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Abstract 1 Introduction

Reversible debuggers have existed at least since
Reversible debuggers have been developed at least siné870 [11, 38], and a steady stream of reversible debug-
1970. Today, GDBs “target record” facility provides em- gers have followed since [5, 9, 10, 12, 17, 18, 25, 29,
inently practical reversible debugging. Such a feature i1, 32, 16]. Reversible debuggers allow one to exe-
useful when the cause of a bug is close in time to thecute program statements in the backwards direction via
bug manifestation. When the cause is far away, one rereverse-step, reverse-next, etc. Today, we have
sorts to setting appropriate breakpoints in the debuggea highly robust reversible debugger in GDB (using the
and beginning a new debugging session. For these morearget record command).
difficult bugs (when the cause of a bug is far in time from  Reversible debuggers alone are often not sufficient to
its manifestation), bug diagnosis requires a series of deeasily track down a bug. For example, a program crashes
bugging sessions with which to narrow down the causeébecause a null pointer was dereferenced. When was the
of the bug. pointer set to a null value? Similarly, a memory buffer

For such “difficult’ bugs, this work presents an auto- is freed twice. An assert statement stops the program the

mated tool to search through the process lifetime and 10S€¢0nd time that a memory buffer is freed. When was
cate the cause. As an example, the bug could be relatdgat particular memory bu_fferfreed the first time? In both
to a program invariant failing. A binary search in time CaSes repeatedly executing a reverse-next or reverse-ste
suffices, since the invariant expression is true at the belS |mprac_t|cal if the bug.occurred millions of instructions
ginning of the program execution, and false when the bug90- This work describes a new tosgverse expres-

is encountered. This tool operates within a FReD (FastO" Waichpointsand applications thereof, on top of a
Reversible Debugger). reversible debugger platform, FR€East Reversible De-

bugger) This tool automates an otherwise impractical
FReD supports complex, real-world multithreaded manyal search for the original bug.
programs, such as MySQL and Firefox. Past bug reports 1js work demonstrates an automated search for bugs,
are reproduced. A failed program invariant is identified. 5, top of a custom reversible debugger. It operates on
Ong wishes to identifyap_rogram statement where thei”éomplex, real-world programs and takes advantage of
variant holds, but it will fail at the next statement. FReD ,iti_core architectures for fast replay. The novelty lies
is used to automatically place the user at such a statgq the qutomated search through a process lifetime. Nev-
mentinside a familiar debugger such as GDB. The FReQutheless, a prerequisite of this work is a reversible de-
methodology avoids the inefficiency of GDB's software p,,gger that supports multi-core architecture on replay.
watchpoints. The support for multi-core is needed in order to replay
Further, the binary search is robust. It operates orfit reasonable speeds on the emerging many-core CPUSs.
multi-threaded programs, and takes advantage of multiSupport for determinism is needed not only to uniquely
core architectures during replay. replay thread races, but also asynchronous signals (invo-
cation of signal handlers), 1/0 (and particularly input),
and system calls that poll the system clock.
*This work was partially supported by the National SciencarFo Record-replay and deterministic replay are themselves
dation under Grants CCF-0916133 and OCI-0960978. old ideas. In 2000, Boothe [5] had already produced a




single-threaded reversible debugger based on recordingULL. This delegates the searghtimeto an automated
system calls into a log, and then replaying — for the search routine. Unlike spatial searches, we are searching
sake of determinism. More recently, there has been grough the process lifetime, while probing the program
wealth of systems providing support for deterministic re-state at specific points in time to evaluate an expression.
play through a variety of mechanisms [4, 7, 8, 14, 18, 19]n this instance, the expression is simply the value of a
20, 21, 24, 28, 29, 35]. There is also interesting work onglobal variable (is it NULL or non-NULL), but everyone
making the initial execution deterministic [3, 6, 22, 26]. is familiar with scenarios requiring evaluation of more

It may be possible to employ one of these systems in theomplex expressions.

future, but at present, they are not sufficiently integrated

with the use of standard debuggers such as GDB. Print Statements Traditionally, programmers have
FReD itself is built as a Python SCI’ipt on top of Iargely been mod|fy|ng the target program to aﬁ:dint state-
standard components: an unmodified GDB debuggefments. By iteratively addingrint statements to the
the DMTCP checkpointing package [2], and a custom-program and thus re-executing it, programmers emulate
written DMTCP module for deterministic record-replay. some of the benefits of a reversible debugger. Of course,
The DMTCP module employs wrapper functions aroundthese methods are not interactive, and therefore they lack
system calls, as well as using trampolines. the benefits of a traditional debugger. More importantly,
The goal of this work is to diagnosifficult bugs  such strategies do not scale well either in code size or
There are many “gratuitous bugs”, whose nature isin time. Addingprint statements to a program requires
quickly and easily diagnosed. The cause of such buggome knowledge of the structure of the program in order

is immediately apparent from a single run within a con-to know where eacprint statements should be placed.
ventional debugger. We say that such bugs show good

temporal locality

. - Assert Statements One could also think of adding
The goal here is thdifficult bugs that do not show

assert statements to guarantee the absence of cycles or

good t.emporal locality. Unfortunately, simply using a gpgence of duplicates. However, there are two problems
reversible debugger (reverse-next, reverse-step, BVers i singassert statements. First, aassert state-

