
Temporal Debugging via Flexible Checkpointing:
Changing the Cost Model

Gene Cooperman (presenting)
High Performance Computing Laboratory

College of Computer and Information Science
Northeastern University

Boston, Massachusetts 02115
USA

gene@ccs.neu.edu

joint with Kapil Arya, Tyler Denniston, Ana-Maria Visan

A Talk in Three Parts

• URDB (Universal Reversible Debugger):

– Good support forsingle-threadedapps

– Supports multiple debuggers: GDB, Python/pdb, perl -d, Matlab debugger

– Reverse expression watchpoints (analogous to GDB ‘expression watchpoints’, but
in reverse direction)

• FReD (Fast Reversible Debugger):

– Good support formulti-threadedapps

– Built on top of URDB

– Supports Deterministic Replay of multi-threaded, multi-core applications at near
native speeds

– Sufficiently robust to run on MySQL

• Future Work

Background

DMTCP (Distributed MultiThreaded CheckPointing,http://dmtcp.sourceforge.net)
is a mature open source (LGPL) checkpointing package that has been under development
for seven years.

It operates entirely in user space, with no kernel modules, or modifications to the target
application. If used in the simplest possible way, it works as:

dmtcp checkpoint a.out
dmtcp command --checkpoint
dmtcp restart ckpt a.out *.dmtcp

DMTCP is contagious. Any calls to fork(), pthreadcreate(), or “ssh”, are recognized by
DMTCP, and it adds to checkpoint control all new threads, and processes (both local and
remote). At checkpoint time, it also generates a script,dmtcp restart script.sh , that
can restart a distributed computation.

It works transparently on most Linux non-graphics software, including: Matlab, R, Python,
Perl, bash, tcsh, Open MPI, OpenMP, Cilk, GNU screen, vim, emacs,

http://dmtcp.sourceforge.net

URDB and FReD

URDB (Universal Reversible Debugger)/single-threaded:Based on ability of DMTCP to
checkpoint and restart a debugging session fast; works for GDB, Python, Perl, Matlab; 200
lines of python code to add a new target debugger;
freely available athttp://urdb.sourceforge.net

WARNING: Not ready for prime-time (older technical report on URDB also available)

FReD (Fast Reversible Debugger)/multi-threaded:Handles multi-threaded, muli-core
apps; good enough to reversibly debug MySQL; further bug-swatting underway to handle
most major multi-threaded software;
Intended for public release in the next month or two

Note: Reversible debuggers have existed at least since 1970. The problem is to make them
widely useful.

http://urdb.sourceforge.net

URDB Architecture

gdb

a.out

pseudo−tty (pty):

ckpt_gdb.1
ckpt_a.out.1
ckpt_gdb.2
ckpt_a.out.2

DMTCP:

restart
ckpt/

restart
ckpt/

FReD

gdb

a.out

tty:

Before:

After:

DMTCP: Distributed MultiThreaded CheckPointing

Provides fast checkpoint-restart (about one second)
10 MB checkpoint typical (based on footprint in RAM)
(further speed and storage optimizations planned using incremental checkpointing)

CKPT THREAD

USER THREAD A

USER THREAD B

CKPT THREAD

USER THREAD C

S
IG

U
S

R
2

S
IG

U
S

R
2

S
IG

U
S

R
2

COORDINATOR

DMTCP

CKPT MSG
CKPT MSG

USER PROCESS 2USER PROCESS 1

DMTCP: Wider Usage

• Open Source:Over 100 downloads per month from Sourceforge

• Linux Distros: in Debian testing; will be in OpenSuse 12.1 (Nov., 2011); submitted to
Fedora;

• Condor: Integration with Condor as checkpointer for Standard Universe (aswell as
Vanilla Universe):https://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=Dm tcpCondor
(Condor is a package for high throughput computing, installed on over 300,000 hosts.)

