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Abstract

Reversible debuggers have been developed at least since
1970. Today, GDBs “target record” facility provides em-
inently practical reversible debugging. Such a feature is
useful when the cause of a bug is close in time to the
bug manifestation. When the cause is far away, one re-
sorts to setting appropriate breakpoints in the debugger
and beginning a new debugging session. For these more
difficult bugs (when the cause of a bug is far in time from
its manifestation), bug diagnosis requires a series of de-
bugging sessions with which to narrow down the cause
of the bug.

For such “difficult” bugs, this work presents an auto-
mated tool to search through the process lifetime and lo-
cate the cause. As an example, the bug could be related
to a program invariant failing. A binary search in time
suffices, since the invariant expression is true at the be-
ginning of the program execution, and false when the bug
is encountered. This tool operates within a FReD (Fast
Reversible Debugger).

FReD supports complex, real-world multithreaded
programs, such as MySQL and Firefox. Past bug reports
are reproduced. A failed program invariant is identified.
One wishes to identify a program statement where the in-
variant holds, but it will fail at the next statement. FReD
is used to automatically place the user at such a state-
ment inside a familiar debugger such as GDB. The FReD
methodology avoids the inefficiency of GDB’s software
watchpoints.

Further, the binary search is robust. It operates on
multi-threaded programs, and takes advantage of multi-
core architectures during replay.

∗This work was partially supported by the National Science Foun-
dation under Grants CCF-0916133 and OCI-0960978.

1 Introduction

Reversible debuggers have existed at least since
1970 [11, 38], and a steady stream of reversible debug-
gers have followed since [5, 9, 10, 12, 17, 18, 25, 29,
31, 32, 16]. Reversible debuggers allow one to exe-
cute program statements in the backwards direction via
reverse-step, reverse-next, etc. Today, we have
a highly robust reversible debugger in GDB (using the
target record command).

Reversible debuggers alone are often not sufficient to
easily track down a bug. For example, a program crashes
because a null pointer was dereferenced. When was the
pointer set to a null value? Similarly, a memory buffer
is freed twice. An assert statement stops the program the
second time that a memory buffer is freed. When was
that particular memory buffer freed the first time? In both
cases, repeatedly executing a reverse-next or reverse-step
is impractical if the bug occurred millions of instructions
ago. This work describes a new tool,reverse expres-
sion watchpoints, and applications thereof, on top of a
reversible debugger platform, FReD(Fast Reversible De-
bugger). This tool automates an otherwise impractical
manual search for the original bug.

This work demonstrates an automated search for bugs,
on top of a custom reversible debugger. It operates on
complex, real-world programs and takes advantage of
multi-core architectures for fast replay. The novelty lies
in the automated search through a process lifetime. Nev-
ertheless, a prerequisite of this work is a reversible de-
bugger that supports multi-core architecture on replay.
The support for multi-core is needed in order to replay
at reasonable speeds on the emerging many-core CPUs.
Support for determinism is needed not only to uniquely
replay thread races, but also asynchronous signals (invo-
cation of signal handlers), I/O (and particularly input),
and system calls that poll the system clock.

Record-replay and deterministic replay are themselves
old ideas. In 2000, Boothe [5] had already produced a
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single-threaded reversible debugger based on recording
system calls into a log, and then replaying — for the
sake of determinism. More recently, there has been a
wealth of systems providing support for deterministic re-
play through a variety of mechanisms [4, 7, 8, 14, 18, 19,
20, 21, 24, 28, 29, 35]. There is also interesting work on
making the initial execution deterministic [3, 6, 22, 26].
It may be possible to employ one of these systems in the
future, but at present, they are not sufficiently integrated
with the use of standard debuggers such as GDB.

FReD itself is built as a Python script on top of largely
standard components: an unmodified GDB debugger,
the DMTCP checkpointing package [2], and a custom-
written DMTCP module for deterministic record-replay.
The DMTCP module employs wrapper functions around
system calls, as well as using trampolines.

The goal of this work is to diagnosedifficult bugs.
There are many “gratuitous bugs”, whose nature is
quickly and easily diagnosed. The cause of such bugs
is immediately apparent from a single run within a con-
ventional debugger. We say that such bugs show good
temporal locality.

The goal here is thedifficult bugs that do not show
good temporal locality. Unfortunately, simply using a
reversible debugger (reverse-next, reverse-step, reverse-
continue) is not a good match for these difficult bugs.
Unless one knows the goal towards which the statements
are executing, this has only limited advantages over stan-
dard execution in the forwards direction, with the use of
breakpoints and repeated runs of a debugger.

Example of a Non-Gratuitous Bug. We illustrate with
a simple (even simplistic) example. Suppose a program
has crashed because a NULL pointer was dereferenced.
In this simple regime, assert statements and GDB watch-
points may be applicable, but they would not scale to-
ward the larger goals. The NULL pointer is the value of
a global variable. One wishes to find the point in time
when the variable first became NULL. With a forward
debugger, one requires multiple runs to locate a possibly
deeply nested function where the global variable is set to
NULL. Typically, each debugging run brings one closer
to the place where the global variable is set to NULL,
and then a new breakpoint is set so that the next debug-
ging run can “continue” to that breakpoint and resume
the search for where the variable is being set to NULL.

