variables present in the ordering might not appear in the result and they canbe assigned any value whatsoever. AnySat simply �nds a path leading to 1 by a depth-�rst traversal, prefering somewhat arbitrarily low-edges over high-edges. It is particularlysimple due to the observation that if a node is not the terminal 0, it has at least one pathleading to 1. The running time is clearly linear in the result.AllSat in �gure 16 �nds all satisfying truth-assignments leaving out irrelevant vari-ables from the ordering. AllSat(u) �nds all paths from a node u to the terminal 1. Therunning time is linear in the size of the result multiplied with the time to add the singleassignments [xvar(u) 7! 0] and [xvar(u) 7! 1] in front of a list of up to n elements. However,the result can be exponentially large in juj, so the running time is the poor O(2jujn).

4 CONSTRUCTING AND MANIPULATING ROBDDS 23SatCount[T](u)1: function count(u)2: if u = 0 then res 03: else if u = 1 then res 14: else res 2var(low(u))�var (u)�1 � count(low(u))+ 2var(high(u))�var(u)�1 � count(high(u))5: return res6: end count7:8: return 2var(u)�1 � count(u)Figure 14: An algorithm for determining the number of valid truth assign-ments. Recall, that the \variable index" var of 0 and 1 in the ROBDD repre-sentation is n+1 when the ordering contains n variables (numbered 1 throughn). This means that var(0) and var(1) always gives n+ 1.
AnySat(u)1: if u = 0 then Error2: else if u = 1 then return []3: else if low(u) = 0 then return [xvar(u) 7! 1;AnySat(high(u))]4: else return [xvar(u) 7! 0;AnySat(low(u))]Figure 15: An algorithm for returning a satisfying truth-assignment. Thevariables are assumed to be x1; : : : ; xn ordered in this way.
AllSat(u)1: if u = 0 then return h i2: else if u = 1 then return h [] i3: else return4: hadd [xvar(u) 7! 0] in front of all5: truth-assignments in AllSat(low(u));6: add [xvar(u) 7! 1] in front of all7: truth-assignments in AllSat(high(u))iFigure 16: An algorithm which returns all satisfying truth-assignments. Thevariables are assumed to be x1; : : : xn ordered in this way. We use h� � �i todenote sequences of truth assignments. In particular, h i is the empty sequenceof truth assignments, and h [] i is the sequence consisting of the single emptytruth assignment.

4 CONSTRUCTING AND MANIPULATING ROBDDS 24

Simplify(d; u)1: function sim(d; u)2: if d = 0 then return 03: else if u � 1 then return u4: else if d = 1 then5: return mk(var(u); sim(d; low(u)); sim(d; high(u)))6: else if var(d) = var(u) then7: if low(d) = 0 then return sim(high(d); high(u))8: else if high(d) = 0 then return sim(low(d); low(u))9: else return mk(var(u);10: sim(low(d); low(u));11: sim(high(d); high(u)))12: else if var(d) < var(u) then13: return mk(var(d); sim(low(d); u); sim(high(d); u))14: else15: return mk(var(u); sim(d; low(u)); sim(d; high(u)))16: end sim17:18: return sim(d; u)Figure 17: An algorithm (due to Coudert et al [CBM89]) for simplifying anROBDD b that we only care about on the domain d. Dynamic programmingshould be applied to improve e�ciency (exercise 4.12)

