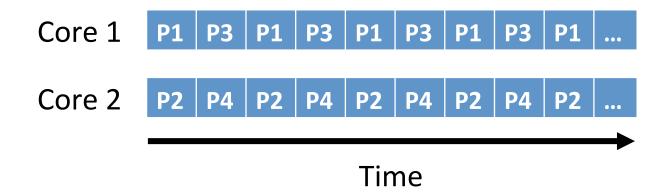
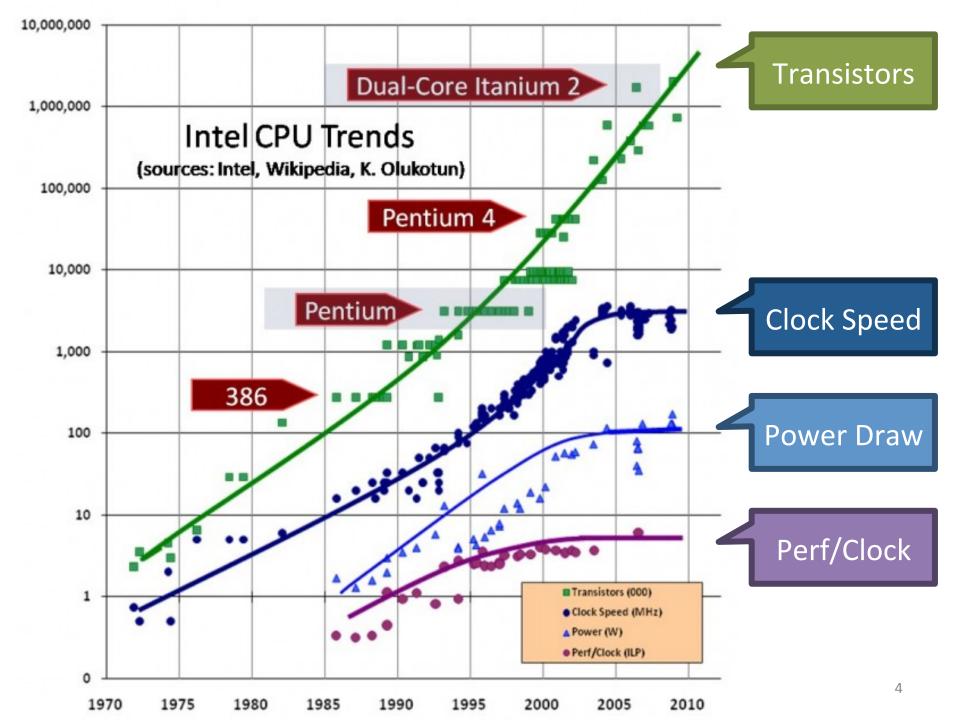

CS 5600 Computer Systems

Lecture 5: Synchronization, Deadlock


- Motivating Parallelism
- Synchronization Basics
- Types of Locks and Deadlock

Concurrency vs. Parallelism


Concurrent execution on a single-core system:

Parallel execution on a dual-core system:

3

Implications of CPU Evolution

- Increasing transistor count/clock speed
 - Greater number of tasks can be executed concurrently
- However, clock speed increases have essentially stopped in the past few years
 - Instead, more transistors = more CPU cores
 - More cores = increased opportunity for parallelism

Two Types of Parallelism

- Data parallelism
 - Same task executes on many cores
 - Different data given to each task
 - Example: MapReduce
- Task parallelism
 - Different tasks execute on each core
 - Example: any high-end videogame
 - 1 thread handles game AI
 - 1 thread handles physics
 - 1 thread handles sound effects
 - 1+ threads handle rendering

Amdahl's Law

- Upper bound on performance gains from parallelism
 - If I take a single-threaded task and parallelize it over N CPUs, how much more quickly will my task complete?
- Definition:
 - S is the fraction of processing time that is serial (sequential)
 - N is the number of CPU cores