This last example represents a difficult bug because
it’s manifestation is not close in time to its cause. The
manual search within successively deeper nested func-
tions causes the programmer to lose concentration on
the high-level description of the bug. The last example,
the programmer would have preferred to issue a single
command: find the last occurrence in which the value
of the given global variable changed from non-NULL to

NULL. This delegates the searchin timeto an automated
search routine. Unlike spatial searches, we are searching
through the process lifetime, while probing the program
state at specific points in time to evaluate an expression.
In this instance, the expression is simply the value of a
global variable (is it NULL or non-NULL), but everyone
is familiar with scenarios requiring evaluation of more
complex expressions.

Print Statements Traditionally, programmers have
been modifying the target program to addprint state-
ments. By iteratively addingprint statements to the
program and thus re-executing it, programmers emulate
some of the benefits of a reversible debugger. Of course,
these methods are not interactive, and therefore they lack
the benefits of a traditional debugger. More importantly,
such strategies do not scale well either in code size or
in time. Addingprint statements to a program requires
some knowledge of the structure of the program in order
to know where eachprint statements should be placed.

Assert Statements One could also think of adding
assert statements to guarantee the absence of cycles or
absence of duplicates. However, there are two problems
with usingassert statements. First, anassert state-
ment will require a linear number ofassert executions.
Second, the use ofassert statements is not consistent
with interactive debugging. Effectively, anassert state-
ment is a conditional print statement. The ability to inter-
actively call utility functions of the program (testing for
cycles or duplicate entries) in the context of a debugger
is qualitatively more powerful for the same reason that
debugger software is a more powerful technology than
the use ofprint or assert statements.

Binary Search With this motivation, we pull back and
examine the process of diagnosing a difficult bug. Con-
ceptually, one can divide the problem of debugging into
two extremes.

1. There are bugs that could be fixed simply by a com-
petent programmer employing a standard strategy
using a symbolic debugger (no domain expertise re-
quired).

2. There are also bugs that could only be fixed by a
domain expert familiar with the algorithm being de-
bugged.

In practice, many bugs are a combination of those two
extremes, and are solved in two phases. The first phase
can be characterized as a search for the proximate loca-
tion of the bug. A programmer employs a debugger to
trace the forward execution of a process and form a hy-
pothesis about the cause of a bug. In an effort to gather
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more information, the programmer iteratively refines the
hypothesis and begins new debugging sessions in an ef-
fort to locate the specific line of code causing the bug.

In the second phase, the symbolic debugger has pin-
pointed a local inconsistency in the state of a program.
But to understand why that local inconsistency exists
may take a global understanding of the algorithms and
design of the program. For example, debugging a bug in
a quicksort program leads one into this examination of
the global algorithmic structure of a program.

Too often, a programmer spends much of his or her
time in the first phase, above. For example, a null pointer
is dereferenced. When was the pointer set to null? Why
did the code cause the pointer to be set to null? Ideally,
a reversible debugger would allow one to simply trace
backwards in a program to answer the above questions.
But this is a trial-and-error process.

This paper presentsreverse expression watchpoints.
This provides a novel automated search in the context
of reversible debuggers. Further, it provides a powerful
tool for a programmer to ask high-level questions in a
program that greatly help in understanding the program.

Traditional Watchpoints Reverse expression watch-
points are a generalization of GDB watchpoints. De-
buggers such as GDB and others have a “watch” com-
mand. One specifies a memory address and desires to
know when the data at the address changes. This version
of the GDB watch command is called ahardware watch-
point because it uses hardware support (i.e. the memory
management unit) to efficiently stop execution when the
data at that address changes.

GDB also provides asoftware watchpointin which
one invokes the watch command on an expression in the
target program. Since there is no single hardware ad-
dress to monitor, GDB implements watch by evaluating
this expression after each statement of the target program
is executed. While this works well over short periods of
execution, it is not sufficiently efficient for longer exe-
cution periods. IfN statements are executed, then the
expression must be evaluatedN times.

FReD’s Watchpoints FReD demonstrates an imple-
mentation of reverse expression watchpoints that “stops”
a program at a point in time when a given expression is
about to change. More important, the method requires
only log2N evaluations of the given expression. As we
will see, reverse expression watchpoint is implemented
through a binary search over the process lifetime. The
log2N temporal search makes reverse expression watch-
points an important and novel tool in debugging.

The key point is that only log2N iterations are required
for N statements executed over the life of a process. In

contrast, GDB software watchpoints requireN evalua-
tions.

Outline of Paper. Section 2 describes the underlying
components of FReD. Section 3 describes the core nov-
elty of this work, reverse expression watchpoint and its
implementation. Section 4 reviews the overall imple-
mentation of FReD. Section 5 provides an experimental
evaluation of FReD. Section 6 describes the related work.
Finally, the conclusion is in Section 7.

2 Underlying Components of FReD

FReD (Fast Reversible Debugger) incorporates both tem-
poral search routines (search through the process life-
time) and an underlying reversible debugger. Ideally, we
would have built FReD on top of an existing reversible
debugger. For the reasons described below, it was re-
quired to build a custom reversible debugger.