continue) is not a good match for these difficult bugs. ment will require a linear number afsert executions.
Unless one knows the goal towards which the statementgecond, the use afssert Statements is not consistent

are executing, this has only limited advantages over stani, interactive debugging. Effectively, assert state-
dard execution in the forwards direction, with the use of et is 5 conditional print statement. The ability to inter-
breakpoints and repeated runs of a debugger. actively call utility functions of the program (testing for
cycles or duplicate entries) in the context of a debugger
Example of a Non-Gratuitous Bug. We illustrate with is qualitatively more powerful for the same reason that
a simple (even simplistic) example. Suppose a prograngdebugger software is a more powerful technology than
has crashed because a NULL pointer was dereferencethe use obrint or assert statements.
In this simple regime, assert statements and GDB watch-

points may be applicable, but they would not scale to-Binary Search With this motivation, we pull back and
ward the larger goals. The NULL pointer is the value of examine the process of diagnosing a difficult bug. Con-

when the variable first became NULL. With a forward yyo extremes.

debugger, one requires multiple runs to locate a possibly
deeply nested function where the global variable is set to 1. There are bugs that could be fixed simply by a com-
NULL. Typically, each debugging run brings one closer ~ petent programmer employing a standard strategy
to the place where the global variable is set to NULL, using a symbolic debugger (no domain expertise re-
and then a new breakpoint is set so that the next debug- ~ quired).
ging run can “continue” to that breakpoint and resume 2
the search for where the variable is being set to NULL.
This last example represents a difficult bug because
it's manifestation is not close in time to its cause. The
manual search within successively deeper nested func- In practice, many bugs are a combination of those two
tions causes the programmer to lose concentration oextremes, and are solved in two phases. The first phase
the high-level description of the bug. The last example,can be characterized as a search for the proximate loca-
the programmer would have preferred to issue a singlgion of the bug. A programmer employs a debugger to
command: find the last occurrence in which the valuetrace the forward execution of a process and form a hy-
of the given global variable changed from non-NULL to pothesis about the cause of a bug. In an effort to gather

. There are also bugs that could only be fixed by a
domain expert familiar with the algorithm being de-
bugged.



more information, the programmer iteratively refines thecontrast, GDB software watchpoints requideevalua-
hypothesis and begins new debugging sessions in an efions.
fort to locate the specific line of code causing the bug.

In the second phase, the symbolic debugger has piroutline of Paper. Section 2 describes the underlying
pointed a local inconsistency in the state of a programcomponents of FReD. Section 3 describes the core nov-
But to understand why that local inconsistency existselty of this work, reverse expression watchpoint and its
may take a global understanding of the algorithms andmplementation. Section 4 reviews the overall imple-
design of the program. For example, debugging a bug ifnentation of FReD. Section 5 provides an experimental
a quicksort program leads one into this examination ofevaluation of FReD. Section 6 describes the related work.
the global algorithmic structure of a program. Finally, the conclusion is in Section 7.

Too often, a programmer spends much of his or her
time in the first phase, above. For example, a null pointer, .
is dereferenced. When was the pointer set to null? Wh)? Underlying Components of FReD

i i ?
did the c_ode cause the pointer to be set to n_uII. IdeallyFReD (Fast Reversible Debugger) incorporates both tem-
a reversible debugger would allow one to simply trace

. . oral search routines (search through the process life-
backwards in a program to answer the above questions. . .
. . ime) and an underlying reversible debugger. Ideally, we
But this is a trial-and-error process.

: . . would have built FReD on top of an existing reversible
This paper presentseverse expression watchpoints

This provides a novel automated search in the contex ebugger. For the reasons described below, it was re-
P uired to build a custom reversible debugger.

of reversible debuggers. Furthe.r, it provides a_powgrful FReD sits on top of and requires three other software
tool for a programmer to ask high-level questions in a i

. . packages:
program that greatly help in understanding the program.

1. an unmodified GDB

Tra_tditional Watchpoipts . Reverse expression watch- > pmTCP checkpointing package

points are a generalization of GDB watchpoints. De-

buggers such as GDB and others have a “watch” com- 3. a custom record-replay package

mand. One specifies a memory address and desires to __ .

know when the data at the address changes. This version FI'St: FReD uses a standard, unmodified debugger,
of the GDB watch command is callechardware watch- GPB for its debugger.  Second, it uses a transparent,
point because it uses hardware support (i.e. the memorySer-space checkpointing package, DMTCP (Distributed

management unit) to efficiently stop execution when thgViultiThreaded CheckPointing) [2]. A prerequisite for
data at that address changes. the choice of checkpointing package is one that supports

