
QUESTION: Describe a fully associative CPU cache. Include the
valid and modified bits and the cases of read or write to memory and
the LRU replacement algorithm for eviction. (To Google Gemini,
Oct. 15, 2025)

You want me to convert the previous detailed description of a fully
associative CPU cache into a clean, well-formatted Markdown
response. Here is the formatted description:

Fully Associative CPU Cache

A fully associative CPU cache is a cache organization where a memory
block can be placed in any cache line (or “slot”). This provides maximum
flexibility and virtually eliminates “conflict misses” that are common in other
cache types (like direct-mapped). The entire cache operates as a single, large
set.

The cache consists of:

• A data array to store the actual data blocks.

• A tag array where each cache line stores the full address tag of the main
memory block it holds, since the line number (index) cannot be derived
from the address.

Cache Line Status Bits

Each cache line must store status bits to manage its state:

• Valid Bit (𝑉 ): Indicates if the cache line contains valid data (𝑉 = 1) or
if it’s empty or the data is stale (𝑉 = 0).

• Modified/Dirty Bit (𝑀 or 𝐷): Used with a write-back policy. If
𝑉 = 1, this bit shows whether the data in the cache line has been modified
by the CPU (𝑀 = 1). If it’s modified, it must be written back to main
memory before being evicted. If 𝑀 = 0, the cache copy is clean.

1



Read and Write Operations

1. CPU Read Request

1. Search (Hit Check): The cache compares the requested Tag against
the Tag in every cache line simultaneously.

2. Read Hit: If a Tag matches AND 𝑉 = 1, the data is retrieved using the
Block Offset. The LRU state for the line is updated to Most Recently
Used (MRU).

3. Read Miss: If no match is found, the block must be fetched from main
memory.

• Eviction: A victim line is chosen using the LRU algorithm.
• Write-Back Check: If the victim line has 𝑀 = 1, its data is first

written back to main memory.
• Load: The new block is loaded into the victim line. The line’s status

is set to 𝑉 = 1 and 𝑀 = 0. The LRU state is updated.

2. CPU Write Request

1. Search (Hit Check): The cache compares the requested Tag against
the Tag in every cache line.

2. Write Hit: If a Tag matches, the data in the cache line is updated. The
Modified bit (𝑀) is set to 1. The LRU state is updated. The actual
write to main memory is deferred (write-back policy).

3. Write Miss: If no match is found:
• Write-Allocate Policy: The block is first fetched from memory

(like a read miss), loaded into a victim line, and then updated (as in
a write hit).

• No-Write-Allocate Policy: The data is written directly to main
memory, bypassing the cache.

LRU Replacement Algorithm

The Least Recently Used (LRU) algorithm is the most common policy for
a fully associative cache, aiming to maximize the cache hit rate by leveraging
temporal locality.

• Goal: On a cache miss when all lines are valid, the line chosen for eviction
is the one that has been unaccessed for the longest period of time.

• Implementation Challenge: For a fully associative cache with 𝑁 lines,
tracking the absolute usage order is complex and costly in hardware. Each
access must update the state of the LRU tracking for all 𝑁 lines.

2



• Practical Use: Due to the complexity of hardware implementation (e.g.,
linked lists), true LRU is typically only implemented in very small fully
associative caches (like TLBs). Larger associative caches often use simpler,
less accurate approximations, such as Pseudo-LRU (PLRU), to reduce
the hardware overhead.

3


	Fully Associative CPU Cache
	Cache Line Status Bits
	Read and Write Operations
	1. CPU Read Request
	2. CPU Write Request

	LRU Replacement Algorithm


