NP complete problems

Some figures, text, and pseudocode from:
- Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein
- Algorithms, by Dasgupta, Papadimitriou, and Vazirani
Module objectives

• Some problems are too hard to solve in polynomial time
 – Example of such problems, and what makes them hard

• Class NP\P
 – NP: problems with solutions verifiable in poly time
 – P: problems not solvable in poly time

• NP-complete, fundamental class in Computer Science
 – reduction form on problem to another

• Approximation Algorithms:
 – since these problems are too hard, will settle for non-optimal solution
 – but close to the optimal
 – if we can find such solution reasonably fast
Module objectives

• **WARNING:** This presentation trades rigor for intuition and easiness

• The CLRS book ch 35 is rigorous, but considerably harder to read

 – hopefully easier after going through these slides

• For an introduction to complexity theory that is rigorous and somewhat more accessible, see

 – Michael Sipser: *Introduction to Theory of Computation*
2SAT problem

- **2-clause** \((a \lor b)\)
 - true (satisfied) if either \(a\) or \(b\) true, false (unsatisfied) if both false
 - \(a, b\) are binary true/false literals
 - \(a = \text{not} (a) = \text{negation} (a). \quad \neg T=F \ ; \quad \neg F=T\)
 - can have several clauses, e.g. \((a \lor b), (\neg a \lor c), (\neg c \lor d), (\neg a \lor \neg b)\)
 - truth table for logical OR: \((T \lor T)=T; (T \lor F)=T; (F \lor T)=T; (F \lor F)=F\)

- **2-SAT problem**: given a set of clauses, find an assignment \(T/F\) for literals in order to satisfy all clauses
Example: satisfy the following clauses:
- \((a \lor b) \land (\neg a \lor c) \land (\neg d \lor b) \land (d \lor \neg c) \land (\neg c \lor f) \land (\neg f \lor \neg g) \land (g \lor \neg d)\)

try a=TRUE
- \(a=T \Rightarrow \neg a=F \Rightarrow c=T \Rightarrow d=f=T \Rightarrow \neg g=T \Rightarrow g=F \Rightarrow \neg d=T\) contradiction

try a=FALSE
- \(a=F \Rightarrow b=T\), it works; eliminate first three clauses and \(a, b\); now we have \((d \lor \neg c) \land (\neg c \lor f) \land (\neg f \lor \neg g) \land (g \lor \neg d)\)

try c=FALSE
- it works, eliminate first two clauses and \(c\), remaining \((\neg f \lor \neg g) \land (g \lor \neg d)\)

try g=TRUE
- \(g=T \Rightarrow \neg g=F \Rightarrow \neg f=T\); done.

assignment: TRUE(b, g) ; FALSE(a, c, f), EITHER (d)
2SAT algorithm

- pick one literal not assigned yet, say “a”, from a clause still to be satisfied
 - see if THINGS_WORK_OUT(a) //try assign a=TRUE
 - if NOT, see if THINGS_WORK_OUT(¬a) // try assign a=FALSE

- if still NOT, return “NOT POSSIBLE”

- if YES (either way), keep the assignments made, and delete all clauses that are satisfied by assignments

- repeat from the beginning until there are no clauses left, or until “NOT POSSIBLE” shows up
How to try an assignment for 2SAT

THINGS_WORK_OUT (a)

- queue Q={a}

- while x=dequeue(Q)
 - for each clause that contain ¬x like (y∨¬x) or (¬x∨y):
 - if y=FALSE (or ¬y=TRUE) already assigned, return “NOT POSSIBLE”
 - assign y=TRUE (or ¬y=FALSE), enqueue(y,Q)

- return the list of TRUE/FALSE assignments made.
2SAT algorithm

- Running time: more than linear in number of clauses, if we are unlucky
 - Easy to implement
 - \(n = \) number of literals, \(c = \) number of clauses.
 - Definitely polynomial, less than \(O(nc) \)
 - 2SAT can be solved in linear time using graph path search

- 2SAT-MAX: if an instance to 2-SAT is not satisfiable, satisfy as many clauses as possible
 - This problem is much harder, “NP-hard”
3SAT