Speedup
$$\leq 1/S + (1-S)/N$$

Example of Amdahl's Law

- Suppose we have an application that is 75% parallel and 25% serial
 - -1 core: 1/(.25+(1-.25)/1) = 1 (no speedup, obviously)
 - -2 core: 1/(.25+(1-.25)/2) = 1.6
 - -4 core: 1/(.25+(1-.25)/4) = 2.29
- What happens as $N \rightarrow \infty$?
 - Speedup $\leq 1/S+(1-S)/N$
 - Speedup approaches 1/S
 - The serial portion of the process has a disproportionate effect on performance improvement

Limits of Parallelism

- Amdahl's Law is a simplification of reality
 - Assumes code can be cleanly divided into serial and parallel portions
 - In other words, trivial parallelism
- Real-world code is typically more complex
 - Multiple threads depend on the same data
 - In these cases, parallelism may introduce errors
- Real-world speedups are typically < what is predicted by Amdahl's Law

- Motivating Parallelism
- Synchronization Basics
- Types of Locks and Deadlock

The Bank of Lost Funds

- Consider a simple banking application
 - Multi-threaded, centralized architecture
 - All deposits and withdrawals sent to the central server

```
class account {
    private money_t balance;
    public deposit(money_t sum) {
       balance = balance + sum;
    }
}
```

 What happens if two people try to deposit money into the same account at the same time?

```
balance = balance + sum;
mov eax, balance
mov ebx, sum
add eax, ebx
mov balance, eax
                                      balance
                                        $50
                                                      eax = $100
                     eax = $50
                      Thread 1
                                                      Thread 2
                deposit ($50)
                mov eax, balance
                mov ebx, sum
                                                 deposit ($100)
                               Context Switch
                                                 mov eax, balance
                                                 mov ebx, sum
                                                 add eax, ebx
                                                 mov balance, eax
                                         Context Switch
                 add eax, ebx
                 mov balance, eax
```

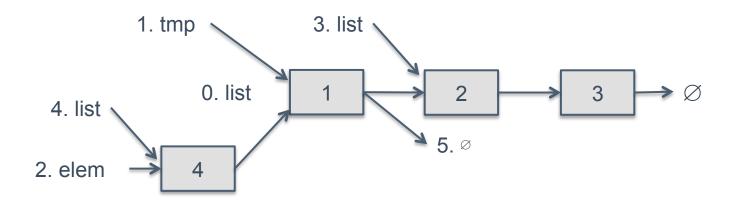
Race Conditions

- The previous example shows a race condition
 - Two threads "race" to execute code and update shared (dependent) data
 - Errors emerge based on the ordering of operations, and the scheduling of threads
 - Thus, errors are nondeterministic

Example: Linked List

```
elem = pop(&list):
    tmp = list
    list = list->next
    tmp->next = NULL
    return tmp
```

```
push(&list, elem):
    elem->next = list
    list = elem
```

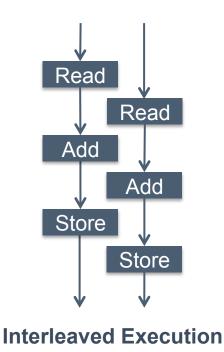

 What happens if one thread calls pop(), and another calls push() at the same time?

Thread 1

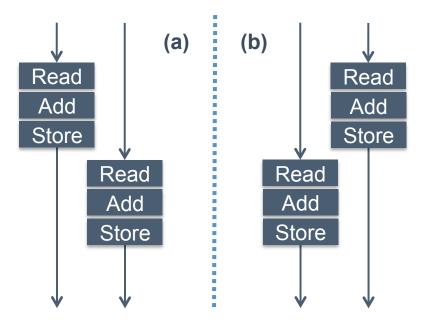
- 1. tmp = list
- 3. list = list->next
- 5. tmp->next = NULL