FReD sits on top of and requires three other software
packages:

1. an unmodified GDB

2. DMTCP checkpointing package

3. a custom record-replay package

First, FReD uses a standard, unmodified debugger,
GDB, for its debugger. Second, it uses a transparent,
user-space checkpointing package, DMTCP (Distributed
MultiThreaded CheckPointing) [2]. A prerequisite for
the choice of checkpointing package is one that supports
checkpointing of GDB debugging sessions, which in turn
must support debugging of multithreaded user programs.
Third, FReD employs a custom record-replay package
based on wrapper functions around system calls (calls
to run-time libraries). A custom record-replay package
was chosen for its ease of integration, by employing
DMTCP’s direct support for building third-party mod-
ules that implement wrapper functions.

In FReD, checkpoints of an entire GDB session (GDB
and target application) are taken at regular intervals. The
history of GDB debugging commands is recorded (in ad-
dition to recording system calls of the target application).
Moving backwards in time consists of restarting from an
earlier checkpoint and replaying until the desired time in
the past history. Algorithms for decomposing debugging
histories of commands were developed [33]. If, for ex-
ample, the debugging history is[continue, next] and
the user issues areverse-next, then this is the equiva-
lent of anundo command. However, if for the same de-
bugging history, the user issues areverse-step com-
mand (therefore not anundo), then the debugging history
needs to be decomposed as in [33].
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An alternative design for automated temporal search
would have based FReD on top of an existing reversible
debugger based on a virtual machine (VM). This was re-
jected for the following reason. Two recent examples
of such VM-based debuggers are [12, 18]. DMTCP-
based checkpoints were preferred over VM-based snap-
shots because DMTCP checkpoint and restart executes
in about a second, while VM snapshots require half a
minute or more. Further, while VM-based reversible de-
buggers support multithreaded executables, they do not
support multi-core architectures without custom hard-
ware support [8].

Note that several optimizations can be used to speed
up checkpoints and restart — both for processes and for
VM snapshots. For example, copy-on-write could be
used to accelerate checkpointing of a VM, although the
frequency of checkpoints is still limited by the bandwidth
to disk. Nevertheless for our work, the restarts dominate
over checkpoints in the binary search algorithm. King
et al. [12] employ incremental checkpoints so that on
restarting from a snapshot close in time to the current
time, only a smaller number of memory pages must be
updated. However, FReD needs to restore checkpoints
that may be far away in time.

Another alternative design would have based FReD on
top of an existing reversible debugger. Table 3 of Sec-
tion 6 provides a review of reversible debuggers. A first
prerequisite for such a debugger is that it be based on
checkpoint/re-execute. As discussed earlier, VM-based
debuggers are not fast enough for interactive use. (A sin-
gle binary search through a process lifetime may require
50 or more checkpoints and restarts.)

A third alternative design would have based FReD
directly on top of GDB or another debugger based on
record/reverse-execute (see Table 3). GDB currently
supports reversibility through itstarget record com-
mand. However, this family of debuggers saves the state
of registers, etc., at each statement of the program. This
has a serious problem. A binary search through a process
lifetime requires frequent long jumps to distant portions
of a program. For long-running programs, it is not prac-
tical to save and restore so much state, while maintaining
a fast binary search.

Finally, since the future lies with many-core CPUs, we
felt strongly about basing FReD on a reversible debugger
with multi-core support on replay. Table 3 shows that
only one debugger fits this criterion: the proprietary To-
talView, with its Replay Engine [32]. Since the Replay
Engine is based on saving and restoring state before each
statement, it lacks the ability to make long jumps in time,
discussed above.

2.1 Architecture of FReD

FReD uses a Checkpoint/Re-execute strategy to enable
its reversibility. FReD sits between the end user and
GDB (see Figure 1). FReD passes user commands to
GDB and returns the debugger output. From FReD,
the user interacts with GDD in the same way as with-
out FReD. FReD uses DMTCP [2] (Distributed Multi-
Threaded Checkpointing) to checkpoint the state of a de-
bugging session to disk. One can revert to any point in
the execution by restarting from a prior checkpoint im-
age and re-executing. FReD takes multiple checkpoints
so that the execution time since the prior checkpoint is
never overly long. The higher layer that control GDB,
DMTCP, and the record-replay mechanism is written in
Python.

gdb

a.out

pseudo−tty (pty):

ckpt_gdb.1
ckpt_a.out.1
ckpt_gdb.2
ckpt_a.out.2

DMTCP:

restart
ckpt/

restart
ckpt/

FReD

gdb

a.out

tty:

Before:

After:

Figure 1: The architecture of FReD.

3 Reverse Expression Watchpoints

The core novelty of FReD is reverse expression watch-
points. With reverse expression watchpoints, FReD will
transfer the user to the exact source statement causing the
given expression to change value.

Figure 2 provides a simple example. Assume
that a bug occurs whenever a linked list has
length longer than one million. So an expression
length(linked list)<=1000000 is assumed to be
true throughout. Assume that it is too expensive to fre-
quently compute the length of the linked list, since this
would requireO(n2) time in what would otherwise be
a O(n) time algorithm. (A more sophisticated exam-
ple might consider a bug in an otherwise duplicate-free
linked list or an otherwise cycle-free graph. But the cur-
rent example is chosen for ease of illustrating the ideas.)