- CLRS book calls it “3-CNF satisfiability”
- same as 2SAT, but clauses contain 3 literals
 - example \((a \lor b \lor \neg c), (\neg b \lor c \lor \neg a), (d \lor c \lor b), (\neg d \lor e \lor c), (\neg e \lor b \lor d)\)
- try to solve/satisfy this problem with an intelligent/fast algorithm – can’t find such a solution
 - exercise: why THINGS_WORK_OUT procedure is not applicable on 3SAT?
- this problem can be solved only by essentially trying [almost] all possibilities
 - even if done efficiently, still an exponential time/trials
- why is 3SAT problem so hard?
why is 3SAT hard?
- no one knows for sure, but widely believe to be true (no proof yet)
- the answer seems to be that on problems that solution come from an exponential space
- not enough space structure to search efficiently (polynomial time)

proving either
- that no polynomial solution exists for 3SAT
- or finding a polynomial solution for 3SAT

... would make you rich and very famous
class $\text{NP} = \text{polynomial verification}$

- 2SAT, 3SAT very different for finding a solution
- but 2SAT, 3SAT same for verifying a solution: if someone proposes a solution, it can be verified immediately
 - proposed solution = all literals assigned T/F
 - just check every clause to be TRUE
- $\text{NP} = \text{problems for which possible solutions can be verified quickly (polynomial)}$
- $\text{P} = \text{problems for which solutions can be found quickly}$
 - obviously $\text{P} \subseteq \text{NP}$, since finding a solution is harder than verifying one
 - 2SAT, 3SAT $\in \text{NP}$
 - 2SAT $\in \text{P}$, 3SAT $\not\in \text{P}$
problems in NP/P

- NP/P problems: solutions are quickly verifiable, but hard to find
 - like 3SAT
 - also CIRCUIT-SAT,
 - CLIQUE
 - VERTEX-COVER
 - HAMILTONIAN-CYCLE
 - TSP
 - SUBSET-SUM
 - many many others, generally problems asking "find the subset that maximizes ..."
NP-reduction

- problem A reduces to problem B if
 - any input x for pb A \(\rightarrow\) input y for pb B
 - solution/answer for (y,B) \(\rightarrow\) solution/answer for (x,A)
 - “map” has to be done in polynomial time
 - A \(\text{poly-map}\rangle\) B or A \(\leq_p\) B (\(\leq_p\) stands for “polynomial-easier-than”)

- think “B harder than A”, since solving B means also solving to A via reduction

- 3SAT reduces to CLIQUE
 - 3SAT \(\leq_p\) CLIQUE

- CLIQUE reduces to VERTEX-COVER
 - CLIQUE \(\leq_p\) VERTEX-COVER
reductions

CIRCUIT-SAT
 ↓
 SAT
 ↓
 3-CNF-SAT
 ↓
 CLIQUE
 ↓
 VERTEX-COVER
 ↓
 HAM-CYCLE
 ↓
 TSP

SUBSET-SUM
CLIQUE problem

- A clique in an undirected graph $G=(V,E)$ is a set of vertices $S \subseteq V$ in which all edges exist: $\forall u,v \in S \ (u,v) \in E$
 - A clique of size n must have all $(n \ choose \ 2)$ edges

- Task: find the maximal set S that is a clique
CLIQUE problem

● a clique in undirected graph \(G=(V,E) \) is a set of vertices \(S \subseteq V \) in which all edges exist: \(\forall u,v \in S \ (u,v) \in E \)

 a clique of size \(n \) must have all \(\binom{n}{2} \) edges

● Task: find the maximal set \(S \) that is a clique

● in the picture, two cliques are shown of size 3 and 4
CLIQUE problem

- a clique in undirected graph \(G=(V,E) \) is a set of vertices \(S \subseteq V \) in which all edges exist: \(\forall u,v \in S \ (u,v) \in E \)
 - a clique of size \(n \) must have all \(\binom{n}{2} \) edges

- Task: find the maximal set \(S \) that is a clique

- in the picture, two cliques are shown of size 3 and 4
- the maximal clique is of size 4, as no clique of size 5 exists
CLIQUE problem

- a clique in undirected graph $G=(V,E)$ is a set of vertices $S \subseteq V$ in which all edges exist: $\forall u,v \in S \ (u,v) \in E$

 - a clique of size n must have all $(n \text{ choose } 2)$ edges

- Task: find the maximal set S that is a clique

- in the picture, two cliques are shown of size 3 and 4

- the maximal clique is of size 4, as no clique of size 5 exists

- CLIQUE is hard to solve: we dont know any efficient algorithm to search for cliques.
3SAT reduces to CLIQUE

- idea: for the K clauses input to 3SAT, draw literals as vertices, and all edges between vertices except
 - across clauses only (no edges inside a clause)
 - not between x and $\neg x$

