
Computer Systems Fall, 2022
CS5600 Professor G. Cooperman
http://www.ccs.neu.edu/course/cs5600/

Course Description:

THIS IS A SYLLABUS FROM 2022. IT HAS NOT YET BEEN UPDATED TO
2025.

Computer Systems discusses computers as an integrated whole, including: hardware re-
sources (e.g., CPU cores, CPU cache, memory management unit (MMU), RAM); and systems
languages. The systems languages to be emphasized here are: assembly language, C (the low-level
high-level language), basic GNU libc routines (system calls), POSIX threads, the shell (the original
UNIX scripting language), and Python (the de facto scripting language of today). Tying all of
this together is the operating system, which provides software abstractions (aka programmer’s
models) for the hardware resources.

The course will begin with a “sink-or-swim” exercise to demonstrate the heart of computer
systems. (However, if you “sink” on the first try, you will have generous opportunities to re-submit
and succeed in “swimming”.) The exercise concerns the creation of a new capability that could not
be easily developed solely through traditional programming languages. The exercise is for you to
develop your own small transparent checkpointing package. Class lectures in the first two weeks
will be used to provide the conceptual background (“programmer’s model”) for developing new
features using non-traditional capabilities of the Linux operating system.

The course assumes as prerequisites a knowledge of: the C language, including pointers; and
the ability to use Linux system calls such as open(), read(), write(), dup(), fork(), and

execvp(). (The “spec” for how to use these calls can be found via man 2: for example, man 2 open

in Linux. Linux and close analogs can be found through ssh login.ccs.neu.edu in the Khoury
College, and on WSL on Windows, and on the macOS Terminal.

Since the first class is only on Friday, please read in advance Chapters 4 and 5 (Processes and
Process API) in ostep.org: https://pages.cs.wisc.edu/ remzi/OSTEP/ .

The first day of the course will rapidly review the prerequisites, above, and then devote the
rest of of the class to the goal of individually writing your own transparent checkpointing package
in the first two weeks. This will allow students to assess, early, if they have the prerequisites or can
make up the necessary prerequisites, in order to be successful in this course.

The first class will also review in detail the concept of processes from the required readings in
ostep.org. The course will then continue to higher-level that concepts will be built on top of this.
At the heart of an operating system is a process table. It provides an abstraction for a process
running on a CPU core. A process can be thought of as a running program: code plus data.

Finally, on the course homeworks, I encourage students to share ideas orally, and even to share
small excerpts of code. (Students often learn best from other students.) But the final coding for
the homework must be completely individually. Further, consulting the Internet for ideas is allowed
only in the case of text-based articles in English, or another natural language, but you may not use
any code from the Internet outside of course materials.

Any violations of the course policy on academic integrity will be dealt with strictly.



Faculty Information:
Professor G. Cooperman
Office: 336 West Village H
e-mail: gene@ccs.neu.edu
Phone: (617) 373-8686
Office Hours: Tues. and Fri., – 5:15 - 6:30 (after class); and by appointment.

Textbook:

ONLINE RESOURCES:
Operating Systems: Three Easy Pieces: http://www.ostep.org

MIPS Assembly Language Programming Using QtSpim:
http://www.egr.unlv.edu/∼ed/mips.html (re-type the tilde in ∼ed)

The Little Book of Semaphores:
https://greenteapress.com/wp/semaphores/

UNIX/XV6 SOURCE CODE:
http://pdos.csail.mit.edu/6.828/2014/xv6/xv6-rev8.pdf

Exams and Grades:

There will be approximately seven homework assignments over the semester, plus a midterm
and a final. They will be weighted 40% for the final, 30% for the midterm, and 30% for the
homework. All homework assignments will be weighted equally. If sufficient grading resources are
not available to the course, then the actual assignments graded may be a subset of those assigned,
and the homework grade will be based on an equal weighting of those that are graded.

Schedule:

Week Topics Chapter
Sept. 9 Introduction, UNIX Process Table Ch. 1–4
Sept. 12 Processes; fd’s Ch. 2.1–2.8, 2.10
Sept. 19 UNIX syscalls; UNIX shell: fork/exec/wait, fd’s class lectures, ostep.org: Ch. 5, 39.1-39.4
Sept. 26 Assembly/Machine Language; symbol table online resources:

Appendix A.6, A.9, A.10, and green card
Oct. 3 Cache (direct mapped, set assoc., fully assoc.) ostep.org: Ch. 14, class lectures
Oct. 17 Cache, Virtual Memory & MMU/TLB ostep.org: Ch. 15, 18, 19
Oct. 24 File system ostep.org: TBD
Oct. 31 UNIX source code; virt. mem. page tables xv6: proc.h, proc.c, vm.c
Oct. 31 Virtual Memory page tables (cont.); Mid-term
Nov. 7 Midterm; Intro. to POSIX threads class lectures
Nov. 14 Basics of POSIX threads (mutex, semaphore) ostep.org: Ch. 26, 27, 28

condition variables, read-write locks
Nov. 21 Process synchronization, locks (mutex, semaphore), ostep.org: Ch. 30, 31
Nov. 28 Model checking of multi-threaded programs
Dec. 5 Finish model checking and threads; review for final (Friday is the last day of class.)
Dec. 13 First possible day of Final Exams (in-class)