4 CONSTRUCTING AND MANIPULATING ROBDDS 25mk(i; u0; u1) O(1)Build(t) O(2n)Apply(op; u1; u2) O(ju1j ju2j)Restrict(u; j; b) O(juj) See noteSatCount(u) O(juj) See noteAnySat(u) O(jpj) p = AnySat(u), jpj = O(juj)AllSat(u) O(jrj � n) r = AllSat(u), jrj = O(2juj)Simplify(d; u) O(jdjjuj) See noteNote: These running times only holds if dynamic programming isused (exercises 4.7, 4.10, and 4.12).Table 1: Worst-case running times for the ROBDD operations. The running times are theexpected running times since they are all based on a hash-table with expected constanttime search and insertion operations.4.6 SimplifyThe �nal algorithm called Simplify is shown in �gure 17. The algorithm is used tosimplify an ROBDD by trying to remove nodes. The simpli�cation is based on a domaind of interest. The ROBDD u is supposed to be of interest only on truth assignmentsthat also satisfy d. (This occurs when using ROBDDs for formal veri�cation. Section7 shows how to do formal veri�cation with ROBDDs, but contains no example of usingSimplify.)To be precise, given d and u, Simplify �nds another ROBDD u0, typically smallerthan u, such that td ^ tu = td ^ tu0. It does so by trying to identify sons, and therebymaking some nodes redundant. A more detailed analysis is left to the reader.The running time of the algorithms of the previous sections is summarized in table 1.4.7 Existential Quanti�cation and SubstitutionWhen applying ROBDDs often existential quanti�cation and composition is used. Ex-istential quanti�cation is the Boolean operation 9x:t. The meaning of an existentialquanti�cation of a Boolean variable is given by the following equation:9x:t = t[0=x] _ t[1=x] : (6)On ROBDDs existential quanti�cation can therefore be implemented using two calls toRestrict and a single call to Apply.Composition is the ROBDD operation performing the equivalent of substitution onBoolean expression. Often the notation t[t0=x] is used to describe the result of substitutingall free occurrences of x in t by t0. (An occurrence of a variable is free if it is not withinthe scope of a quanti�er.)1 To perform this substitution on ROBDDs we observe the1Since ROBDDs contain no quanti�ers we shall not be concerned with the problems of free variablesof t0 being bound by quanti�ers of t.

4 CONSTRUCTING AND MANIPULATING ROBDDS 26following equation, which holds if t contains no quanti�ers:t[t0=x] = t[t0 ! 1; 0=x] = t0 ! t[1=x]; t[0=x]: (7)Since (t0 ! t[1=x]; t[0=x]) = (t0 ^ t[1=x])_ (:t0 ^ t[0=x]) we can compute this with twoapplications of restrict and three applications of apply (with the operators ^, (:)^ ,_). However, by essentially generalizing apply to operators op with three arguments wecan do better (see exercise 4.13).ExercisesExercise 4.1 Construct the ROBDD for :x1 ^ (x2 , :x3) with ordering x1 < x2 < x3using the algorithm Build in �gure 9.Exercise 4.2 Show the representation of the ROBDD of �gure 6 in the style of �gure 7.Exercise 4.3 Suggest an improvement BuildConj(t) of Build which generates only alinear number of calls for Boolean expressions t that are conjunctions of variables andnegations of variables.Exercise 4.4 Construct the ROBDDs for x and x) y using whatever ordering youwant. Compute the disjunction of the two ROBDDs using apply.Exercise 4.5 Construct the ROBDDs for :(x1 ^ x3) and x2 ^ x3 using build with theordering x1 < x2 < x3. Use apply to �nd the ROBDD for :(x1 ^ x3) _ (x2 ^ x3).Exercise 4.6 Is there any essential di�erence in running time between �nding restrict(b; 1; 0)and restrict(b; n; 0) when the variable ordering is x1 < x2 < � � � < xn?Exercise 4.7 Use dynamic programming to improve the running time of Restrict.Exercise 4.8 Generalise restrict to arbitrary truth assignments [xi1 = bi1 ,xi2 = bi2 ,: : :,xin =bin]. It might be convenient to assume that xi1 < xi2 < � � � < xin .Exercise 4.9 Suggest a substantially better way of building ROBDDs for (large) Booleanexpressions than build.Exercise 4.10 Change SatCount such that dynamic programming is used. How doesthis change the running time?Exercise 4.11 Explain why dynamic programming does not help in improving the run-ning time of AllSat.Exercise 4.12 Improve the e�ciency of Simplify with dynamic programming.Exercise 4.13 Write the algorithm Compose(u1; x; u2) for computing the ROBDD ofu1[u2=x] e�ciently along the lines of apply. First generalize apply to operators opwith three arguments (as for example the if-then-else operator), utilizing once again theShannon expansion. Then use equation 7 to write the algorithm.