If the length of the linked list is less than or equal to
one million, call the expression “good”. If the length of
the linked list is greater than one million, call the ex-
pression “bad”. A “bug” is defined as a transition from
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“good” to “bad”. There may be more than one such tran-
sition or bug over the process lifetime. Our goal is simply
to find any one occurrence of the bug.

The core of a reverse expression watchpoint is a bi-
nary search. In Figure 2, assume a checkpoint was taken
near the beginning of the time interval. So, we can revert
to any point in the illustrated time interval by restarting
from the checkpoint image and re-executing the history
of debugging commands until the desired point in time.

1,000,000

TimeCorrect

Fault Fault
Error

Fault

Midpoint Midpoint
1,350,000

Length

Figure 2: Reverse expression watchpoint for the bounded
linked list example.

Since the expression is “good” at the beginning of
Figure 2 and it is “bad” at the end of that figure, there
must exist a buggy statement — a statement exhibiting
the transition from “good” to “bad”. A standard binary
search algorithm converges to some instance in which
the next statement transitions from “good” to “bad”. By
definition, FReD has found the statement with the bug.
This represents success.

If implemented naively, this binary search requires
that some statements may need to be re-executed up to
log2N times. However, FReD can also create intermedi-
ate checkpoints. In the worst case, one can form a check-
point at each phase of the binary search. In that case, no
particular sub-interval over the time period needs to be
executed more than twice.

3.1 Typical Running Times

As a binary search, the number of expression evaluations
will be at most log2N, for N statements executed. As an
example, takeN = 1015 assembly instruction (the equiv-
alent of several days of runtime on one core on a 1 GHz
CPU). In this case, log2N is only 50.

By taking intermediate checkpoints, one can guarantee
that a particular statement of code is never executed more
than once during the binary search. Using this strategy,
the left endpoint of the binary search will always corre-
spond to a time in which a checkpoint is available.

In this way, the typical running time will be bounded
by 50 checkpoints, 50 restarts and the time to re-execute
the code in the time interval of interest. Checkpoint and
restart typically proceed within seconds. So, for a rea-
sonable running time of the code, this implies an order

of magnitude of time for a reverse expression watch of
between a minute and 100 minutes. This number is in
keeping with the experimentally determined times of Ta-
ble 1 in Section 5.

3.2 The Algorithm

The algorithm for reverse expression watchpoint uses bi-
nary search essentially at four levels:

(A) Perform a binary search on the available check-
points in the process lifetime, to find a “bad” tran-
sition between adjacent checkpoints, or between
the most recent checkpoint and the current point in
time.

(B) Perform a binary search through the debugging his-
tory from the the checkpoint identified in step A.
This binary search may require one to decompose
the debugging history. An algorithm to decompose
the debugging history is reviewed in Section 4 and
addressed in [33].

(C) Multithreaded Programs:Perform a binary search
through the deterministic replay log. This will iden-
tify a synchronized event close in time to the bug
fault, and will ensure that the thread causing the
fault is alive.

(D) Multithreaded Programs:Perform repeatednext
commands and history decomposition for each live
thread, using gdb’sscheduler-lockingto discover
which thread was responsible for changing the ex-
pression value. Turning scheduler-locking on dis-
ables all threads but the currently active thread from
executing. If scheduler-locking is

Step D of this algorithm makes the reasonable assump-
tion that there exists exactly one statement modifying
exactly one datum which causes the expression evalua-
tion to change. It follows that if an expression changes
value, a single “step” instruction by a single thread must
be enough to do it.

In performing a binary search over the debugging
command history (in single or multithreaded programs),
it is possible that one user debugging command was a
“continue” which executed for a long time. To han-
dle that case, FReD supports “timed reverse expression
watchpoints”. Hence, intermediate checkpoints are taken
during the execution of a long-running “continue”. In
this way, FReD ensures that a moderate number of next
or step instructions between checkpoints will always suf-
fice.
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3.3 Details of Algorithm

Step (A) (binary search through checkpoints) of the re-
verse expression watchpoints is performed first, to iden-
tify a checkpoint image from which step (B) can proceed.

Once FReD has identified a base checkpoint, a binary
search through the user’s debugging command history
(step (B)) is performed. Once the command in the user’s
history after which the expression changes value has
been identified, FReD “decomposes” that command by
expanding “continue” and “next” commands into “next”
and “step” as needed. The algorithm is described in [33]
and discussed in Section 4.

FReD also ensures that a “step” command is not al-
lowed to step into libc internal runtime functions. Cer-
tain libraries such as libc and libpthread are blacklisted,
and FReD replaces a “step” by a “next” to step over calls
to such libraries.

Steps (A) and (B) above suffice for a single-threaded
program. Steps (C) and (D) are included only for reverse
expression watchpoints on multithreaded programs.

Step (C) (binary search through the deterministic
replay log) is used to ensure that the thread chang-
ing the expression is alive. Thread creation (whether
throughclone() or through another library call such as
pthread create()) are recorded as events in the replay
log.

Finally, step (D) performs a round-robin search
through the live threads, performing command expansion
and decomposition (step (B)), until a candidate thread is
found that caused the expression to change . A high-level
description of the round-robin search of step (D) follows:

Step (D):

1. Do repeated “next” in the current thread until the
expression changes (as in step (B). Then verify that
this is the correct thread by re-executing the same
series of debugger commands and enabling gdb
scheduler locking on the last “next” command and
observe if the expression still changes. If it does,
we are guaranteed that this is the correct thread. If
we see a deadlock, we don’t know if this is the right
thread. If the expression doesn’t change, this is the
wrong thread.