- reduction takes poly time
- a satisfiable assignment \Rightarrow a clique of size K
- a clique of size K \Rightarrow satisfiable assignment
VERTEX COVER

- Graph undirected $G = (V,E)$
- Task: find the minimum subset of vertices $T \subset V$, such that any edge $(u,v) \in E$ has at least one end u or v in T.
- NP-hard
CLIQUE reduces to VERTEX-COVER

- idea: start with graph \(G=(V,E) \) input of the CLIQUE problem
- construct the complement graph \(G'=(V,E') \) by only considering the missing edges from \(E: E' = \{\text{all } (u,v)\} \setminus E \)

 poly time reduction

- clique of size \(K \) in \(G \) \(\Rightarrow \) vertex cover of size \(|V|-k \) in \(G' \)
- vertex cover of size \(k \) in \(G' \) \(\Rightarrow \) clique of size \(|V|-K \) in \(G \)
SUBSET-SUM problem

- Given a set of positive integers $S=\{a_1,a_2,\ldots,a_n\}$ and an integer size t
- Task: find a subset of numbers from S that sum to t
 - there might be no such subset
 - there might be multiple subsets
- Close related to discrete Knapsack (module 7)
3SAT reduction to SUBSET-SUM

- poly-time reduction
- SUBSET-SUM is NP complete
- CLRS book 34.5.5

Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is \(\phi = C_1 \land C_2 \land C_3 \land C_4 \), where \(C_1 = (x_1 \lor \neg x_2 \lor \neg x_3) \), \(C_2 = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \), \(C_3 = (\neg x_1 \lor \neg x_2 \lor x_3) \), and \(C_4 = (x_1 \lor x_2 \lor x_3) \). A satisfying assignment of \(\phi \) is \(\langle x_1 = 0, x_2 = 0, x_3 = 1 \rangle \). The set \(S \) produced by the reduction consists of the base-10 numbers shown; reading from top to bottom, \(S = \{1001001, 1000110, 100001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1, 2\} \). The target \(t \) is 1114444. The subset \(S' \subseteq S \) is lightly shaded, and it contains \(v'_1, v'_2, \) and \(v_3 \), corresponding to the satisfying assignment. It also contains slack variables \(s_1, s'_1, s'_2, s_3, s_4, \) and \(s'_4 \) to achieve the target value of 4 in the digits labeled by \(C_1 \) through \(C_4 \).
NP complete problems

- Problem A is NP-complete if
 - A is in NP (poly-time to verify proposed solution)
 - Any problem in NP reduces to A

- Second condition says: if one solves pb A, it solves via polynomial reductions all other problems in NP

- Circuit SAT is NP-complete (see book)
 - And so the other problems discussed here, because they reduce to it

- NP-complete contains as of 2013 thousands well known “apparently hard” problems
 - Unlikely one (same as “all”) of them can be solved in poly time...
 - That would mean P=NP, which many believe not true.
P vs NP problem

- see book for co-NP class definition
- four possibilities, no one knows which one is true
- most believe (d) to be true
- prove P=NP: find a poly time solver for an NP-complete pb, for ex 3SAT
- prove P≠NP: prove that an NP-complete pb cant have poly-time solver
Approximation Algorithms
Some problems too hard

• ... to solve exactly
• so we settle for a non-optimal solution
• use an efficient algorithm, sometime Greedy
• solution wont be optimal, but how much non-optimal?
 - objective(SOL) VS objective(OPTSOL)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V\)Cover
 - delete all edges with ends in \(u\) or \(v\)

- repeat until no edges left

for the example in the picture:
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to VCover
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V_{Cover}\)
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to VCover
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
Vertex Cover approx algorithm

- choose an edge (u,v)
 - add u, v to VCover
 - delete all edges with ends in u or v
- repeat until no edges left
- for the example in the picture:
 - (a, i)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V_{\text{Cover}}\)
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V\text{Cover}\)
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to VCover
 - delete all edges with ends in \(u\) or \(v\)

- repeat until no edges left

- for the example in the picture:
 - \((a,i)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V\)Cover
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to VCover
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V_{Cover}\)
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V_{Cover}\)
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
Vertex Cover approx algorithm

- Choose an edge \((u,v)\)
 - Add \(u,v\) to \(V\text{Cover}\)
 - Delete all edges with ends in \(u\) or \(v\)
- Repeat until no edges left
- For the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V_{\text{Cover}}\)
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
 - \((b,c)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V_{\text{Cover}}\)
 - delete all edges with ends in \(u\) or \(v\)