GDB also provides aoftware watchpointn which checkpointing of GDB debugging sessions, which in turn

one invokes the watch command on an expression in them.St support debugging of multithreaded user programs.
target program. Since there is no single hardware adTh'rd’ FReD employs a.custom record-replay package
dress to monitor, GDB implements watch by evaluatingbased on wrapper functions around system calls (calls
this expression after each statement of the target progra run-r':lme Ilk;rarl_?s). A cus}tqrr: reccz_rd-reglay pa<|:kqge
is executed. While this works well over short periods of‘g‘,\iASTgP?Sedf? orits easefo tl)n .ﬁjg.ra Ior?"d y emp 03gng
execution, it is not sufficiently efficient for longer exe- s direct support for building third-party mod-

cution periods. IfN statements are executed, then themeS that implement wrapper funcpons. .
expression must be evaluatiidimes In FReD, checkpoints of an entire GDB session (GDB

and target application) are taken at regular intervals. The

history of GDB debugging commands is recorded (in ad-
FReD’s Watchpoints FReD demonstrates an imple- dition to recording system calls of the target application)
mentation of reverse expression watchpoints that “stopsMoving backwards in time consists of restarting from an
a program at a point in time when a given expression isarlier checkpoint and replaying until the desired time in
about to change. More important, the method requireshe past history. Algorithms for decomposing debugging
only log, N evaluations of the given expression. As we histories of commands were developed [33]. If, for ex-
will see, reverse expression watchpoint is implementecample, the debugging history isontinue, next] and
through a binary search over the process lifetime. Thehe user issues®everse-next, then this is the equiva-
log, N temporal search makes reverse expression watchent of anundo command. However, if for the same de-
points an important and novel tool in debugging. bugging history, the user issuexaverse-step com-

The key pointis that only log\ iterations are required mand (therefore not amdo), then the debugging history

for N statements executed over the life of a process. Imeeds to be decomposed as in [33].



An alternative design for automated temporal searci2.1  Architecture of FReD

would have based FReD on top of an existing reversibl .
debugger based on a virtual machine (VM). This was re(i:ReD uses a Checkpoint/Re-execute strategy to enable

jected for the following reason. Two recent examples'ts reversibility. FReD sits between the end user and

GDB (see Figure 1). FReD passes user commands to
of such VM-based debuggers are [12, 18]. DMTCP-
based checkpoints were preferred over VM-based snapc—;DB and retuns the debugger output. From FReD,

shots because DMTCP checkpoint and restart executége user interacts with GDD in the sa_me. way as WiFh'
P out FReD. FReD uses DMTCP [2] (Distributed Multi-

in about a second, while VM snapshots require half o .
minute or more. Further, while VM-based reversible de?‘l’hregded Ch.eckpom'Flng) to checkpoint the state of'a d'e-
ugging session to disk. One can revert to any point in

buggers support multithreaded executables, they do mﬁj

support multi-core architectures without custom hard—t € exe(;:uuon by rt(_aStar;[:'Eg lf)rotmka pno:fcf:ecl;pmgt ”'n_t
ware support [8]. age and re-executing. FReD takes multiple checkpoints

so that the execution time since the prior checkpoint is

Note that several optimizations can be used to speefl€Ver overly long. The higher layer that control GDB,
up checkpoints and restart — both for processes and fdPMTCP, and the record-replay mechanism is written in
VM snapshots. For example, copy-on-write could bePython.
used to accelerate checkpointing of a VM, although the tty:
frequency of checkpoints is still limited by the bandwidth 8{

[ PR

to disk. Nevertheless for our work, the restarts dominatesefore: P

over checkpoints in the binary search algorithm. King
et al. [12] employ incremental checkpoints so that on '

restarting from a snapshot close in time to the current o gtg%'_gdobmll
time, only a smaller number of memory pages must be et ckpt gdb.2
updated. However, FReD needs to restore checkpoints O FReD ckpL2.out.2

that may be far away in time. After: QD/ \ ickpu
pseudo-tty (pty): e

a.out

DMTCP

Another alternative design would have based FReD on
top of an existing reversible debugger. Table 3 of Sec- 9‘1"
tion 6 provides a review of reversible debuggers. A first a.out
prerequisite for such a debugger is that it be based on
checkpoint/re-execute. As discussed earlier, VM-based
debuggers are not fast enough for interactive use. (A sin-
gle binary search through a process lifetime may require

50 or more checkpoints and restarts.)

Figure 1: The architecture of FReD.

3 Reverse Expression Watchpoints

A third alternative design would have based FReD
direcﬂy on top of GDB or another debugger based onThe core novelty of FReD is reverse expression watch-
record/reverse-execute (see Table 3). GDB currenthpoints. With reverse expression watchpoints, FReD will
supports reversibility through itsarget record com-  transfer the user to the exact source statement causing the
mand. However, this family of debuggers saves the statgiven expression to change value.
of registers, etc., at each statement of the program. This Figure 2 provides a simple example.  Assume
has a serious problem. A binary search through a procegfat a bug occurs whenever a linked list has
lifetime requires frequent long jumps to distant portionslength longer than one million. So an expression
of a program. For long-running programs, it is not prac-length(linked 1ist)<=1000000 is assumed to be
tical to save and restore so much state, while maintainingfue throughout. Assume that it is too expensive to fre-
a fast binary search. quently compute the length of the linked list, since this

would requireO(n?) time in what would otherwise be

Finally, since the future lies with many-core CPUs, wea O(n) time algorithm. (A more sophisticated exam-
felt strongly about basing FReD on a reversible debuggeple might consider a bug in an otherwise duplicate-free
with multi-core support on replay. Table 3 shows thatlinked list or an otherwise cycle-free graph. But the cur-
only one debugger fits this criterion: the proprietary To-rent example is chosen for ease of illustrating the ideas.)
talView, with its Replay Engine [32]. Since the Replay If the length of the linked list is less than or equal to
Engine is based on saving and restoring state before eadmne million, call the expression “good”. If the length of
statement, it lacks the ability to make long jumps in time,the linked list is greater than one million, call the ex-
discussed above. pression “bad”. A “bug” is defined as a transition from