• Open MPI:RFC under review now (Oct., 2011) for a DMTCP module to be used by the
Open MPI checkpoint-restart service — to be included in Open MPI 1.6 (to be released:
Dec., 2011?) if successful.

• Users:Recommended to Users for these projects (among others): iPlant collaborative,
http://www.iplantcollaborative.org/grand-challenges /about-grand-challenges/curr
HOL Light Theorem Prover (http://www.cl.cam.ac.uk/ ˜ jrh13/hol-light/) ;
NeuroDebian (neuroscience:http://neuro.debian.net/)

https://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=DmtcpCondor
http://www.iplantcollaborative.org/grand-challenges/about-grand-challenges/current-challenges/iptol
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://neuro.debian.net/

URDB Key Idea: Restart-Reexecute

Undo: if n commands beyond the last checkpoint, then restart and re-execute first n− 1
commands
(Note: for non-deterministic programs, re-execution can leave the process in a different
state; more about that later)

Extend to: reverse-step, reverse-next, reverse-finish, reverse-watch, etc.

Key features of DMTCP:

• fast checkpoint/restart times (about one second)
(will be even faster in future with incremental checkpoints implemented)

• works on multiple processes

• also works on GDB debugging sessions
(supports Linux ptrace system call)

• works on multiple threads

• works on distributed computations

Some URDB Commands

reverse−
step

reverse−
continue

Time

Call Stack Reverse execution

Forward execution

BREAKPT
FNC1

FNC2

reverse−finish

reverse−next

And some more commands:

• checkpoint , restart (about a second to checkpoint ; restart is faster)

• undo (undo last debugger command)

• reverse-watch <STMT> (use binary search to find stmt where EXPR changed)

Temporal Debugging: Reverse-Watch

Length
of linked
list

(error: fault
 is discovered)

(a fault)

Time

1,000,000

Scenario (two-point bug):Fault occurs earlier, but error manifests much later. After
analyzing the error, we produce a program expression that exhibitsthe fault. How do we find
a statement for which the expression had a “good value” prior to the statement execution and
a “bad value” afterwards?

Example:A data structure is occasionally re-computed based on a linked list. The linked
list is assumed to always have length less than 1,000,000. The error shows that the linked
list now has length 1,050,000. How did this happen?

Problem:The linked list is updated 1,000,000 times per second, and the error manifests only
after running for an hour.

Reverse-Watch via Binary Search

Length
of linked
list

(error: fault
 is discovered)

(a fault)

Time

1,000,000

Ordinary expression watchpoints are efficientonly if the expression represents a single
hardware address in memory. Standard techniques exist for this case. (Remove write
permission for the page of interest, and add a segfault handler to capture a write access.)

When the expression is more complex (for example, a linked list), debuggers such as GDB
just evaluate the expression at every statement. In our linked list example, this is inefficient
for a program running over an hour. Checking every update to the linked list would also be
inefficient: 1,000,000 links× 1,000,000 updates per second× 3600 seconds = 3.6×1015

links to traverse. The clock rate of a CPU is 4×109 clock cycles per second.

Reverse-Watch via Binary Search (cont.)

Length
of linked
list

(error: fault
 is discovered)

(a fault)

Time

1,000,000

Solution: temporal debugging
Let N be the number of statements executed over the program lifetime.
Binary search over the process lifetime needs only log2N evaluations of the linked list length.
For most programsN < 1015 statements, and so log2N < 50.

• Checkpoint and restart time:50 checkpoints and 50 restarts require about 100 seconds
under DMTCP.

• Running time:Less than double the original time to run the application. (Temporary
intermediate checkpoints are inserted for efficiency as needed.)

• NOTE: URDB/DMTCP runs at the native speed of the application when not
checkpointing or restarting.

Speculation on the Future

By the end of this decade,diagnosingrun-time errors will
be almost as painless as diagnosing compile-time errors.

• Compile-time errors used to be hard to diagnose. (unmatched parentheses, mismatched
types, finding definition of function/macro among many files)

• Diagnosing compile-time errors is nowusuallyreasonably painless.