5 IMPLEMENTING THE ROBDD OPERATIONS 275 Implementing the ROBDD operationsThere are many choices that have to be taken in implementing the ROBDD operations.There is no obvious best way of doing it. This section gives hints for some reasonablesolutions.First, the node table T is an array as shown in �gure 7. The only problem is that thesize of the array is not known until the full BDD has been constructed. Either a �xedupper bound could be assumed, or other tricks must be applied (for example dynamicarrays [CLR90, sec. 18.4]). The table H could be implemented as a hash-table using forinstance the hash functionh(i; v0; v1) = pair(i; pair(v0; v1)) mod mwhere pair is a pairing function that maps pairs of natural numbers to natural numbersand m is a prime. One choice for the pairing function ispair(i; j) = (i+ j)(i+ j + 1)2 + iwhich is a bijection, and therefore \perfect": it produces no collisions. As usual withhash-tables we have to decide on the size as a prime m. However, since the size of Hgrows dynamically it can be hard to �nd a good choice for m. One solution would be totake m very large, for example m = 15485863 (which is the 1000000'th prime number),and then take as the hashing functionh0(i; v0; v1) = h(i; v0; v1) mod 2kusing a table of size 2k. Starting from some reasonable small value of k we could increasethe table when it contains 2k elements by adding one to k, construct a new table andrehash all elements into this new table. (Again, see for example [CLR90, sec. 18.4] fordetails.) For such a dynamic hash-table the amortized, expected cost of each operation isstill O(1).The table G used in Apply could be implemented as a two-dimensional array. How-ever, it turns out to be very sparsely used { especially if we succeed in getting smallROBDDs { and it is better to use a hash-table for it. The hashing function used couldbe g(v0; v1) = pair(v0; v1) mod m and as for H a dynamic hash-table could be used.6 Examples of problem solving with ROBDDsThis section will describe various examples of problems that can be solved with anROBDD-package. The examples are not chosen to illustrate when ROBDDs are thebest choice, but simply chosen to illustrate the scope of potential applications.6.1 The 8 Queens problemA classical chess-board problem is the 8 queens problem: Is it possible to place 8 queenson a chess board so that no queen can be captured by another queen? To be a bit more

6 EXAMPLES OF PROBLEM SOLVING WITH ROBDDS 28general we could ask the question for arbitrary N : Is it possible to place N queens safelyon a N �N chess board?To solve the problem using ROBDDs we must encode it using Boolean variables. Wedo this by introducing a variable for each position on the board. We name the variablesas xij; 1 � i; j � N where i is the row and j is the column. A variable will be 1 if a queenis placed on the corresponding position.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

The capturing rules for queens require that no other queen can be positioned on thesame row, column, or any of the diagonals. This we can express as Boolean expressions:For all i; j, xij) ^1�l�N;l 6=j:xilxij) ^1�k�N;k 6=i:xkjxij) ^1�k�N;1�j+k�i�N;k 6=i:xk;j+k�ixij) ^1�k�N;1�j+i�k�N;k 6=i:xk;j+i�kMoreover, there must be a queen in each row: For all i,xi1 _ xi2 _ � � � _ xiNTaking the conjunction of all the above requirements, we get a predicate SolN(~x) true atexactly the con�gurations that are solutions to the N queens problem.Exercise 6.1 (8 Queens Problem) Write a program that can �nd an ROBDD forSolN(~x) when given N as input. Make a table of the number of solutions to the Nqueens problem for N = 1; 2; 3; 4; 5; 6; 7; 8; : : : When there is a solution, give one.