“good” to “bad”. There may be more than one such tran-of magnitude of time for a reverse expression watch of

sition or bug over the process lifetime. Our goal is simplybetween a minute and 100 minutes. This number is in

to find any one occurrence of the bug. keeping with the experimentally determined times of Ta-
The core of a reverse expression watchpoint is a bible 1 in Section 5.

nary search. In Figure 2, assume a checkpoint was taken

near the beginning of the time interval. So, we can revert

to any point in the illustrated time interval by restarting 3.2 The Algorithm

from the checkpoint image and re-executing the history , ) ) i
of debugging commands until the desired point in time. The algorithm for reverse expression watchpoint uses bi-
nary search essentially at four levels:
Length

Midpoint Midpoint
1,350,00 2

1,000,00 })/—\

- (A) Perform a binary search on the available check-
: points in the process lifetime, to find a “bad” tran-
sition between adjacent checkpoints, or between
the most recent checkpoint and the current point in
time.

TEmorme
Faul Fault Falut (B) Perform a binary search through the debugging his-
tory from the the checkpoint identified in step A.
This binary search may require one to decompose
the debugging history. An algorithm to decompose
the debugging history is reviewed in Section 4 and

addressed in [33].

Correcé

Figure 2: Reverse expression watchpoint for the bounded
linked list example.

Since the expression is “good” at the beginning of
Figure 2 and it is “bad” at the end of that figure, there
must ex'?‘. a buggy“state:nen‘:[ _,? statement exhlbmng(c) Multithreaded Programs:Perform a binary search
the transition from “good” to “bad”. A standard binary - A

. . . . through the deterministic replay log. This will iden-
search algorithm converges to some instance in which tify a synchronized event close in time to the bug
the next statement transitions from “good” to “bad”. By fault, and will ensure that the thread causing the
definition, FReD has found the statement with the bug. fault,is alive
This represents success. '

If implemented naively, this binary search requires
that some statements may need to be re-executed up {5))
log, N times. However, FReD can also create intermedi-
ate checkpoints. In the worst case, one can form a check-
point at each phase of the binary search. In that case, no
particular sub-interval over the time period needs to be
executed more than twice.

Multithreaded Programs:Perform repeatedext
commands and history decomposition for each live
thread, using gdb'scheduler-lockingo discover
which thread was responsible for changing the ex-
pression value. Turning scheduler-locking on dis-
ables all threads but the currently active thread from
executing. If scheduler-locking is

3.1 Typical Running Times

Step D of this algorithm makes the reasonable assump-
As a binary search, the number of expression evaluationton that there exists exactly one statement modifying
will be at most logN, for N statements executed. As an exactly one datum which causes the expression evalua-
example, takél = 10'® assembly instruction (the equiv- tion to change. It follows that if an expression changes
alent of several days of runtime on one core on a 1 GHxalue, a single “step” instruction by a single thread must
CPU). In this case, log\ is only 50. be enough to do it.

By taking intermediate checkpoints, one can guarantee In performing a binary search over the debugging
that a particular statement of code is never executed moreommand history (in single or multithreaded programs),
than once during the binary search. Using this strategyit is possible that one user debugging command was a
the left endpoint of the binary search will always corre- “continue” which executed for a long time. To han-
spond to a time in which a checkpoint is available. dle that case, FReD supports “timed reverse expression

In this way, the typical running time will be bounded watchpoints”. Hence, intermediate checkpoints are taken
by 50 checkpoints, 50 restarts and the time to re-executduring the execution of a long-running “continue”. In
the code in the time interval of interest. Checkpoint andthis way, FReD ensures that a moderate number of next
restart typically proceed within seconds. So, for a rea-or step instructions between checkpoints will always suf-
sonable running time of the code, this implies an ordeffice.



3.3 Details of Algorithm If the expression changes, this is the right thread,
and exit. If the expression does not change, or dead-

Step (A) (binary search through checkpoints) of the re- locks, then this is not the right thread. Go to step 4.

verse expression watchpoints is performed first, to iden-

tify a checkpoint image from which step (B) can proceed. 4. Not the right thread, choose the next thread in step 1
Once FReD has identified a base checkpoint, a binary  above, and try again.

search through the user’s debugging command history

(step (B)) is performed. Once the command in the user's FReD uses a timeout (currently 20 seconds) in order

history after which the expression changes value ha$o decide if a deadlock occuredinside step (D).

been identified, FReD “decomposes” that command by

expanding “continue” and “next” _comr_‘nands i|_1to “r_lext" 4 Implementation of FReD

and “step” as needed. The algorithm is described in [33]

and discussed in Section 4. _ As discussed in Section 2, the FReD reversible debugger
FReD also ensures that a “step” command is not algonsists of three components: an unmodified GDB, the

tain libraries such as libc and |Ibpthl’ead are black”stedcustom record-rep'ay module. The record_rep'ay module
and FReD replaces a “step” by a “next” to step over callSis in fact a DMTCP module.

to such libraries.