• Diagnosing compile-time errors requires searching in a textual or spatial dimension for
which there are now excellent tools.

• URDB (and now FReD) converts the temporal dimension into a spatial dimension.
(Unlike the unidirectionalarrow of time, one can now efficiently search bidirectionally
in a space-like dimension.)

• It is much easier to build tools like reverse expression watchpoint for a spatial dimension
than for a temporal dimension.

• The next decade will see a proliferation of bidirectionaltemporaltools for diagnosing
bugs.

Demo: Part 1

gene@bsn89k1:˜/pthread-wrappers/fred$./fredapp.py -- fred-demo gdb ../test-programs/test_list
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/ licenses/gpl.html>
...
Reading symbols from /home/gene/pthread-wrappers/test- programs/test_list...done.
(gdb) b main
Breakpoint 1 at 0x4005fc: file test_list.c, line 21.
FReD: ’b main’ took 0.054 seconds.
Starting program: /home/gene/pthread-wrappers/test-pr ograms/test_list

Breakpoint 1, main () at test_list.c:21
(gdb) r
21 head = newItem(1);
FReD: ’r’ took 0.892 seconds.
(gdb) fred-ckpt
FReD: Created checkpoint #0.
FReD: ’fred-ckpt’ took 1.841 seconds.

Demo: Part 2

(gdb) list
17 int main() {
18 item * tail;
19 int i;
20
21 head = newItem(1);
22 tail = head;
23 printf(" NODE VAL: %d\n", tail->val);
24 for(i=2;i<=20;i++) {
25 tail->next = newItem(i);
26 tail = tail->next;
27 printf(" NODE VAL: %d\n", tail->val);
28 }
29 printf("Linked list length is now: %d\n", list_len(head));
...
33 }
34
35 item * newItem(int i) {
36 item * tmp = malloc(sizeof(item));
37 tmp->val = i;

Demo: Part 3

FReD: ’list’ took 0.036 seconds.
(gdb) b 30
Breakpoint 2 at 0x4006a2: file test_list.c, line 30.
FReD: ’b 30’ took 0.040 seconds.
(gdb) c
Continuing.

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 20

Linked list length is now: 20

Breakpoint 2, main () at test_list.c:30
30 printf ("Ok we crossed the limit."
FReD: ’c’ took 0.032 seconds.

Demo: Part 4

(gdb) fred-reverse-watch list_len(head)<7
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next
22 tail = head;
next
23 printf(" NODE VAL: %d\n", tail->val);
next 2

NODE VAL: 1
25 tail->next = newItem(i);
next 4

NODE VAL: 2
25 tail->next = newItem(i);
next 8

NODE VAL: 3
NODE VAL: 4

25 tail->next = newItem(i);

Demo: Part 5

next 16
NODE VAL: 5
NODE VAL: 6
NODE VAL: 7
NODE VAL: 8

25 tail->next = newItem(i);
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
dmtcp_coordinator starting...

Port: 7770
Checkpoint Interval: disabled (checkpoint manually inste ad)
Exit on last client: 1

Backgrounding...
next 24

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 6

25 tail->next = newItem(i);

Demo: Part 6

===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next 28

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 7

25 tail->next = newItem(i);
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next 26

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 6

27 printf(" NODE VAL: %d\n", tail->val);
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next 25

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 6

26 tail = tail->next;
===================== KILLING gdb ==================== =

NODE VAL: 2
...