6 EXAMPLES OF PROBLEM SOLVING WITH ROBDDS 29

_
^
^ xor

xor

x y
co ci

sFigure 18: A full-adder6.2 Correctness of Combinational CircuitsA full-adder takes as arguments two bits x and y and an incoming carry bit ci. Itproduces as output a sum bit s and an outgoing carry bit co. The requirement is that2 � co + s = x+ y+ ci, in other words co is the most signi�cant bit of the sum of x; y, andci, and s the least signi�cant bit. The requirement can be written down as a table for coand a table for s in terms of values of x; y, and ci. From such a table it is easy to writedown a DNF for co and s.At the normal level of abstraction a combinational circuit is nothing else than aBoolean expression. It can be represented as an ROBDD, using Build to constructthe trivial ROBDDs for the inputs and using a call to Apply for each gate.Exercise 6.2 Find DNFs for co and s. Verify that the circuit in �gure 18 implements aone bit full-adder using the ROBDD-package and the DNFs.6.3 Equivalence of Combinational CircuitsAs above we can construct an ROBDD from a combinational circuit and use the ROBDDsto show properties. For instance, the equivalence with other circuits.Exercise 6.3 Verify that the two circuits in �gure 19 are not equivalent using ROBDDs.Find an input that returns di�erent outputs in the two circuits.

6 EXAMPLES OF PROBLEM SOLVING WITH ROBDDS 30

:: : ^̂̂
^

_
x1
x2y2

y1
b

x1
y1x2
y2

an̂or
n̂or

_
_ ^

Figure 19: Two circuits used in exercise 6.3

7 VERIFICATION WITH ROBDDS 31
t2h2

t1c1
c3t3

t4 h1
h3h4 c2

c4
Figure 20: Milner's Scheduler with 4 cyclers. The token is passed clockwise from c1 to c2to c3 to c4 and back to c17 Veri�cation with ROBDDsOne of the major uses of ROBDDs is in formal veri�cation. In formal veri�cation a modelof a system M is given together with some properties P supposed to hold for the system.The task is to determine whether indeedM satisfy P . The approach we take, in which weshall use an algorithm to answer the satisfaction problem, is often called model checking.We shall look at a concrete example called Milner's Scheduler (taken from Milner'sbook [Mil89]). The model consists of N cyclers, connected in a ring, that co-operateson starting and detecting termination of N tasks that are not further described. Thescheduler must make sure that the N tasks are always started in order but they areallowed to terminate in any order. This is one of the properties that has to be shown tohold for the model. The cyclers try to ful�ll this by passing a token: the holder of thetoken is the only process allowed to start its task.All cyclers are similar except that one of them has the token in the initial state. Thecyclers cyci, 1 � i � N are described in a state-based fashion as small transition systemsover the Boolean variables ti; hi, and ci. The variable ti is 1 when task i is running and 0when it is terminated; hi is 1 when cycler i has a token, 0 otherwise; ci is 1 when cycleri � 1 has put down the token and cycler i not yet picked it up. Hence a cycler starts atask by changing ti from 0 to 1, and detects its termination when ti is again changed backto 0; and it picks up the token by changing ci from 1 to 0 and puts it down by changingci+1 from 0 to 1. The behaviour of cycler i is described by two transitions:if ci = 1 ^ ti = 0 then ti; ci; hi := 1; 0; 1if hi = 1 then c(i mod N)+1; hi := 1; 0The meaning of a transition \if condition then assignment" is that, if the condition istrue in some state, then the system can evolve to a new state performing the (parallel)assignment. Hence, if the system is in a state where ci is 1 and ti is 0 then we cansimultaneously set ti to 1, ci to 0 and hi to 1.