Thread 2

- 2. elem->next = list
- 4. list = elem



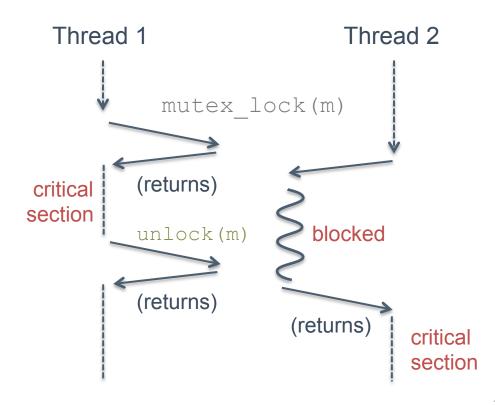
Critical Sections


- These examples highlight the critical section problem
- Classical definition of a critical section:
 - "A piece of code that accesses a shared resource that must not be concurrently accessed by more than one thread of execution."
- Two problems
 - Code was not designed for concurrency
 - Shared resource (data) does not support concurrent access

Atomicity

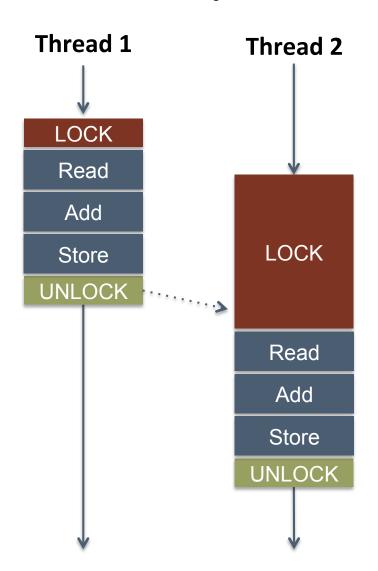
 Race conditions lead to errors when sections of code are interleaved

 These errors can be prevented by ensuring code executes atomically



Non-Interleaved (Atomic) Execution

Mutexes for Atomicity


 Mutual exclusion lock (mutex) is a construct that can enforce atomicity in code

```
m = mutex_create();
...
mutex_lock(m);
// do some stuff
mutex_unlock(m);
```


Fixing the Bank Example

```
class account {
  mutex m;
  money_t balance
  public deposit(money t sum) {
    m.lock();
    balance = balance + sum;
    m.unlock();
```


Implementing Mutual Exclusion

- Typically, developers don't write their own locking-primitives
 - You use an API from the OS or a library
- Why don't people write their own locks?
 - Much more complicated than they at-first appear
 - Very, very difficult to get correct
 - May require access to privileged instructions
 - May require specific assembly instructions
 - Instruction architecture dependent

Mutex on a Single-CPU System

```
void lock_acquire(struct lock * lock) {
    sema_down(&lock->semaphore);
    lock->holder = thread_current();
}
```

```
void sema_down(struct semaphore * sema) {
    enum intr_level old_level;
    old_level = intr_disable();
    while (sema->value == 0) { /* wait */ }
    sema->value--;
    intr_level(old_level);
}
```

- On a single-CPU system, the only preemption mechanism is interrupts
 - If interrupts are disabled, the currently executing code is guaranteed to be atomic
- This system is concurrent, but not parallel

The Problem With Multiple CPUs

- In a multi-CPU (SMP) system, two or more threads may execute in parallel
 - Data can be read or written by parallel threads, even if interrupts are disabled

sema->value = 1

CPU 1 - Thread 1

```
sema_down() {
   while (sema->value == 0) { ... }
   sema->value--;
}
```

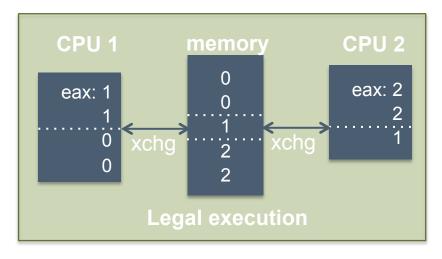
CPU 2 - Thread 2

```
sema_down() {
   while (sema->value == 0) { ... }
   sema->value--;
}
```