- repeat until no edges left

- for the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
 - \((b,c)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to VCover
 - delete all edges with ends in \(u\) or \(v\)
- repeat until no edges left
- for the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
 - \((b,c)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V_{Cover}\)
 - delete all edges with ends in \(u\) or \(v\)

- repeat until no edges left

- for the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
 - \((b,c)\)
 - \((e,f)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to VCover
 - delete all edges with ends in \(u\) or \(v\)

- repeat until no edges left

- for the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
 - \((b,c)\)
 - \((e,f)\)
Vertex Cover approx algorithm

- choose an edge \((u,v)\)
 - add \(u,v\) to \(V\)Cover
 - delete all edges with ends in \(u\) or \(v\)

- repeat until no edges left

- for the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
 - \((b,c)\)
 - \((e,f)\)
Vertex Cover approx algorithm

- Choose an edge \((u,v)\)
 - Add \(u,v\) to \(V\)Cover
 - Delete all edges with ends in \(u\) or \(v\)
- Repeat until no edges left
- For the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
 - \((b,c)\)
 - \((e,f)\)

\[\text{VC}_{\text{approx}} = \{a,i,h,j,b,c,e,f\}\]

\[\text{VC}_{\text{OPTIM}} = \{b,d,e,g,k,i,h\}\]
Vertex Cover approx algorithm

1. Choose an edge \((u,v)\)
 - Add \(u\) and \(v\) to \(V_{\text{Cover}}\)
 - Delete all edges with ends in \(u\) or \(v\)
2. Repeat until no edges left
3. For the example in the picture:
 - \((a,i)\)
 - \((h,j)\)
 - \((b,c)\)
 - \((e,f)\)
4. \(V_{\text{approx}} = \{a,i,h,j,b,c,e,f\}\)
5. \(V_{\text{opt}} = \{b,d,e,g,k,i,h\}\)

Theorem:

\[\text{size}(V_{\text{approx}}) \leq \text{size}(V_{\text{opt}}) \times 2 \]

- Approx ratio of 2
Set Cover problem

- set of towns $S = \{a,b,c,d,...,k\}$
- edge$(u,v) : \text{distance}(u,v) < 10\text{miles}$
- Set Cover $SC \subseteq S :$ a set of towns such that every town is within 10 miles of some town in SC
Set Cover problem

- set of towns $S = \{a, b, c, d, \ldots, k\}$
- edge$(u, v) : \text{distance}(u, v) < 10\text{miles}$
- Set Cover $SC \subseteq S :$ a set of towns such that every town is within 10 miles of some town in SC
- $S = \{a, b, e, i\}$ is a set cover
 - every town within 10 miles of one in S
Set Cover problem

- set of towns $S = \{a, b, c, d, \ldots, k\}$
- edge(u, v) : distance$(u, v) < 10$ miles
- Set Cover $SC \subseteq S :$ a set of towns such that every town is within 10 miles of some town in SC
- $S = \{a, b, e, i\}$ is a set cover
 - every town within 10 miles of one in S
- $S = \{i, e, c\}$ a smaller set cover
Set Cover problem

- set of towns $S = \{a,b,c,d,...,k\}$
- edge(u,v) : distance(u,v)<10miles
- Set Cover $SC \subset S$: a set of towns such that every town is within 10 miles of some town in SC
- $S = \{a,b,e,i\}$ is a set cover
 - every town within 10miles of one in S
- $S= \{i,e,c\}$ a smaller set cover
- TASK: find minimum size SetCover
 - NP complete
 - general version of Vertex Cover
Set Cover approx algorithm
Set Cover approx algorithm

- pick the vertex with most connections/degree
 - $\text{deg}(a) = 6$
 - eliminate "a" and all "a"-neighbors
Set Cover approx algorithm

- pick the vertex with most connections/degree
 - \(\text{deg}(a) = 6 \)
 - eliminate "a" and all "a"-neighbors
Set Cover approx algorithm

- pick the vertex with most connections/degree
 - $\text{deg}(a) = 6$
 - eliminate “a” and all “a”-neighbors

- pick the next vertex with most connections to uncovered towns
 - $\text{deg}_{\text{now}}(g) = 1$
 - eliminate g and g-neighbors
Set Cover approx algorithm