NODE VAL: 6
25 tail->next = newItem(i);
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next 24

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 6

25 tail->next = newItem(i);
step
newItem (i=7) at test_list.c:36
36 item * tmp = malloc(sizeof(item));
next
37 tmp->val = i;
next
38 tmp->next = NULL;
next 2
40 }
next 4

NODE VAL: 7
25 tail->next = newItem(i);
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next 24

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 6

36 item * tmp = malloc(sizeof(item));
next 6
27 printf(" NODE VAL: %d\n", tail->val);
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next 24

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 6

25 tail->next = newItem(i);
step
newItem (i=7) at test_list.c:36
36 item * tmp = malloc(sizeof(item));
next 5
main () at test_list.c:26
26 tail = tail->next;
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next 24

NODE VAL: 1
NODE VAL: 2

...
NODE VAL: 6

25 tail->next = newItem(i);
step
newItem (i=7) at test_list.c:36
36 item * tmp = malloc(sizeof(item));
next 4
40 }
===================== KILLING gdb ==================== =

Demo: Part 7

next 24
NODE VAL: 1

...
NODE VAL: 6

25 tail->next = newItem(i);
step
newItem (i=7) at test_list.c:36
36 item * tmp = malloc(sizeof(item));
next 4
40 }
step
main () at test_list.c:26
26 tail = tail->next;
===================== KILLING gdb ==================== =
===================== RESTARTING gdb ================= ====
next 24

NODE VAL: 1
...

NODE VAL: 6
25 tail->next = newItem(i);
step
newItem (i=7) at test_list.c:36
36 item * tmp = malloc(sizeof(item));
next 4
40 }

Demo: Part 8

FReD: ’fred-rw list_len(head)<7’ took 27.158 seconds.
(gdb) where
#0 newItem (i=7) at test_list.c:40
#1 0x0000000000400645 in main () at test_list.c:25
FReD: ’where’ took 0.044 seconds.
(gdb) list
35 item * newItem(int i) {
36 item * tmp = malloc(sizeof(item));
37 tmp->val = i;
38 tmp->next = NULL;
39 return tmp;
40 }
41 int list_len(item *elt) {
42 int count = 0;
43 while (elt != NULL) {
44 elt = elt->next;

Demo: Part 9

(gdb) p list_len(head)
$1 = 6
FReD: ’p list_len(head)’ took 0.048 seconds.
(gdb) step
main () at test_list.c:26
26 tail = tail->next;
FReD: ’step’ took 0.040 seconds.
(gdb) where
#0 main () at test_list.c:26
FReD: ’where’ took 0.060 seconds.
(gdb) p list_len(head)
$2 = 7
FReD: ’p list_len(head)’ took 0.040 seconds.
(gdb) fred-reverse-step
FReD: ’fred-reverse-step’ took 1.663 seconds.
(gdb) where
#0 newItem (i=7) at test_list.c:40
#1 0x0000000000400645 in main () at test_list.c:25
FReD: ’where’ took 0.118 seconds.
(gdb) p list_len(head)
$2 = 6
FReD: ’p list_len(head)’ took 0.108 seconds.

Demo: Part 10

(gdb) fred-help
Supported monitor commands follow. Optional COUNT argumen t is repeat count.

fred-undo <COUNT=1>: Undo last debugger command.
fred-reverse-next <COUNT=1>, fred-rn <COUNT=1>: Reverse -Next Command
fred-reverse-step <COUNT=1>, fred-rs <COUNT=1>: Reverse -Step Command
fred-checkpoint, fred-ckpt: Request a new checkpoint to be made.
fred-restart: Restart from last checkpoint.
fred-reverse-watch <EXPR>, fred-rw <EXPR:

Reverse execute until expression EXPR changes.
fred-debug <EXPR>: Experts only: debug python expression.

If no argument: enter pdb debugger.
fred-source <FILE>: Read commands from source file.
fred-list: List the available checkpoint files.
fred-help: Display this help message.
fred-history: Display your command history up to this point .
fred-quit, fred-exit: Quit URDB.