Instruction-level Atomicity

- Modern CPUs have atomic instruction(s)
 - Enable you to build high-level synchronized objects
- On x86:
 - The lock prefix makes an instruction atomic

```
lock inc eax; atomic increment lock dec eax; atomic decrement
```


- Only legal with some instructions
- The xchg instruction is guaranteed to be atomic xchg eax, [addr]; swap eax and the value in memory

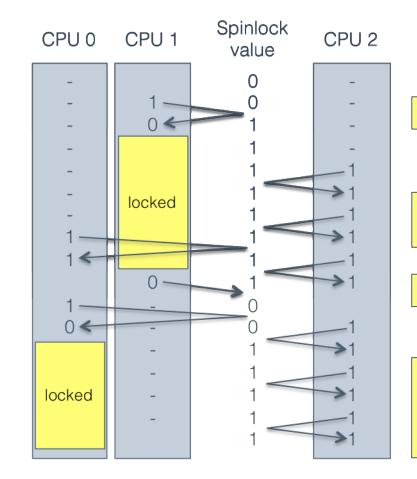
Behavior of xchg

Non-Atomic xchg

cPU 1 memory CPU 2 eax: 1 0 0 xchg 1 1 1 Illegal execution

Atomic xchg

 Atomicity ensures that each xchg occurs before or after xchgs from other CPUs


Building a Spin Lock with xchg

spin_lock:

mov eax, 1
xchg eax, [lock_addr]
test eax, eax
jnz spin_lock

spin_unlock:

mov [lock_addr], 0

CPU 1 locks.

CPUs 0 and 2 both try to lock, but cannot.

CPU 1 unlocks.

CPU 0 locks, simply because it requested it *slightly* before CPU 2.

Building a Multi-CPU Mutex

```
typedef struct mutex struct {
   int spinlock = 0; // spinlock variable
   int locked = 0;  // is the mutex locked? guarded by spinlock
   queue waitlist; // waiting threads, guarded by spinlock
} mutex;
void mutex lock(mutex * m) {
   spin lock(&m->spinlock);
   if (!m->locked) {
       m->locked = 1;
       spin unlock(&m->spinlock);
    } else {
       m->waitlist.add(current process);
       spin unlock(&m->spinlock);
       vield();
       // wake up here when the mutex is acquired
    }
```

Building a Multi-CPU Mutex

```
typedef struct mutex struct {
   int spinlock = 0; // spinlock variable
   int locked = 0;  // is the mutex locked? guarded by spinlock
   queue waitlist; // waiting threads, guarded by spinlock
} mutex;
void mutex unlock(mutex * m) {
   spin lock(&m->spinlock);
   if (m->waitlist.empty()) {
       m->locked = 0;
       spin unlock(&m->spinlock);
   } else {
       next thread = m->waitlist.pop from head();
       spin unlock(&m->spinlock);
       wake(next thread);
```

Compare and Swap

- Sometimes, literature on locks refers to compare and swap (CAS) instructions
 - CAS instructions combine an xchg and a test
- On x86, known as compare and exchange

```
spin_lock:

mov ecx, 1

mov eax, 0

lock cmpxchg ecx, [lock_addr]

jnz spinlock
```

- cmpxchg compares eax and the value of lock_addr
- If eax == [lock addr], swap ecx and [lock addr]