Steps (A) and (B) above suffi_ce for a Single'threadedRecord-Replay DMTCP module Record-replay is
program. Steps (C) _and (D) are .mcluded only for revers%mplemented in a standard way using dlopen/dlsym and,
expression Wat_chpomts on multithreaded programs. - - \yhere necessary, trampolines. A single global log is

Step (C) _(bmary search through the determ|n|st|cused, which is mmap’ed to a file on disk so that the oper-
replay log) is u.sed_ to ensure that the thread Changétting system can optimize lazy writes of the log to disk.
ing the expression is alive. Threaq creation (WhetherOn record, multiple threads compete for the log by us-
throughclone () or through another library qall such as ing an “atomic increment”. The log entries have a vari-
pthread_create()) are recorded as events in the replayable size, depending on the type of event that needs to
log. be logged. The “atomic increment” allows a thread to

Finally, step (D) performs a round-robin search osere 4 jog entry immediately when the event was trig-
through the live threads, performing command expansionyqa ey | ater on, the thread will fill in the reserved log
and decomposition (step (B)), until a candidate thread ig?

e

found that caused the expression to change . A high-lev

On replay, when the thread makes a function call, the
description of the round-robin search of step (D) follows: pay

current entry of the head of the log is polled. As other
threads execute synchronized events, the current entry
Step (D): is eventually advanced to the desired function call en-

] ] try with the correct thread identifier and arguments, and
1. Do repeated “next” in the current thread until the e real function call is made.

expression changes (as in step (B). Then verify that ¢y rently, each thread writes directly to the central

this is the correct thread by re-executing the samg,q | order to avoid issues of false sharing, there are

series of debugger comman?s a?d enabling gdiyyhortunities for each thread to write to a local buffer,
scheduler locking on the last “next” command and gnq then opportunistically merge the buffers.
observe if the expression still changes. If it does,

we are guaranteed that this is the correct thread. Itl'rampolines FReD mostly achieves its purpose

we see a deadlock, we don’t know if this is the right h h standard functi d lib f
thread. If the expression doesn’t change, this is the. rough standard function wrappers around fibrary tunc-
tions such as libc and libpthread. In a few cases, the
wrong thread. . - -
function was not globally visible. Interposition packages
2. Undo the last “next”, and replace by a single “step” Such as PIN and Dynamo implement trampolines [13, 30,
followed by repeated “next” (no scheduler |Ocking). 37] for this case when the address of a function is knOWI’l,
If the expression changes on that first step, go tdPut no symbol is exported. However, these packages

step 3 below. If the expression does not changeWould bring added complexity. So, a simplified tram-
then go to step 4. poline implementation was used.

The beginning of the function to be wrapped is over-

3. The expression changed on this “step”. We mustwritten with a jump to the desired wrapper function. The
verify that it is due to this thread. Undo “step”, en- wrapper function must also execute the first few instruc-
able gdb scheduler locking, and redo the the “step.tions of the target function, beforce calling the target



function beyond this prolog. On x86 and x86-64 CPUs,1.80 GHz Quad-Core AMD Opteron Processor 8346 HE
instructions are variable length. Further, only position-and it runs Ubuntu version 11.10. The kernel is Linux
independent code can be executed inside the trampdwernel 3.0.0-12-generic. We used glibc version 2.13,
line instead of in the target function. Since only a few gdb version 7.3-Oubuntu and gcc version 4.6.1-9ubuntu3.
functions must be wrapped with a trampoline, a simpleThe kernel, glibc, gdb and gcc were unmodified.
pattern matching algorithm was used to determine the While some other investigations have limited them-
first few instructions, and verify that all instructions are selves to four cores, we felt it important to use a com-
position-independent. puter with at least 16 cores in order to test real-world
scalability. Many of the recent assertions of a debugging

Memory Accuracy One important feature of FReD is Cfisis point to the difficulty of debugging highly multi-
memory-accuracy Memory accuracy ensures that the threaded software as the number of cores per CPU Chlp
addresses of objects on the heap do not change betweéand hence the concurrency) continues to rise. The use
original execution and replay. Any reversible debuggerof 16 cores provides a crude approximation to the many-
without memory accuracy could change the address of §0re computers of the future.

memory object on each iteration, and would find a poor The reverse expression watchpoint feature of FReD
reception among users. was used to diagnose two real-world MySQL bugs (see

In MySQL, a linked list was found to have a bad Subsections 5.1.1and 5.1.2), one real-world Firefox bug

pointer in the last link, causing a segmentation fault. We(see Subsection 5.1.3) and one real-world pbzip2 bug

needed to look backwards in time to when that pointe{s€€ Subsection 5.1.4). These bugs do not satisfy the

was first set. Since that pointer did not correspond to anjemporal localityproperty and they require examining

variable name outside the scope of the current functionthe state of the process at least two points in time that

it was not possible to reversibly search by name. Onlywere far apart.

searching by address was possible, and then only with For each of the following MySQL examples, the aver-

the guarantee of memory accuracy. age number of entries in the deterministic replay log was
Memory-accuracy is accomplished by logging the approximately 1 million. The average size of an entry in

arguments, as well as the return valuesmflloc, thelog was approximately 79 bytes.