A Calculus of Debugging Commands

1: while true do
2: if last command is continue or next/bkptthen
3: executeundo-command
4: executestep
5: while we are not at breakpointdo
6: executenext
7: else if last command is stepthen
8: executeundo-command
9: break

10: else
11: {last command is next}
12: executeundo-command
13: executestep
14: while deeper() do
15: executenext

Algorithm 1: Reverse-step∗

∗ Ana-Maria Visan, Kapil Arya, Gene Cooperman, Tyler Denniston, “URDB: A Universal
Reversible Debugger Based on Decomposing Debugging Histories”, PLOS workshop,
SOSSOSP-2011

Some other Interesting Approaches to Reversible Debuggers

1. instruction logging: long history, including most recently gdb-7.x introduced in Oct.,
2009

• gdb-7.x : Log every instruction: When executing assembly ‘store’,record what was
previously in the memory location; When reverse executing the ‘store’ command,
restore previous value at memory location

• Roughly 100,000 times slower than native speed

• Approximately 100 bytes stored for each C statement

2. variation of logging in Standard ML(clever language-specific use; don’t garbage collect
old data; one can re-use old data via continuations when going backwards in history) :
Tomach, Appel (1990)

3. record-replay(deterministic recording and replay of events in a virtual machine; use of
remote debugger outside virtual machine) : King, Dunlap, Chen(ReVirt, 2005); Lewis,
Dhamdhere, Chen (VMware, 2008); Dunlap, Lucchetti, Fetterman, Chen (ReVirt, 2008)

4. post-mortem debuggers: Pothier, Tanter, Piquier (Omniscient Debugger, 2007: 190
bytes/event, 500,000 events/s)

Record-Reexecute Approaches via Checkpointing

1. Feldman and Brown (IGOR, 1989): specific to C (modified compiler), custom debugger;
interpreter to move past checkpoint (140 times slowdown), single-threaded

2. Netzer and Weaver (1994): instrumentation of assembly code to note reads and writes on
Sparc; overhead of between 1.73 and 2.15 for non-interactive programs, single-threaded

3. Boothe (bdb, 2000): specific to C (modified compiler), record only system calls (like
DMTCP), custom debugger, single-threaded

4. Srinivasan, Kandula, Andrews, Zhou (Flashback, 2004): slow multi-threaded support,
no multi-core support

Novel Features of URDB:

• reverse expression watchpoint (name motivated by GDB ‘watch’ command and
‘expression watchpoint’ concept; reverse analogue of gdbsoftwarewatchpoints, but
much more efficient)

• Extension of familiar debugger (GDB, Python/pdb, ‘perl -d’, Matlab native debugger)

FReD for Deterministic Re-execution

FReD: Fast Reversible Debugger

(Fast due to fast checkpoint-restart by DMTCP.)

• Goal 1: Multi-core reversible debugging

– Multi-threadedreversible debugging exists via virtual machines (e.g. King, Dunlap,
Chen (ReVirt, 2005))

– Multi-core reversible debugging on commodity hardware does not exist(However,
cf. Dunlap, Lucchetti, Fetterman, Chen (ReVirt, 2008) for anapproach with
customized hardware)

– Patil et al. (PinPlay, 2010): based on PIN instrumentation of every assembly
instruction.(very slow! doesn’t take advantage of multi-core)

• Goal 2: “Gold Standard”: robust enough to debug real bugs in MySQL (highly
concurrent multithreading)

• Goal 3: Memory-accurate replay (same absolute addresses seen on re-execute)

Implementation: Logging of most system calls

Key Point: Fast lightweight loggging ofjust enoughto ensure determinism: anything
stronger than that would make it too slow

Implementation:Standard mechanisms like dlopen/dlsym allow one to add wrappers around
all library calls.

• Logging of all system calls that touch disk:Never touch disk on re-execute. (more on
that later)

• No need to save open files of program at checkpoint time — not needed during re-
execute.

• Log all calls for thread synchronization (mutex, semaphore, condition variables, etc.)

• Log all calls to malloc, free, etc. On re-execute, memory allocation calls must
be replayed in same order in order to guarantee memory-accuracy in multi-threaded
programs. (Note: These are not kernel system calls, but typically callsto run-time
library (libc.so).)