The Price of Atomicity

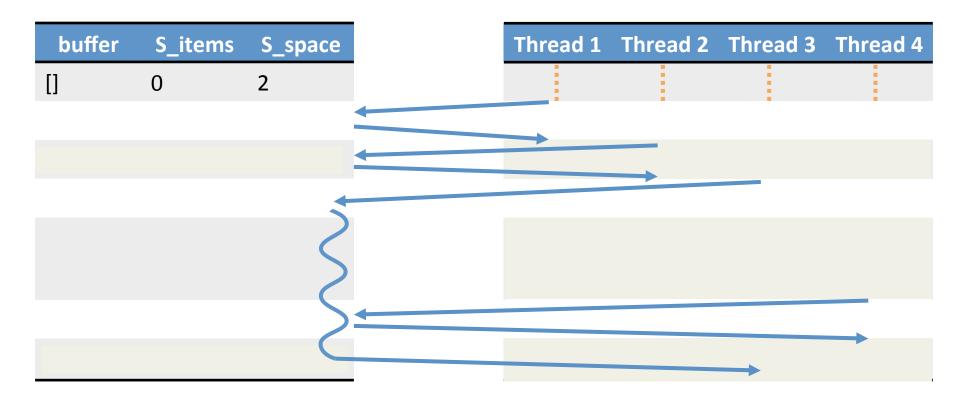
- Atomic operations are very expensive on a multi-core system
 - Caches must be flushed
 - CPU cores may see different values for the same variable if they have out-of-date caches
 - Cache flush can be forced using a memory fence (sometimes called a memory barrier)
 - Memory bus must be locked
 - No concurrent reading or writing
 - Other CPUs may stall
 - May block on the memory bus or atomic instructions

- Motivating Parallelism
- Synchronization Basics
- Types of Locks and Deadlock
- Lock-Free Data Structures

Other Types of Locks

- Mutex is perhaps the most common type of lock
- But there are several other common types
 - Semaphore
 - Read/write lock
 - Condition variable
 - Used to build monitors

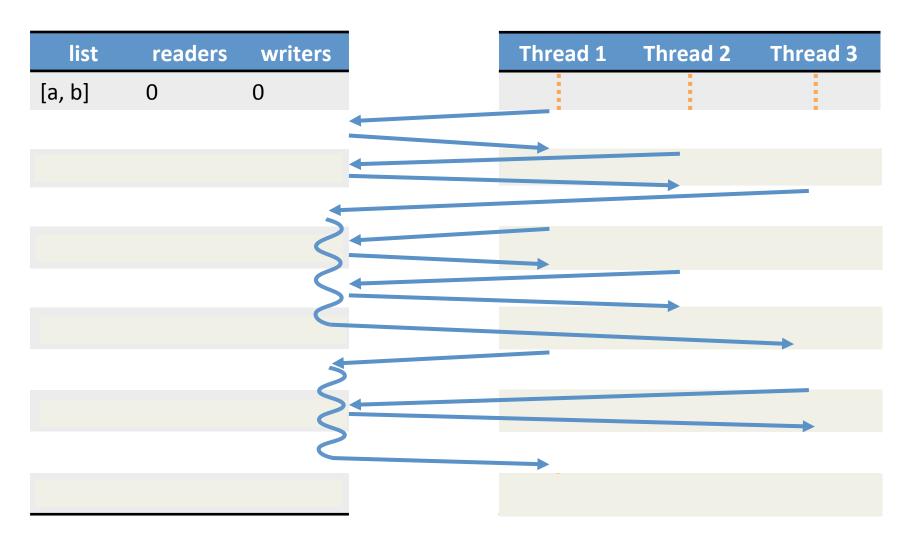
Semaphores


- Generalization of a mutex
 - Invented by Edsger Dijkstra
 - Associated with a positive integer N
 - May be locked by up to N concurrent threads
- Semaphore methods
 - wait() if N > 0, N--; else sleep
 - signal() if waiting threads > 0, wake one up; else N++

The Bounded Buffer Problem

- Canonical example of semaphore usage
 - Some threads produce items, add items to a list
 - Some threads consume items, remove items from the list
 - Size of the list is bounded

```
class semaphore bounded buffer:
 mutex
  list buffer
  semaphore S space = semaphore(N)
  semaphore S items = semaphore(0)
                                       get():
 put(item):
                                            S items.wait()
      S space.wait()
                                           m.lock()
     m.lock()
                                            result = buffer.remove head()
     buffer.add tail(item)
                                           m.unlock()
     m.unlock()
                                            S space.signal()
      S items.signal()
                                            return result
                                                                      32
```