7 VERIFICATION WITH ROBDDS 32The transitions are encoded by a single predicate over the value of the variables beforethe transitions (the pre-state) and the values after the transition (the post-state). Thevariables in the pre-state are the ti; hi; ci; 1 � i � N which we shall collectively refer to as~x and in the post-state t0i; h0i; c0i; 1 � i � N , which we shall refer to as ~x0. Each transitionis an atomic action that excludes any other action. Therefore in the encoding we shalloften have to say that a lot of variables are unchanged. Assume that S is a subset of theunprimed variables ~x. We shall use a predicate unchangedS over ~x; ~x0 which ensures thatall variables in S are unchanged. It is de�ned as follows:unchangedS =def x̂2S x = x0 :It is slightly more convenient to use the predicate assignedS0 = unchanged~xnS0 whichexpress that every variable not in S 0 is unchanged. We can now de�ne Pi, the transitionsof cycler i over the variables ~x; ~x0 as follows:Pi =def (ci ^ :ti ^ t0i ^ :c0i ^ h0i ^ assignedfci;ti;hig)_ (hi ^ c0(i mod N)+1 ^ :h0i ^ assignedfc(i mod N)+1;hig)The signalling of termination of task i, by changing ti from 1 to 0 performed by theenvironment is modeled by N transitions Ei; 1 � i � N :Ei =def ti ^ :t0i ^ assignedftig;expressing the transitions if ti = 1 then ti := 0. Now, at any given state the system canperform one of the transitions from one of the Pi's or the Ei's, i.e., all possible transitionsare given by the predicate T :T =def P1 _ � � � _ Pn _ E1 _ � � � _ En :In the initial state we assume that all tasks are stopped, no cycler has a token and onlyplace 1 (c1) has a token. Hence the initial state can be characterized by the predicate Iover the unprimed variables ~x given by:I =def :~t ^ :~h ^ c1 ^ :c2 ^ � � � ^ :cN :(Here : applied to a vector ~t means the conjunction of : applied to each coordinate ti.)The predicates describing Milner's Scheduler are summarized in �gure 21.Within this setup we could start asking a lot of questions. For example,1. Can we �nd a predicate R over the unprimed variables characterizing exactly thestates that can be reached from I? R is called the set of reachable states.2. How many reachable states are there?3. Is it the case that in all reachable states only one token is present?4. Is task ti always only started after ti�1?

7 VERIFICATION WITH ROBDDS 33unchangedS =def Vx2S x = x0assignedS0 =def unchanged~xnS0Pi =def (ci ^ :ti ^ t0i ^ :c0i ^ h0i ^ assignedci;ti;hi)_ (hi ^ c0i mod N+1 ^ :h0i ^ assignedci mod N+1;hi)Ei =def ti ^ :t0i ^ assignedtiT =def _1�i�N Pi _ EiI =def :~t ^ :~h ^ c1 ^ :c2 ^ � � � ^ :cNFigure 21: Milner's Scheduler as described by the transition predicate T and the initial-state predicate I.5. Does Milner's Scheduler possess a deadlock? I.e., is there a reachable state in whichno transitions can be taken?To answer these questions we �rst have to compute R. Intuitively, R must be the setof states that either satisfy I (are initial) or within a �nite number of T transitions canbe reached from I. This suggest an iterative algorithm for computing R as an increasingchain of approximations R0; R1; : : : ; Rk; : : : Step k of the algorithm �nd states that withless than k transitions can be reached from I. Hence, we take R0 = 0 the constantly falsepredicate and compute Rk+1 as the disjunction of I and the set of states which from onetransition of T can be reached from Rk. Figure 22 illustrates the computation of R.How do we compute this with ROBDDs? We start with the ROBDD R = 0 . At anypoint in the computation the next approximation is computed by the disjunction of I andT composed with the previous approximation R0. We are done when the current and theprevious approximations coincide:Reachable-States(I; T; ~x; ~x0)1: R 02: repeat3: R0 R4: R I _ (9~x: T ^ R)[~x=~x0]5: until R0 = R6: return R7.1 Knights tourUsing the same encoding of a chess board as in section 6.1, letting xij = 1 denote thepresence of a Knight at position (i; j) we can solve other problems. We can encode movesof a Knight as transitions. For each position, 8 moves are possible if they stay on theboard. A Knight at (i; j) can be moved to any one of (i� 1; j � 2); (i� 2; j� 1) assumingthey are vacant and within the board boundary. For all i; j and k; l with 1 � k; l � Nand (k; l) 2 f(i� 1; j � 2); (i� 2; j � 1)g:Mij;kl =def xij ^ :xk;l ^ :x0ij ^ x0kl ^ ^(i0;j0)62f(i;j);(k;l)g xi0j0 = x0i0j0 :