calloc, realloc, free, mmap, mremap, munmap and

libc_memalign on record. On replay, the real functions 5.1.1 MySQL Bug 12228 — Atomicity Violation

or system calls are re-executed in the exact same order.
4 In order to reproduce MySQL bug 12228, a stress test

scenario was set in which five threads issue concurrent
q . . client requests to the MySQL daemon. In our experience,
Verse commandsreverse-step, reverse-next, s g occurs approximately 1 time in 1000 client con-

reverse-finish, and reverse-continue each had o ions This bug was reproduced using MySQL ver-
to be written with some care, to avoid subtle algorithmic ion 5.0.11

bugs. The implementation of the first three is describe
in [33]. The underlying principle is that aontinue
debugging instruction can be expanded into repeate
next andstep. Similarly, anext can also be expanded
into repeatechext and step. Thus, in a typical ex-
ample, [continue, next, next, reverse-step]
might expand into[continue, next, step, next,
step, reverse-step], wWhere the lashext expands

Implementation of  Reverse-XXX The re-

The buggy thread interleaving and the series of re-
uests issued by each client are presented in Figure 3.
he bug occurs when one client, “client 1” removes the
stored procedurep_2(), while a second client, “client
2" is executing it. The memory used by procedure
sp-2Q) is freed when “client 1” removes it. While “client
1” removes the procedure, “client 2” attempts to access
: ) a memory region associated with the now non-existent
'T“° [step, next, SteP]' The last expression would procedure. “Client 2” is now operating on unclaimed
finally reduce to [continue, next, step, next]. memory. The MySQL daemon is Sen BGSEGY.
FReD uses repeated checkpoints gnd rgstarts to expandThiS bug was diagnosed with FReD in the following
next into [step, next, stepl in this example. way: the user runs the MySQL daemon under FReD and
See [33] for further details. executes the stress test scenario presented in Figure 3.
The debug session is presented below. Some of the out-

5 Experimental Evaluation put returned by gdb was stripped for clarity.
5.1 Methodology Egjﬁ; preak main

reakpoint 1, at main().

. . B
All experiments were carried out on on a 16-Core COM-(44p,) fred-checkpoint
puter with 128GB of RAM. The computer has four (gdb) continue



Total Total | Expr #Expr | Avg Avg Avg Rev

Bug Number Ckpt | Restart| Eval | #Ckpts | #Restarts| Eval | Ckpt | Restart| Eval Expr | Watch
[s] [s] | Is] [s] [s] [s] [s]

MySQL 12228 | 24.84 | 524.81| 1.54 6 62 107 | 4.14 8.47 0.01| 812.15
MySQL 42419| 8.09 | 316.62| 1.16 4 52 80 | 2.02 6.09 0.01| 452.69
pbzip2 3.102| 48.58| 0.39 1 17 27 | 3.10 2.86 0.02| 64.79

Table 1: The bugs and the time it took FReD to diagnose thenpebforming reverse expression watchpoint (in
seconds). Other timings that are of interest are shownothédnd average times for checkpoint, restart and evaluati
of the expression (in seconds), as well as the number of plogtls, restarts and evaluation of the expression.

Client 1 Client 2 i 1 -
dispach_command(“drop procedure 5p_2;)({ dispatch_command(“call sp_1()") { MySQL bUg 42419 was dlagnosed Wlth FReD The de
- bug session is shown next (some of the output returned
db_find_routine() — — ~“sp_cache_routines_and_add_tables() { . .
e by gdb was removed for clarity):
free(0x2639db0) ™~ o Sroutine_hash_entry *rt=start;
\ ~ [*the address of rt is 0x2639db0 */ (gdb) break main
} \ h AB_find_routine() (gdb) run
N /* search for sp_2 */ Breakpoint 1, at main().
* ~_97 (gdb) fred-checkpoint
drop procedure if g))qsts sp_2; yyparse() { (gdb) continue
S:ggtgrgﬁi%ﬁré se;'f;(;pvir'z decimal) ﬁ?hglzﬁgés of pis 0x2630db0 */ Program received signal SIGABRT
set var2 = 808.16; w w at sql_select.cc:11958.
create procedure sp_1() memepy (p, " ) . d . . _ . .
call sp_ 2(varl) - if (ref_item && ref_item->eq(right_item, 1))
declare varl decimal default 999.99 H = r->next /* SIGSEGY */ (gdb) where
select varl } at sql_select.cc:12097
call sp_1() } R

(gdb) print ref_item

$1 = 0x24b9750

Figure 3: MySQL Bug 12228: the thread interleaving (gdb) print table->reginfo.join_tab->ref.items[part]
that causes the MySQL daemon to crash \itaseGy; 2 = 0x24b9750

. . db) print &table->reginfo.join_tab->ref.items[part]
(*) the sequence of instructions executed by each threacig - (Elass Ttem **) 0524%5318 P

in pseudo-SQL (gdb) fred-reverse-watch *0x24db518 == 0x24b9750

The crash (receiving 8IGABRT) was caused by the

Program received signal SIGSEGV. fact that the objectef_item did not contain a definition

in sp_cache_routines_and_table_aux at sp.cc:1340 of the eq() function. In gdb, the value ofef_item
sp_name name(rt->key.str, rt->key.length) .
(gdb) print rt seemed to be sane and thus the problem was not as im-
$1 = Oxle214a0 mediately obvious as dereferencing a garbage value, for
(gdb) print *rt example. Then we looked at how the poinieff _item

$2 = 1702125600

was being created. The pointesf_item was returned
(gdb) fred-reverse-watch *(0xle214a0) == 1702125600

from a functionpart_of _refkey(). Therefore, we

When theSIGSEGV is hit, gdb prints the file and line Printed the address and value of the pointer returned by
number that triggered th&IGSEGV. The user prints the part-of refkey(). reverse-watch takes us to the
address and value of the variable. The value ofrt ~ Place where the pointefef_item was assigned an in-
is “bad”, since dereferencing it triggered theGsEGv.  correct value. This happens during a call to the function
From there it is a simple conceptual problem: at whatnake join statistics():sql select.cc:5295,
point did the value of this variablet change to the Instructionj->ref.itens[i]=keyuse->val.