Example Bounded Buffer

Read/Write Lock

- Sometimes known as a shared mutex
 - Many threads may hold the read lock in parallel
 - Only one thread may hold the write lock at a time
 - Write lock cannot be acquired until all read locks are released
 - New read locks cannot be acquired if a writer is waiting
- Ideal for cases were updates to shared data are rare
 - Permits maximum read parallelization

Example Read/Write Lock

When is a Semaphore Not Enough?

```
class weighted bounded buffer:
 mutex
  list
            buffer
            totalweight
  int
get(weight):
  while (1):
    m.lock()
    if totalweight >= weight:
      result = buffer.remove head()
      totalweight -= result.weight
      m.unlock()
      return result
    else:
      m.unlock()
      yield()
```

```
put(item):
    m.lock()
    buffer.add_tail(item)
    totalweight += item.weight
    m.unlock()
```

- No guarantee the condition will be satisfied when this thread wakes up
- Lots of useless looping :(

- In this case, semaphores are not sufficient
 - weight is an unknown parameter
 - After each put(), totalweight must be checked

Condition Variables

- Construct for managing control flow amongst competing threads
 - Each condition variable is associated with a mutex
 - Threads that cannot run yet wait() for some condition to become satisfied
 - When the condition is satisfied, some other thread can signal() to the waiting thread(s)
- Condition variables are not locks
 - They are control-flow managers
 - Some APIs combine the mutex and the condition variable, which makes things slightly easier

Condition Variable Example

```
class weighted bounded buffer:
 mutex
  condition c
  list
            buffer
  int
            totalweight = 0
            neededweight = 0
  int
get(weight):
 m.lock()
  if totalweight < weight:</pre>
    neededweight += weight
    c.wait(m)
 neededweight -= weigh
  result = buffer.remove hea
  totalweight -= result.weight
 m.unlock()
  return result
```

```
put(item):
    m.lock()
    buffer.add_tail(item)
    totalweight += item.weight
    if totalweight >= neededweight
        and neededweight > 0:
        c.signal(m)
    else:
        m.unlock()
```

- signal() hands the locked mutex to a waiting thread
- wait() unlocks the mutex and blocks the thread
- When wait() returns, the mutex is locked
- In essence, we have built a construct of the form:
 wait until(totalweight >= weight)

Monitors

- Many textbooks refer to monitors when they discuss synchronization
 - A monitor is just a combination of a mutex and a condition variable
- There is no API that gives you a monitor
 - You use mutexes and condition variables
 - You have to write your own monitors
 - In OO design, you typically make some user-defined object a monitor if it is shared between threads
- Monitors enforce mutual exclusion
 - Only one thread may access an instance of a monitor at any given time
 - synchronized keyword in Java is a simple monitor

Be Careful When Writing Monitors

Original Code

```
get(weight):
  m.lock()
  if totalweight < weight:</pre>
    neededweight += weight
    c.wait(m)
  neededweight -= weight
  result = buffer.remove head()
  totalweight -= result.weight
  m.unlock()
  return result
put(item):
  m.lock()
  buffer.add tail(item)
  totalweight += item.weight
  if totalweight >= neededweight
          and neededweight > 0:
    c.signal(m)
  else:
    m.unlock()
```

Modified Code

```
get(weight):
    m.lock()
    if totalweight < weight:
        neededweight += weight
        c.wait(m)

    result = buffer.remove_head()
    totalweight -= result.weight
    m.unlock()
    return result</pre>
```