2. Undo the last “next”, and replace by a single “step”
followed by repeated “next” (no scheduler locking).
If the expression changes on that first step, go to
step 3 below. If the expression does not change,
then go to step 4.

3. The expression changed on this “step”. We must
verify that it is due to this thread. Undo “step”, en-
able gdb scheduler locking, and redo the the “step.”

If the expression changes, this is the right thread,
and exit. If the expression does not change, or dead-
locks, then this is not the right thread. Go to step 4.

4. Not the right thread, choose the next thread in step 1
above, and try again.

FReD uses a timeout (currently 20 seconds) in order
to decide if a deadlock occuredinside step (D).

4 Implementation of FReD

As discussed in Section 2, the FReD reversible debugger
consists of three components: an unmodified GDB, the
DMTCP checkpointing package, and a tightly integrated
custom record-replay module. The record-replay module
is in fact a DMTCP module.

Record-Replay DMTCP module Record-replay is
implemented in a standard way using dlopen/dlsym and,
where necessary, trampolines. A single global log is
used, which is mmap’ed to a file on disk so that the oper-
ating system can optimize lazy writes of the log to disk.
On record, multiple threads compete for the log by us-
ing an “atomic increment”. The log entries have a vari-
able size, depending on the type of event that needs to
be logged. The “atomic increment” allows a thread to
reserve a log entry immediately when the event was trig-
gered. Later on, the thread will fill in the reserved log
entry.

On replay, when the thread makes a function call, the
current entry of the head of the log is polled. As other
threads execute synchronized events, the current entry
is eventually advanced to the desired function call en-
try with the correct thread identifier and arguments, and
the real function call is made.

Currently, each thread writes directly to the central
log. In order to avoid issues of false sharing, there are
opportunities for each thread to write to a local buffer,
and then opportunistically merge the buffers.

Trampolines FReD mostly achieves its purpose
through standard function wrappers around library func-
tions such as libc and libpthread. In a few cases, the
function was not globally visible. Interposition packages
such as PIN and Dynamo implement trampolines [13, 30,
37] for this case when the address of a function is known,
but no symbol is exported. However, these packages
would bring added complexity. So, a simplified tram-
poline implementation was used.

The beginning of the function to be wrapped is over-
written with a jump to the desired wrapper function. The
wrapper function must also execute the first few instruc-
tions of the target function, beforce calling the target
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function beyond this prolog. On x86 and x86-64 CPUs,
instructions are variable length. Further, only position-
independent code can be executed inside the trampo-
line instead of in the target function. Since only a few
functions must be wrapped with a trampoline, a simple
pattern matching algorithm was used to determine the
first few instructions, and verify that all instructions are
position-independent.

Memory Accuracy One important feature of FReD is
memory-accuracy. Memory accuracy ensures that the
addresses of objects on the heap do not change between
original execution and replay. Any reversible debugger
without memory accuracy could change the address of a
memory object on each iteration, and would find a poor
reception among users.

In MySQL, a linked list was found to have a bad
pointer in the last link, causing a segmentation fault. We
needed to look backwards in time to when that pointer
was first set. Since that pointer did not correspond to any
variable name outside the scope of the current function,
it was not possible to reversibly search by name. Only
searching by address was possible, and then only with
the guarantee of memory accuracy.

Memory-accuracy is accomplished by logging the
arguments, as well as the return values ofmalloc,
calloc, realloc, free, mmap, mremap, munmap and
libc memalign on record. On replay, the real functions
or system calls are re-executed in the exact same order.

Implementation of Reverse-XXX The re-
verse commandsreverse-step, reverse-next,
reverse-finish, and reverse-continue each had
to be written with some care, to avoid subtle algorithmic
bugs. The implementation of the first three is described
in [33]. The underlying principle is that acontinue
debugging instruction can be expanded into repeated
next andstep. Similarly, anext can also be expanded
into repeatednext and step. Thus, in a typical ex-
ample, [continue, next, next, reverse-step]

might expand into[continue, next, step, next,

step, reverse-step], where the lastnext expands
into [step, next, step]. The last expression would
finally reduce to[continue, next, step, next].
FReD uses repeated checkpoints and restarts to expand
next into [step, next, step] in this example.
See [33] for further details.

5 Experimental Evaluation

5.1 Methodology

All experiments were carried out on on a 16-core com-
puter with 128GB of RAM. The computer has four

1.80 GHz Quad-Core AMD Opteron Processor 8346 HE
and it runs Ubuntu version 11.10. The kernel is Linux
kernel 3.0.0-12-generic. We used glibc version 2.13,
gdb version 7.3-0ubuntu and gcc version 4.6.1-9ubuntu3.
The kernel, glibc, gdb and gcc were unmodified.

While some other investigations have limited them-
selves to four cores, we felt it important to use a com-
puter with at least 16 cores in order to test real-world
scalability. Many of the recent assertions of a debugging
crisis point to the difficulty of debugging highly multi-
threaded software as the number of cores per CPU chip
(and hence the concurrency) continues to rise. The use
of 16 cores provides a crude approximation to the many-
core computers of the future.

