
QUESTION: Now provide an example with a data block of 8 bytes
and 4 cache lines, but use example memory addresses aligned to 4
bytes, instead of A,B,C,D,E. Also, explain how the tag is derived
from the address. (To Google Gemini, Oct. 15, 2025)

That’s a much more realistic example. Let’s use memory addresses
that are aligned to the 8-byte block size and explicitly show how the
address is split into the Tag and Block Offset for this fully associative
cache.

Fully Associative Cache Example (4-Byte Aligned
Hex Addresses)

This example uses a fully associative cache with 4 lines, 8-byte blocks, and the
Least Recently Used (LRU) replacement policy. The CPU performs 4-byte
accesses, but the cache always loads/evicts 8-byte blocks.

� Address Breakdown and Tag Derivation

For an 8-byte block, the Block Offset uses the lowest 3 bits of the address
(log2(8) = 3 bits). The Tag is the remainder, which identifies the 8-byte memory
block.

Address Field Bits (Position)
Value for
Address 0xC

Value for
Address 0x10

Tag (Block
Identifier)

31 down to 3 0x1 (From
0xC =
0001 1002)

0x2 (From
0x10 =
0010 0002)

Block Offset
(Byte within
Block)

2 down to 0 1002 (4) 0002 (0)

Full Address
(Hex)

31 down to 0 0xC (12) 0x10 (16)

� Memory Access Trace

The initial state has all 4 lines (L0-L3) as Invalid (𝑉 = 0). (Note that MRU
refers to the cache line currently most recently used, and LRU refers to the

1



cache line currently least recently used.)

Step Access

Full
Address
(Hex)

Block
Offset

Block
Tag

(Hex) Hit/Miss

Eviction
Action (If

Miss)

Final LRU
State

Change
1 Read 0x8 0002 0x1 Miss Load block

0x1 (0x8 to
0xF) into L3.

L3 → 1
(MRU)

2 Read 0xC 1002 0x1 Hit Match on
Tag = 0x1 in

L3.

L3 → 1

3 Read 0x10 0002 0x2 Miss Load block
0x2 (0x10 to
0x17) into L2.

L2 → 1, L3
→ 2

4 Write 0x1C 1002 0x3 Miss Load block
0x3 (0x18 to
0x1F) into L1,

set M = 1.

L1 → 1, L2
→ 2, L3

→ 3

5 Read 0x20 0002 0x4 Miss Load block
0x4 (0x20 to
0x27) into L0.
(Cache is full)

L0 → 1, L1
→ 2, L2
→ 3, L3

→ 4 (LRU)
6 Read 0x28 0002 0x5 Miss Evict L3

(Tag 0x1,
M=0). Load

block 0x5.

L3 → 1

7 Read 0x14 1002 0x2 Hit Match on
Tag = 0x2 in
L2. Update
LRU state.

L2 → 1, L3
→ 2, L0
→ 3, L1

→ 4 (LRU)
8 Write 0x30 0002 0x6 Miss Evict L1

(Tag 0x3,
M=1).

Write-back
0x3. Load
block 0x6.

L1 → 1

2



Final Cache State (After Step 8)

Line Tag (Hex) Valid (𝑉 ) Modified (𝑀) LRU Rank (1=MRU, 4=LRU)
L0 0x4 1 0 3
L1 0x6 1 1 1 (MRU)
L2 0x2 1 0 2
L3 0x5 1 0 4 (LRU)

Key Eviction Detail (Step 8)

The LRU line L1 was chosen for replacement. Because its Modified bit (𝑀)
was 1 (containing Tag = 0x3), a write-back of the modified 8-byte block
(addresses 0x18 to 0x1F) to main memory was required before the new block
(Tag = 0x6) was loaded. This is the function of the Modified bit under a write-
back policy.

3


	Fully Associative Cache Example (4-Byte Aligned Hex Addresses)
	🧠 Address Breakdown and Tag Derivation
	📝 Memory Access Trace
	Final Cache State (After Step 8)
	Key Eviction Detail (Step 8)