Incorrect! The mutex is not locked at this point in the code

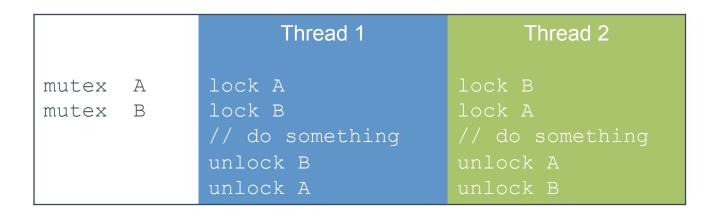
Pthread Synchronization API

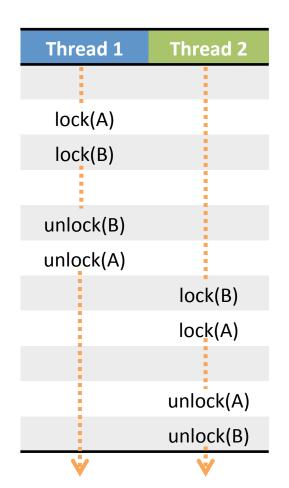
Mutex

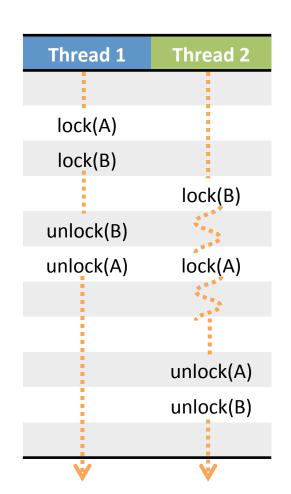
```
pthread_mutex_t m;
pthread_mutex_init(&m, NULL);
pthread_mutex_lock(&m);
pthread_mutex_trylock(&m);
pthread_mutex_unlock(&m);
pthread_mutex_destroy(&m);
```

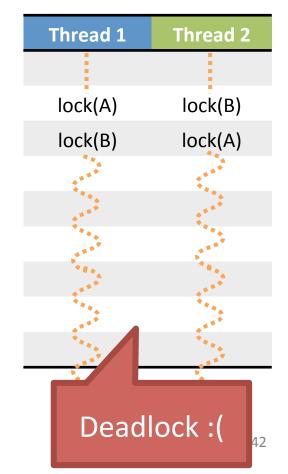
Read/Write Lock

```
pthread_rwlock_t rwl;
pthread_rwlock_init(&rwl, NULL);
pthread_rwlock_rdlock(&rwl);
pthread_rwlock_wrlock(&rwl);
pthread_rwlock_tryrdlock(&rwl);
pthread_rwlock_trywrlock(&rwl);
pthread_rwlock_unlock(&rwl);
pthread_rwlock_destroy(&rwl);
```

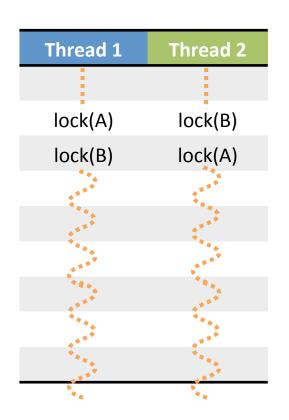

Condition Variable

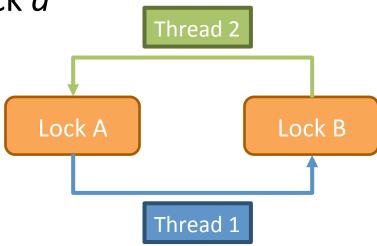

```
pthread_cond_t c;
pthread_cond_init(&c, NULL);
pthread_cond_wait(&c &m);
pthread_cond_signal(&c);
pthread_cond_broadcast(&c);
pthread_cond_destroy(&c);
```


POSIX Semaphore


```
sem_t s;
sem_init(&s, NULL, <value>);
sem_wait(&s);
sem_post(&s);
sem_getvalue(&s, &value);
sem_destroy(&s);
```

Layers of Locks




When Can Deadlocks Occur?