The reverse expression watchpoint feature of FReD
was used to diagnose two real-world MySQL bugs (see
Subsections 5.1.1 and 5.1.2), one real-world Firefox bug
(see Subsection 5.1.3) and one real-world pbzip2 bug
(see Subsection 5.1.4). These bugs do not satisfy the
temporal localityproperty and they require examining
the state of the process at least two points in time that
were far apart.

For each of the following MySQL examples, the aver-
age number of entries in the deterministic replay log was
approximately 1 million. The average size of an entry in
the log was approximately 79 bytes.

5.1.1 MySQL Bug 12228 — Atomicity Violation

In order to reproduce MySQL bug 12228, a stress test
scenario was set in which five threads issue concurrent
client requests to the MySQL daemon. In our experience,
this bug occurs approximately 1 time in 1000 client con-
nections. This bug was reproduced using MySQL ver-
sion 5.0.11.

The buggy thread interleaving and the series of re-
quests issued by each client are presented in Figure 3.
The bug occurs when one client, “client 1” removes the
stored proceduresp 2(), while a second client, “client
2” is executing it. The memory used by procedure
sp 2() is freed when “client 1” removes it. While “client
1” removes the procedure, “client 2” attempts to access
a memory region associated with the now non-existent
procedure. “Client 2” is now operating on unclaimed
memory. The MySQL daemon is sent aSIGSEGV.

This bug was diagnosed with FReD in the following
way: the user runs the MySQL daemon under FReD and
executes the stress test scenario presented in Figure 3.
The debug session is presented below. Some of the out-
put returned by gdb was stripped for clarity.

(gdb) break main

(gdb) run

Breakpoint 1, at main().

(gdb) fred-checkpoint

(gdb) continue
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Total Total Expr #Expr Avg Avg Avg Rev
Bug Number Ckpt Restart Eval #Ckpts #Restarts Eval Ckpt Restart Eval Expr Watch

[s] [s] [s] [s] [s] [s] [s]

MySQL 12228 24.84 524.81 1.54 6 62 107 4.14 8.47 0.01 812.15
MySQL 42419 8.09 316.62 1.16 4 52 80 2.02 6.09 0.01 452.69
pbzip2 3.102 48.58 0.39 1 17 27 3.10 2.86 0.02 64.79

Table 1: The bugs and the time it took FReD to diagnose them, byperforming reverse expression watchpoint (in
seconds). Other timings that are of interest are shown: the total and average times for checkpoint, restart and evaluation
of the expression (in seconds), as well as the number of checkpoints, restarts and evaluation of the expression.

drop procedure if exists sp_2;
drop procedure if exists sp_1;
create procedure sp_2 (in var2 decimal)

set var2 = 808.16; 
create procedure sp_1()

call sp_2(var1)
declare var1 decimal default 999.99;
select var1

call sp_1()

dispach_command("drop procedure sp_2") { dispatch_command("call sp_1()") {
...
sp_cache_routines_and_add_tables() {

...
Sroutine_hash_entry *rt=start;
/* the address of rt is 0x2639db0 */

...
db_find_routine()
/* search for sp_2 */
...
yyparse() {

...
p = malloc();
/* the address of p is 0x2639db0 */
memcpy (p, "...", ...)
...

rt = rt−>next /* SIGSEGV */

}
}

}

Client 2Client 1

...
db_find_routine()
...
free(0x2639db0)
...

}

(*)

Figure 3: MySQL Bug 12228: the thread interleaving
that causes the MySQL daemon to crash withSIGSEGV;
(*) the sequence of instructions executed by each thread,
in pseudo-SQL

Program received signal SIGSEGV.

in sp_cache_routines_and_table_aux at sp.cc:1340

sp_name name(rt->key.str, rt->key.length)

(gdb) print rt

$1 = 0x1e214a0

(gdb) print *rt

$2 = 1702125600

(gdb) fred-reverse-watch *(0x1e214a0) == 1702125600

When theSIGSEGV is hit, gdb prints the file and line
number that triggered theSIGSEGV. The user prints the
address and value of the variablert. The value ofrt
is “bad”, since dereferencing it triggered theSIGSEGV.
From there it is a simple conceptual problem: at what
point did the value of this variablert change to the
“bad” value? FReD’s reverse expression watchpoint (or
fred-reverse-watch as abbreviated above) is used
to answer this question. The time for reverse expres-
sion watchpoint, as well as other useful information, are
shown in Table 1.

5.1.2 MySQL Bug 42419 — Data Race

In order to reproduce MySQL bug 42419, two client
threads which issue requests to the MySQL daemon (ver-
sion 5.0.67) were used, as indicated in the bug report.

MySQL bug 42419 was diagnosed with FReD. The de-
bug session is shown next (some of the output returned
by gdb was removed for clarity):

(gdb) break main

(gdb) run

Breakpoint 1, at main().