“bad” value? FReD's reverse expression watchpoint (or We then step throughake join statistics()
fred-reverse-watch as abbreviated above) is used With next commands as in a regular gdb session and
to answer this question. The time for reverse expreswatch MySQL encounter a *fatal error” As part of the
sion watchpoint, as well as other useful information, are®rmor handling, the thread frees the memory pointed to

shown in Table 1. by &ref_item. But, crucially, it does not remove it from
j—>ref.items[]. When a subsequent thread comes
51.2 MySOL Bug 42419 — Data Race along to process these items, it sees the old entry, and at-

tempts to dereference a pointer to a memory region that
In order to reproduce MySQL bug 42419, two client has previously been freed. The time for reverse expres-
threads which issue requests to the MySQL daemon (verision watchpoint, as well as other useful information, are
sion 5.0.67) were used, as indicated in the bug reportshown in Table 1.



Reversible Multi Multi | Reverse Expression Observations
Debugger Threaded| Core Watchpoint
IGOR [9] No No x>0 only monotonely varying
single variables
Boothe [5] No No x>0 only probes where
the debugger stops

King et al. [12] Yes No X detects the last time a

variable was modified
FReD Yes Yes | Complex Expressions detects the exact instruction

that invalidates the expressign

Table 2: Among checkpoint/re-execute based reversiblegiglys, other examples are limited to examining single
addresses, and do not support general expressions.

5.1.3 Firefox Bug 653672 5.1.4 Pbzip2 — Order Violation

n-Pbzip2 decompresses an archive by spawning consumer

gine. We reproduced the bug using the test program pralréads which perform the decompression. ~Another
vided with the bug report. The Javascript engine wadhread (the output thread) is spawned which writes the
not correctly parsing the regular expression provided irdecompressed data to a file. Unforunately, only the out-
the test program and would cause a segmentation faulPUt thread is joined by the main thread. Therefore, it
The code causing the segmentation fault was just-in-tim&"ght happen that when the main thread tries to free the

compiled code and so gdb could not resolve the symbol§ESOUTces, some of the consumer threads have not ex-
on the call stack causing an unusable stacktrace. ited yet. A segmentation fault is received in this case,
caused by a consumer thread attempting to dereference

the NULL pointer. The time for reverse expression
(gdb) break main watchpoint is shown in Table 1. The debugging session

This was a bug in Firefox (version 4.0.1) Javascript e

(gdb) run _ is presented below:
(gdb) fred-checkpoint
(gdb) break dlopen (gdb) break pbzip2.cpp:1018
(gdb) continue (gdb) run
. Breakpoint 1, at pbzip2.cpp:1018.
(gdb) continue (gdb) fred-checkpoint
Program received signal SIGSEGV, Segmentation fault. (gdb) continue
(gdb) where Program received signal SIGSEGV at
#0 0x00007fffdbaf606b in 7?7 () pthread_mutex_unlock.c:290.
#1  0x0000000000000000 in 7?7 () (gdb) backtrace
(gdb) fred-reverse-step #4 consumer (q=0x60cfb0) at pbzip2.cpp:898
FReD: ’fred-reverse-step’ took 6.881 seconds. c
(gdb) where (gdb) frame 4
#0 JSC::Yarr::RegexCodeBlock::execute (...) (gdb) print fifo->mut
at yarr/yarr/RegexJIT.h:78 $1 = (pthread_mutex_t *) 0x0
#1 O0x7ffff60e3fbb in JSC::Yarr::executeRegex (...) (gdb) p &fifo->mut
at yarr/... $2 = (pthread_mutex_t **) 0x60cfe0l

#2 Ox7ffff60e47b3 in js::RegExp::executelnternal (...) (gdb) fred-reverse-watch *0x60cfe0 == 0
at ...

6 Related Work

While running the above commands to reproduce then this section, we compare FReD with other systems
error, we noted that thBIGSEGV was delivered shortly  that implement reverse expression watchpoint (Subsec-
after the librarylibXss.so was loaded. We placed a tion 6.1) and other reversible debuggers (Subsection 6.2).
breakpoint ondlopen() to capture the event. As soon Deterministic replay systems are briefly mentioned (Sub-
asdlopen("libXss.so") was seen, we switched to is- section 6.3).
suing next commands until we hit the segmentation fault.

At this po‘i‘nt the stacktr:'alce wa;lalready unusable and 8.1 Reverse Expression Watchpoint

we used “reverse-step” capability of FReD to return to
the last statement where the stacktrace was still validTable 2 presents other reversible debuggers that support
The “reverse-step” took 6.881 seconds. reverse expression watchpoint.