• Log all interrupts (Interrupt handlers could touch disk, allocate memory, etc.): Use
wrappers around creation of signal handlers (around call tosignal) to add our own signal
handlers around the user signal handlers.

Memory Accuracy for Reversible Debugging

Definition of memory accuracy: Absolute address of object at re-execute is same as on
original execution.

• Memory accuracy is easy for single-threaded programs, but. . .

• Note: With multiple threads, races possible among two malloc’s

• Importance:Consider trying to reversibly debug a linked list if the address of a link can
change when re-executing the same statement

• MySQL: variable address is part of random seed

Reversible Debugging as the Ultimate Bug Report

In order to replay a bugdeterministically, all one needs is the checkpoint file and the log.

NOTE: Even if a program manipulates large files on disk (e.g. MySQL), there is
no need to include those files in the bug report. System calls are replayed from the
log. So, files on disk are never used during replay.

Never Touch Disk on Re-execute

All system calls that would touch the disk are replayed directlywith no access to disk. This
is particularly important for disk-intensive programs such as MySQL.

Consequences:

1. The data on disk always represents the most recent version,even though we may be
travelling back in time.

2. Checkpoint and restart are much faster. (Imagine if the database files of MySQL had to
be saved at checkpoint time and restored at restart time.)

3. Re-execute can be even faster than native execution for disk-intensive programs.

4. There may still be some instances when saving and restoring database files is desirable,
along with accessing disk on re-execute. (What if one wishes to stop replay-mode in the
middle, and change the execution path: playing “What-if?” games.)

Work in Progress

What is the overhead of execution with logging, and of re-execute?

• Original execution: Fine tuning still in progress, but less than 80%on a 16-core
machine.

• Re-execute:Sometimes negative overhead in MySQL!(re-execute is faster than original
execution); This is because MySQL never touches the disk on replay.

What about copying the database files of MySQL on checkpoint/restart?

• Due to wrappers around system calls, there is no access to disk on re-execute. So, we
don’t really use the MySQL database files on re-execute. Hence, no need to save and
restore them.

What about Firefox and Apache?

• Work in Progress

Future Work (Near Term)

SPECULATION: By the end of this decade,diagnosing
run-time errors will be almost as painless as diagnosing
compile-time errors.

• A simple memory checker based on reverse expression watchpoints(see following)

• A deadlock resolver: Deadlock is detected. When was a deadlockcycle first created (in
some resource graph)?

Future Work: Memory Checker I

Writing past end of memory buffer: At the time of deallocation (free), the bad write is
detected. When did the bad write occur?

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

overwrite is discoveredERROR:
free/delete:

guard bits overwritten

malloc/new:

guard bits

user overwrites guard bufferFAULT:

Future Work: Memory Checker II

Double free: The second deallocation (free) is detected. When was the first deallocation?

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

FAULT: unintended free

17

GENERATION

91

4242

17

malloc/new:

guard bits

ERROR: previous free discovered
free/delete (again):

91

WAS: 42 (search backwards for 42)

17

free/delete:

Future Work (Medium Term)

SPECULATION: By the end of this decade,diagnosingrun-time errors will be
almost as painless as diagnosing compile-time errors.

• Bisimulation: Many scripting languages (Python, Matlab, Javascript, etc.) have
incomplete compilers. (For example, a compiler assumees a variable is an integer. The
assumption is violated. The program breaks.) Bisimulation cansearch backwardsfor
the first time where the user variables in the interpreter and compiler first diverged.

• Haskell reversible debugger: Haskell supports lazy evaluation; But a debugger that
inspects the internal state will trigger lazy evaluation. This permanently changes the
internal state. A reversible debugger based on checkpointing solves this.

• Reversible honey pot for malware: DMTCP mayquicklycheckpoint a virtual machine
(e.g. user-space Qemu); Malware tries to hide from external observers.FReD can back
up If the malware detects that it is being observed. FReD can modify external inputs
(time, internet socket), and then pass the expected information to the virtual machine.

