QUESTION: Now provide an example with a data block of 8 bytes
and 4 cache lines, but use example memory addresses aligned to 4
bytes, instead of A ;B,C,D,E. Also, explain how the tag is derived
from the address. (To Google Gemini, Oct. 15, 2025)

That’s a much more realistic example. Let’s use memory addresses
that are aligned to the 8-byte block size and explicitly show how the
address is split into the Tag and Block Offset for this fully associative
cache.

Fully Associative Cache Example (4-Byte Aligned
Hex Addresses)

This example uses a fully associative cache with 4 lines, 8-byte blocks, and the
Least Recently Used (LRU) replacement policy. The CPU performs 4-byte
accesses, but the cache always loads/evicts 8-byte blocks.

Address Breakdown and Tag Derivation

For an 8-byte block, the Block Offset uses the lowest 3 bits of the address

(log,(8) = 3 bits). The Tag is the remainder, which identifies the 8-byte memory
block.

Value for Value for
Address Field Bits (Position) Address 0xC Address 0x10
Tag (Block 31 down to 3 0x1 (From 0x2 (From
Identifier) 0xC = 0x10 =

0001 100,) 0010 000,)
Block Offset 2 down to 0 100, (4) 000, (0)
(Byte within
Block)
Full Address 31 down to 0 0xC (12) 0x10 (16)
(Hex)

Memory Access Trace

The initial state has all 4 lines (L0-L3) as Invalid (V = 0). (Note that MRU
refers to the cache line currently most recently used, and LRU refers to the

cache line currently least recently used.)

Full Block Eviction Final LRU
Address Block Tag Action (If State
Step Access (Hex) Offset (Hex) Hit/Miss Miss) Change
1 Read 0x8 000, 0x1 Miss Load block L3 =1
0x1 (0x8 to (MRU)
0xF) into L3.

2 Read 0xC 100, 0x1 Hit Match on L3 =1

Tag = 0x1 in
L3.

3 Read 0x10 000, 0x2 Miss Load block L2 —-1,L3
0x2 (0x10 to —2
0x17) into L2.

4 Write 0x1C 1004 0x3 Miss Load block L1 —1,L2
0x3 (0x18 to —2,L3
0x1F) into L1, —3

set M =1.

5 Read 0x20 0004 0x4 Miss Load block Lo —1,L1
0x4 (0x20 to —2,L2
0x27) into LO. — 3, L3
(Cache is full) — 4 (LRU)

6 Read 0x28 000, 0x5 Miss Evict L3 L3 =1

(Tag 0x1,
M=0). Load
block 0x5.

7 Read 0x14 100, 0x2 Hit Match on L2 —-1,L3
Tag = 0x2 in — 2, L0

L2. Update — 3, L1
LRU state. — 4 (LRU)
8 Write 0x30 000, 0x6 Miss Evict L1 L1 —1
(Tag 0x3,
M=1).
Write-back
0x3. Load

block 0x6.

Final Cache State (After Step 8)

Line Tag (Hex) Valid (V) Modified (M) LRU Rank (1I=MRU, 4=LRU)

L0 0x4 1 0 3
L1 0x6 1 1 1 (MRU)
L2 0x2 1 0 2
L3 0x5 1 0 4 (LRU)

Key Eviction Detail (Step 8)

The LRU line L1 was chosen for replacement. Because its Modified bit (M)
was 1 (containing Tag = 0x3), a write-back of the modified 8-byte block
(addresses 0x18 to 0x1F) to main memory was required before the new block
(Tag = 0x6) was loaded. This is the function of the Modified bit under a write-
back policy.

	Fully Associative Cache Example (4-Byte Aligned Hex Addresses)
	🧠 Address Breakdown and Tag Derivation
	📝 Memory Access Trace
	Final Cache State (After Step 8)
	Key Eviction Detail (Step 8)