Approach Reversible Info Multi Multi Forward | Reverse| Orth.
Debugger Captured| Thrd Core Exec. Exec.
On Replay| Speed Speed
AIDS [11] No No No
Record / Zelkowitz [38] No No Depends| No
Reverse- Tolmach et al. [31] High No No Slow on No
Execute GDB [10] Yes No Cmd Yes
TotalView '11 [32] Yes Yes Yes
Record- King et al. [12] Low Yes No Fast Slow No
Replay Lewis et al. [18] Low Yes No Fast Slow No
Post-mortem|| Omniscient Dbg [25]| Average | Yes *) Slow * No
Debugging || Tralfamadore [16] Average | Yes *) Average *) No
IGOR [9] No No No
Checkpoint /|| Boothe [5] No No No
Flashback [29] Average | No No Average | Average | No
Re-execute || ocamldebug [17] No No No
FReD Average | Yes Yes Average Fast Yes

Table 3: The four primary approaches to reversible debuggin the case of post-mortem debuggers, the reverse
execution speed cannot be determined, since the procesager lexists. Also, post-mortem debuggers do not fit with
the higher goal of this work: the capability of searchingdzhen arbitrary expressions through the entire lifetime of
the process.

Both IGOR [9] and the work by Boothe [5] support 6.2 Reversible Debuggers
a primitive type of reverse expression watchpoint for
single-threaded applications of the fosmo, where the ~ Throughout the years, four different approaches to
left-hand side of the expression is a variable and thduild a reversible debugger have been observed:
right-hand side is a constant.is also a monotone vari- record/reverse-execyte record/replay ~ checkpoint/re-

able. On the other hand, FReD supports general expre§Xxecutepost-mortem debuggingrable 2 groups FReD
sions. and previous reversible debuggers according to the ap-

proach taken to build a reversible debugger.
) o Each different approach can be characterized by the
In terms of how reverse expression watchpoint is pero|iowing: the amount of information captured while ex-

formed, IGOR locates the last checkpoint before the de'ecuting forwards (Table 2, column 3), the type of ap-
sired point and re-executes from there. Boothe performgications that the reversible debugger can be used with
reverse expression watchpoint in two steps: the first ste@nainly, can it be used with multithreaded applications?
records the last step point at which the expression is satis-_ T4p|e 2, column 4), the type of architectures the re-
fied and then the second step re-executes until that poinfiesiple debugger can be used on (does it run on multi-
A step pointis a point at which a user issued commandggre architectures? — Table 2, column 5), the forward
stops. In other words, Boothe can only probe the pointgyecution speed (Table 2, column 6), the reverse execu-
where the debugger stops. Buktantinue command jon speed (Table 2, column 7) and orthogonality (Ta-
can execute many statements. FReD, on the other hangjg 2, column 8).

brings the user directly to a statement (one that is not a The amount of information captured during the for-

function call) at which the expression is correct, but eXe~,ard execution is clasified as: Low (these reversible

cuting the statement will cause the expression to becomﬂebuggers use virtual machines), Average (enough in-

Incorrect. formation is stored to guaranteed deterministic replay)

or High (logging the state after each instruction is exe-

The work of King et al. [12] goes back to the last time cuted).

a variable was modified, by employing virtual machine Forward execution speeds can be: Slow (due to ex-
snapshots and event logging. While the work of King cessive logging), Average (as in the case of reversible
et al. detects the last time a variable was modified, FRe®lebuggers that capture enough information to guarantee
takes the user back in time to the last point an expressiodeterministic replay) and Fast (native speed via the use
had a correct value. Similarly to Boothe [5], the reverseof virtual machines).

watchpoint is performed in two steps and only the points Reverse execution speeds can be: Slow (due to large
where the debugger stops are probed. memory footprints), Average (due to the deterministic re-
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play strategy), Fast (through the use of checkpoints and
binary search) or can depend on the type of reverse com-
mand issued (reverse-continue and reverse-next tend td/]
be slow, while reverse-step is fast).

A reversible debugger is considered orthogonal if it
requires no modifications to the kernel, compiler and
interpreter. Otherwise, the reversible debugger is non-
orthogonal.

(5]

[6]
6.3 Deterministic Replay 7]
Deterministic replay is a prerequisite for any reversible
debugger that wants to support multithreaded applica—[8]
tions. There are many systems that implement determin-
istic replay in the literature, through a variety of mecha-
nisms: [1,4,7,8,9, 14,15, 18, 20, 21, 23, 24, 27, 28, 29,
34, 35, 36]. There are also many systems whose goal is to
make the initial execution deterministic [3, 6, 19, 22, 26].
It may be possible to employ one of these systems in the
future, but at present, they are not sufficiently integrated
with the use of standard debuggers such as GDB. There-
fore, we had to implement our own system that sup-11]
ports deterministic replay via logging of important sys-
tem calls, pthread and glibc functions. While this is not a
novel approach per se, it was enough to demonstrate tH&?!
novelty of our reverse expression watchpoint.

7 Conclusion [13]

A reverse expression watchpoint algorithm has been pre-
sented for automating a binary search through a process
lifetime. Reverse expression watchpoint searches for &4l
statement at the level of source code that causes a partic-
ular GDB expression in the program to transition from a
“good” value to an “bad” value. The end user determines
such an expression that is associated with the bug being
diagnosed. [15]
FReD is robust enough to support reversible debug-
ging in such complex, and highly multithreaded, real-
world programs as MySQL and Firefox. All tests were [16]
run on a 16-core computer. The times required to execute
reverse-watch varied from 65 seconds to 812 seconds.
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