7 VERIFICATION WITH ROBDDS 34
Full state space

I = R1 R2 R3 R. . .
Figure 22: Sketch of computation of the reachable statesHence, the transitions are given as the predicate T (~x; ~x0):T (~x; ~x0) =def _1�i;j;k;l�N;(k;l)2f(i�1;j�2);(i�2;j�1)gMij;kl

Exercise 7.1 (Knight's tour) Write a program to solve the following problem usingthe ROBDD-package: Is it possible for a Knight, positioned at the lower left corner tovisit all positions on an N �N board? (Hint: Compute iteratively all the positions thatcan be reached by the Knight.) Try it for various N .Exercise 7.2 Why does the algorithm Reachable-States always terminate?Exercise 7.3 In this exercise we shall work with Milner's Scheduler for N = 4. It is byfar be the most convenient to solve the exercise by using an implementation of an ROBDDpackage.a) Find the reachable states as an ROBDD R.b) Find the number of reachable states.c) Show that in all reachable states at most one token is present on any of theplaceholders c1; : : : ; cN by formulating a suitable property P and provethat R) P .

8 PROJECT: AN ROBDD PACKAGE 35d) Show that in all reachable states Milner's Scheduler can always perform atransition, i.e., it does not possess a deadlock.Exercise 7.4 Complete the above exercise by showing that the tasks are always startedin sequence 1; 2; : : : ; N; 1; 2 : : :Exercise 7.5 Write a program that given an N as input computes the reachable statesof Milner's Scheduler with N cyclers. The program should write out the number ofreachable states (using SatCount). Run the program for N = 2; 4; 6; 8; 10; : : : Measurethe running times and draw a graph showing the measurements as a function of N . Whatis the asymptotic running time of your program?8 Project: An ROBDD PackageThis project implements a small package of ROBDD-operations. The full package shouldcontain the following operations:Init(n)Initialize the package. Use n variables numbered 1 through n.Print(u)Print a representation of the ROBDD on the standard output. Useful for debugging.Mk(i; l; h)Return the number u of a node with var(u) = i; low(u) = l; high(u) = h. This couldbe an existing node, or a newly created node. The reducedness of the ROBDD shouldnot be violated.Build(t)Construct an ROBDD from a Boolean expression. You could restrict yourself to theexpressions x or :x or �nite conjunctions of these. (Why?)Apply(op; u1; u2)Construct the ROBDD resulting from applying op on u1 and u2.Restrict(u; j; b)Restrict the ROBDD u according to the truth assignment [b=xj].SatCount(u)Return the number of elements in the set sat(u). (Use a type that can contain verylarge numbers such as oating point numbers.)AnySat(u)Return a satisfying truth assignment for uSub-project 1Implement the tables T and H with their operations listed in section 4. On top of theseimplement the operations Init(n), Print(u), and Mk(i; l; h).

REFERENCES 36Sub-project 2Continue implementation of the package by adding the operations Build(t) and Ap-ply(op; u1; u2).Sub-project 3Finish your implementation of the package by adding Restrict(u; j; b), SatCount(u),and AnySat(u).References[AH97] Henrik Reif Andersen and Henrik Hulgaard. Boolean expression diagrams. InProceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science,pages 88{98, Warsaw, Poland, June 29{July 2 1997. IEEE Computer Society.[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE Transactions on Computers, 8(C-35):677{691, 1986.[Bry92] Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decisiondiagrams. ACM Computing Surveys, 24(3):293{318, September 1992.[CBM89] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Veri�cationof synchronous sequential machines based on symbolic execution. In J. Sifakis,editor, Automatic Veri�cation Methods for Finite State Systems. Proceedings,volume 407 of LNCS, pages 365{373. Springer-Verlag, 1989.[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introductionto Algorithms. McGraw-Hill, 1990.[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of theThird Annual ACM Symposium on the Theory of Computing, pages 151{158,New York, 1971. Association for Computing Machinery.[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