(gdb) fred-checkpoint

(gdb) continue

Program received signal SIGABRT

at sql_select.cc:11958.

if (ref_item && ref_item->eq(right_item, 1))

(gdb) where

at sql_select.cc:12097

(gdb) print ref_item

$1 = 0x24b9750

(gdb) print table->reginfo.join_tab->ref.items[part]

$2 = 0x24b9750

(gdb) print &table->reginfo.join_tab->ref.items[part]

$3 = (class Item **) 0x24db518

(gdb) fred-reverse-watch *0x24db518 == 0x24b9750

The crash (receiving aSIGABRT) was caused by the
fact that the objectref item did not contain a definition
of the eq() function. In gdb, the value ofref item

seemed to be sane and thus the problem was not as im-
mediately obvious as dereferencing a garbage value, for
example. Then we looked at how the pointerref item

was being created. The pointerref item was returned
from a function part of refkey(). Therefore, we
printed the address and value of the pointer returned by
part of refkey(). reverse-watch takes us to the
place where the pointerref item was assigned an in-
correct value. This happens during a call to the function
make join statistics():sql select.cc:5295,
instructionj->ref.items[i]=keyuse->val.

We then step throughmake join statistics()

with next commands as in a regular gdb session and
watch MySQL encounter a “fatal error.” As part of the
error handling, the thread frees the memory pointed to
by &ref item. But, crucially, it does not remove it from
j->ref.items[]. When a subsequent thread comes
along to process these items, it sees the old entry, and at-
tempts to dereference a pointer to a memory region that
has previously been freed. The time for reverse expres-
sion watchpoint, as well as other useful information, are
shown in Table 1.
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Reversible Multi Multi Reverse Expression Observations
Debugger Threaded Core Watchpoint
IGOR [9] No No x > 0 only monotonely varying

single variables
Boothe [5] No No x > 0 only probes where

the debugger stops
King et al. [12] Yes No x detects the last time a

variable was modified
FReD Yes Yes Complex Expressions detects the exact instruction

that invalidates the expression

Table 2: Among checkpoint/re-execute based reversible debuggers, other examples are limited to examining single
addresses, and do not support general expressions.

5.1.3 Firefox Bug 653672

This was a bug in Firefox (version 4.0.1) Javascript en-
gine. We reproduced the bug using the test program pro-
vided with the bug report. The Javascript engine was
not correctly parsing the regular expression provided in
the test program and would cause a segmentation fault.
The code causing the segmentation fault was just-in-time
compiled code and so gdb could not resolve the symbols
on the call stack causing an unusable stacktrace.

(gdb) break main

(gdb) run

(gdb) fred-checkpoint

(gdb) break dlopen

(gdb) continue

...

(gdb) continue

Program received signal SIGSEGV, Segmentation fault.

(gdb) where

#0 0x00007fffdbaf606b in ?? ()

#1 0x0000000000000000 in ?? ()

(gdb) fred-reverse-step

FReD: ’fred-reverse-step’ took 6.881 seconds.

(gdb) where

#0 JSC::Yarr::RegexCodeBlock::execute (...)

at yarr/yarr/RegexJIT.h:78

#1 0x7ffff60e3fbb in JSC::Yarr::executeRegex (...)

at yarr/...

#2 0x7ffff60e47b3 in js::RegExp::executeInternal (...)

at ...

...

While running the above commands to reproduce the
error, we noted that theSIGSEGV was delivered shortly
after the librarylibXss.so was loaded. We placed a
breakpoint ondlopen() to capture the event. As soon
asdlopen("libXss.so") was seen, we switched to is-
suing next commands until we hit the segmentation fault.
At this point the stacktrace was already unusable and so
we used “reverse-step” capability of FReD to return to
the last statement where the stacktrace was still valid.
The “reverse-step” took 6.881 seconds.

5.1.4 Pbzip2 — Order Violation

pbzip2 decompresses an archive by spawning consumer
threads which perform the decompression. Another
thread (the output thread) is spawned which writes the
decompressed data to a file. Unforunately, only the out-
put thread is joined by the main thread. Therefore, it
might happen that when the main thread tries to free the
resources, some of the consumer threads have not ex-
ited yet. A segmentation fault is received in this case,
caused by a consumer thread attempting to dereference
the NULL pointer. The time for reverse expression
watchpoint is shown in Table 1. The debugging session
is presented below:

(gdb) break pbzip2.cpp:1018

(gdb) run

Breakpoint 1, at pbzip2.cpp:1018.

(gdb) fred-checkpoint

(gdb) continue

Program received signal SIGSEGV at

pthread_mutex_unlock.c:290.

(gdb) backtrace

#4 consumer (q=0x60cfb0) at pbzip2.cpp:898

...

(gdb) frame 4

(gdb) print fifo->mut

$1 = (pthread_mutex_t *) 0x0

(gdb) p &fifo->mut

$2 = (pthread_mutex_t **) 0x60cfe0

(gdb) fred-reverse-watch *0x60cfe0 == 0

6 Related Work

In this section, we compare FReD with other systems
that implement reverse expression watchpoint (Subsec-
tion 6.1) and other reversible debuggers (Subsection 6.2).
Deterministic replay systems are briefly mentioned (Sub-
section 6.3).

6.1 Reverse Expression Watchpoint

Table 2 presents other reversible debuggers that support
reverse expression watchpoint.
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Approach Reversible Info Multi Multi Forward Reverse Orth.
Debugger Captured Thrd Core Exec. Exec.