• Checking distributed invariants: When does a distributed invariant fail? (Note that
DMTCP provides a ”consistent snapshot” in the sense of Lamport: freeze each process,
and then take snapshot.) Error: distributed invariant has failed; Fault: when was it about
to fail? (Work applies to multi-threaded, or distributed applications; Finding cause of
deadlock is a simple use case.)

Future Work (Medium Term, cont.)

SPECULATION: By the end of this decade,diagnosingrun-time errors will be
almost as painless as diagnosing compile-time errors.

PROGRAM SUPPORT

• True Exceptions:When a program raises an exception, revert to previous program state
(revert global variable values, revert open files, etc.)

• Helpful Assert Statements:When an assert statement triggers, call reverse-watch on the
condition in the “assert” statement to find the precise point inthe program when the
condition was violated.(requires running under debugger)

Future Work (Long Term)

SPECULATION: By the end of this decade,diagnosing
run-time errors will be almost as painless as diagnosing
compile-time errors.

• Provenance of Variable Values:What does the variable depend on? How was this
variable value created? IDEA: Go back in time to when the variablewas last changed.
(But there are difficulties. Suppose the variable was switching frequently between 0
and 1? Considerif (a); x = y; else x = z; . Doesx depend ony , z , a, or all
three?)

• Algorithmic Debugging:Algorithmic debugging is an old idea (1980s and 1990s) from
functional languages. In combination with a reversible debugger, this could be re-
visited.
The computation offoo(10) depends on the computation ofbar(20) andbaz(100) .
The user says that the answer fromfoo(10) is wrong. So, ask the user whether the
answer frombar(20) or baz(100) is wrong.

• Can some ideas from Algorithmic Debugging and from Provenance be combined to
handle non-functional languages?

Ongoing Issue: Strong Determinism

• Definition: Weak determinism: fully synchronized programs run deterministically.

• Definition: Strong determinism: Unprotected access to shared variables (without a
lock around the access) is also deterministic.

We don’t handle strong determinism.But, one suggestive methodology is to detect
and document all unprotected shared memory accesses (e.g. document all ad hoc thread
parallelism). Then add a phantom event to be logged around each access to a shared variable,
and replay deterministically from the log. Further work is needed.

Some Other Areas of Current Research

1. “Multithreaded Geant4: Semi-automatic Transformation into Scalable Thread-Parallel
Software”, Xin Dong, Gene Cooperman and John Apostolakis, Euro-Par 2010
(outgrowth of ten-year collaboration with the Geant4 team at CERN (high energy
physics); Geant4 is a million-line program; Geant4MT (Geant4-MultiThreaded) to soon
be offered in beta release)

2. Newer collaboration on MADNESS (Multiresolution ADaptive NumErical Scientific
Simulation), http://www.csm.ornl.gov/ccsg/html/projects/madness. html ,
computational chemistry project led by Robert Harrison, Oak Ridge National
Laboratory

• Extension of earlier work on Roomy and Big Data:
Roomy,roomy.sourceforge.net , Daniel Kunkle;
“Solving Rubik’s Cube: Disk is the New RAM” (ACM Viewpoint), Daniel Kunkle
and Gene Cooperman, ACM Commmunications

• Discussions on a distributed FReD for debugging over Infinibandclusters (DMTCP
currently being extended to handle Infiniband)

http://www.csm.ornl.gov/ccsg/html/projects/madness.html
roomy.sourceforge.net

QUESTIONS?

THANKS TO THE MANY STUDENTS WHO HAVE CONTRIBUTED TO
DMTCP, URDB, AND FRED OVER THE LAST SEVEN YEARS:

Jason Ansel, Kapil Arya, Alex Brick, Tyler Denniston, Xin Dong, Gregory Kerr,
Artem Y. Polyakov, Michael Rieker, Praveen S. Solanki, Ana-Maria Visan

QUESTIONS?