- pick the vertex with most connections/degree
 - $\text{deg}(a)=6$
 - eliminate “a” and all “a”-neighbors

- pick the next vertex with most connections to uncovered towns
 - $\text{deg}_{\text{now}}(g)=1$
 - eliminate g and g-neighbors
Set Cover approx algorithm

- pick the vertex with most connections/degree
 - \(\text{deg}(a) = 6 \)
 - eliminate "a" and all "a"-neighbors

- pick the next vertex with most connections to uncovered towns
 - \(\text{deg}_\text{now}(g) = 1 \)
 - eliminate g and g-neighbors

- repeat for j then for c
Set Cover approx algorithm

- pick the vertex with most connections/degree
 - $\text{deg}(a) = 6$
 - eliminate “a” and all “a”-neighbors

- pick the next vertex with most connections to uncovered towns
 - $\text{deg}_{\text{now}}(g) = 1$
 - eliminate g and g-neighbors

- repeat for j then for c
Set Cover approx algorithm

- pick the vertex with most connections/degree
 - deg(a)=6
 - eliminate “a” and all “a”-neighbors
- pick the next vertex with most connections to uncovered towns
 - deg_now(g)=1
 - eliminate g and g-neighbors
- repeat for j then for c
- VertexCover = \{a, g, j, c\}, size 4
Set Cover approx algorithm

- SetCover_approx = \{a,j,c,g\}, size 4
- SetCover_optimal = \{b,i,e\}, size 3
Set Cover approx algorithm

- SetCover_approx = \{a,j,c,g\}, size 4
- SetCover_optimal = \{b,i,e\}, size 3

Theorem:

\[\text{size}(\text{SetCover_greedy}) \leq \text{size}(\text{SetCover_optimal}) \times \log(|V|) \]

- approx ratio is \(\log(n) \)
CLIQUE approximation

- much harder to approximate CLIQUE than VECTOR-COVER
- see wikipedia CLIQUE page
- there can be no polynomial time algorithm that approximates the maximum clique to within a factor better than $O(n^{1 - \varepsilon})$, for any $\varepsilon > 0$
3SAT approximation algorithm

• simple algorithm: assign each literal to TRUE or FALSE randomly, independently

• success: for any 3SAT clause \((a \lor b \lor c)\) the probability of evaluating FALSE is computed as the probability of all three literals to be FALSE

 \[
p[(a \lor b \lor c) = \text{FALSE}] = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}
\]

• we can expect about \(\frac{7}{8}\) of the clauses to be satisfied and \(\frac{1}{8}\) to be not satisfied

• approx rate (expected) \(\frac{8}{7}\)
SUBSET-SUM problem

- Given a set of positive integers $S = \{a_1, a_2, \ldots, a_n\}$ and an integer size T
 - Task: find a subset of numbers from S that sum to t
- Idea: while traversing the array, keep a list with all partial sums
 - index 0: $L_0 = \{0\}$
 - index 1: $L_1 = \{0, a_1\}$
 - index 2: $L_2 = \{0, a_1, a_2, a_1+a_2\}$
 - index 3: $L_3 = \{0, a_1, a_2, a_3, a_1+a_2, a_1+a_3, a_2+a_3, a_1+a_2+a_3\}$
- at index n, verify if T is in the final list
SUBSET SUM exact algorithm

```
EXACT-SUBSET-SUM(S, t)
1  n = |S|
2  L_0 = \langle 0 \rangle
3  for i = 1 to n
4     L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)
5     remove from L_i every element that is greater than t
6  return the largest element in L_n
```

- exponential running time!
 - because the list L_i size can become exponential

- exercise: compare with DP solution based on discrete Knapsack
SUBSET SUM approx algorithm

APPROX-SUBSET-SUM(S, t, ε)

1 \[n = |S| \]
2 \[L_0 = \langle 0 \rangle \]
3 \[\text{for } i = 1 \text{ to } n \]
4 \[L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i) \]
5 \[L_i = \text{TRIM}(L_i, \epsilon/2n) \]
6 \[\text{remove from } L_i \text{ every element that is greater than } t \]
7 \[\text{let } z^* \text{ be the largest value in } L_n \]
8 \[\text{return } z^* \]

- \text{TRIM}(L, \epsilon/2n) truncates long lists to avoid exponential list size
 - values truncated are closely approximated by the values staying in the list
- (1+ \(\epsilon \)) approximation rate, for a given \(\epsilon \)
- \(\epsilon \) is a parameter of the TRIM function