On Replay Speed Speed
AIDS [11] No No No

Record / Zelkowitz [38] No No Depends No
Reverse- Tolmach et al. [31] High No No Slow on No
Execute GDB [10] Yes No Cmd Yes

TotalView ’11 [32] Yes Yes Yes
Record- King et al. [12] Low Yes No Fast Slow No
Replay Lewis et al. [18] Low Yes No Fast Slow No

Post-mortem Omniscient Dbg [25] Average Yes (*) Slow (*) No
Debugging Tralfamadore [16] Average Yes (*) Average (*) No

IGOR [9] No No No
Checkpoint / Boothe [5] No No No

Flashback [29] Average No No Average Average No
Re-execute ocamldebug [17] No No No

FReD Average Yes Yes Average Fast Yes

Table 3: The four primary approaches to reversible debugging. In the case of post-mortem debuggers, the reverse
execution speed cannot be determined, since the process no longer exists. Also, post-mortem debuggers do not fit with
the higher goal of this work: the capability of searching based on arbitrary expressions through the entire lifetime of
the process.

Both IGOR [9] and the work by Boothe [5] support
a primitive type of reverse expression watchpoint for
single-threaded applications of the formx>0, where the
left-hand side of the expression is a variable and the
right-hand side is a constant.x is also a monotone vari-
able. On the other hand, FReD supports general expres-
sions.

In terms of how reverse expression watchpoint is per-
formed, IGOR locates the last checkpoint before the de-
sired point and re-executes from there. Boothe performs
reverse expression watchpoint in two steps: the first step
records the last step point at which the expression is satis-
fied and then the second step re-executes until that point.
A step point is a point at which a user issued commands
stops. In other words, Boothe can only probe the points
where the debugger stops. But acontinue command
can execute many statements. FReD, on the other hand,
brings the user directly to a statement (one that is not a
function call) at which the expression is correct, but exe-
cuting the statement will cause the expression to become
incorrect.

The work of King et al. [12] goes back to the last time
a variable was modified, by employing virtual machine
snapshots and event logging. While the work of King
et al. detects the last time a variable was modified, FReD
takes the user back in time to the last point an expression
had a correct value. Similarly to Boothe [5], the reverse
watchpoint is performed in two steps and only the points
where the debugger stops are probed.

6.2 Reversible Debuggers

Throughout the years, four different approaches to
build a reversible debugger have been observed:
record/reverse-execute, record/replay, checkpoint/re-
execute, post-mortem debugging. Table 2 groups FReD
and previous reversible debuggers according to the ap-
proach taken to build a reversible debugger.

Each different approach can be characterized by the
following: the amount of information captured while ex-
ecuting forwards (Table 2, column 3), the type of ap-
plications that the reversible debugger can be used with
(mainly, can it be used with multithreaded applications?
— Table 2, column 4), the type of architectures the re-
versible debugger can be used on (does it run on multi-
core architectures? — Table 2, column 5), the forward
execution speed (Table 2, column 6), the reverse execu-
tion speed (Table 2, column 7) and orthogonality (Ta-
ble 2, column 8).

The amount of information captured during the for-
ward execution is clasified as: Low (these reversible
debuggers use virtual machines), Average (enough in-
formation is stored to guaranteed deterministic replay)
or High (logging the state after each instruction is exe-
cuted).

Forward execution speeds can be: Slow (due to ex-
cessive logging), Average (as in the case of reversible
debuggers that capture enough information to guarantee
deterministic replay) and Fast (native speed via the use
of virtual machines).

Reverse execution speeds can be: Slow (due to large
memory footprints), Average (due to the deterministic re-
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play strategy), Fast (through the use of checkpoints and
binary search) or can depend on the type of reverse com-
mand issued (reverse-continue and reverse-next tend to
be slow, while reverse-step is fast).

A reversible debugger is considered orthogonal if it
requires no modifications to the kernel, compiler and
interpreter. Otherwise, the reversible debugger is non-
orthogonal.

6.3 Deterministic Replay

Deterministic replay is a prerequisite for any reversible
debugger that wants to support multithreaded applica-
tions. There are many systems that implement determin-
istic replay in the literature, through a variety of mecha-
nisms: [1, 4, 7, 8, 9, 14, 15, 18, 20, 21, 23, 24, 27, 28, 29,
34, 35, 36]. There are also many systems whose goal is to
make the initial execution deterministic [3, 6, 19, 22, 26].
It may be possible to employ one of these systems in the
future, but at present, they are not sufficiently integrated
with the use of standard debuggers such as GDB. There-
fore, we had to implement our own system that sup-
ports deterministic replay via logging of important sys-
tem calls, pthread and glibc functions. While this is not a
novel approach per se, it was enough to demonstrate the
novelty of our reverse expression watchpoint.

7 Conclusion

A reverse expression watchpoint algorithm has been pre-
sented for automating a binary search through a process
lifetime. Reverse expression watchpoint searches for a
statement at the level of source code that causes a partic-
ular GDB expression in the program to transition from a
“good” value to an “bad” value. The end user determines
such an expression that is associated with the bug being
diagnosed.

FReD is robust enough to support reversible debug-
ging in such complex, and highly multithreaded, real-
world programs as MySQL and Firefox. All tests were
run on a 16-core computer. The times required to execute
reverse-watch varied from 65 seconds to 812 seconds.
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