- Four classic conditions for deadlock
 - 1. Mutual exclusion: resources can be exclusively held by one process
 - 2. Hold and wait: A process holding a resource can block, waiting for another resource
 - 3. No preemption: one process cannot force another to give up a resource
 - 4. Circular wait: given conditions 1-3, if there is a circular wait then there is potential for deadlock
- One more issue:
 - 5. Buggy programming: programmer forgets to release one or more resources

Circular Waiting

- Simple example of circular waiting
 - Thread 1 holds lock a, waits on lock b
 - Thread 2 holds lock b, waits on lock a

Avoiding Deadlock

- If circular waiting can be prevented, no deadlocks can occur
- Technique to prevent circles: lock ranking
 - 1. Locate all locks in the program
 - 2. Number the locks in the order (rank) they should be acquired
 - 3. Add assertions that trigger if a lock is acquired outof-order
- No automated way of doing this analysis
 - Requires careful programming by the developer(s)

Lock Ranking Example

	Thread 1	Thread 2
#1: mutex A #2: mutex B	<pre>lock A assert(islocked(A)) lock B // do something unlock B unlock A</pre>	assert(islocked(A)) lock B lock A // do something unlock A unlock B

- Rank the locks
- Add assertions to enforce rank ordering
- In this case, Thread 2 assertion will fail at runtime

When Ranking Doesn't Work

- In some cases, it may be impossible to rank order locks, or prevent circular waiting
- In these cases, eliminate the hold and wait condition using trylock()

Example: Thread Safe List

```
class SafeList {
  method append(SafeList more_items) {
    lock(self)
    lock(more_items)
```

Problem:

Safelist A, B

Thread 1: A.append(B)

Thread 2: B.append(A)

Solution: Replace lock() with trylock()

```
method append(SafeList more_items) {
   while (true) {
    lock(self)
    if (trylock(more_items) == locked_OK)
        break
    unlock(self)
   }
   // now both lists are safely locked
```

- Motivating Parallelism
- Synchronization Basics
- Types of Locks and Deadlock

Beyond Locks

- Mutual exclusion (locking) solves many issues in concurrent/parallel applications
 - Simple, widely available in APIs
 - (Relatively) straightforward to reason about
- However, locks have drawbacks
 - Priority inversion and deadlock only exist because of locks
 - Locks reduce parallelism, thus hinder performance

Lock-Free Data Structures

- Is it possible to build data structures that are thread-safe without locks?
 - YES
- Lock-free data structures
 - Include no locks, but are thread safe
 - However, may introduce starvation
 - Due to retry loops (example in a few slides)

Wait-Free Data Structures

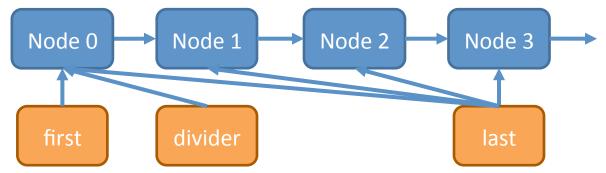
- Wait-free data structures
 - Include no locks, are thread safe, and avoid starvation
 - Wait-free implies lock-free
 - Wait-free is much stronger than lock-free
- Wait-free structures are <u>very</u> hard to implement
 - Impossible to implement for many data structures
 - Often restricted to a fixed number of threads

Advantages of Going Lock-Free

- Potentially much more performant than locking
 - Locks necessitate waits, context switching, CPU stalls, etc...
- Immune to thread killing
 - If a thread dies while holding a lock, you are screwed
- Immune to deadlock and priority inversion
 - You can't deadlock/invert when you have no locks :)

Caveats to Going Lock-Free

- Very few standard libraries/APIs implement these data structures
 - Implementations are often platform-dependent
 - Rely on low-level assembly instructions
 - Many structures are very new, not widely known
- Not all data structures can be made lock-free
 - For many years, nobody could figure out how to make a lock-free doubly linked list
- Buyer beware if implementing yourself
 - Very difficult to get right

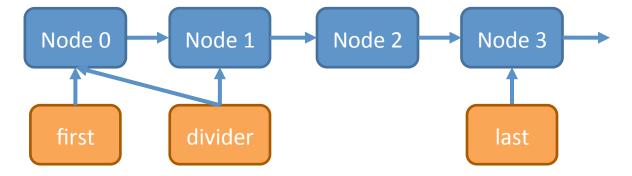

Lock-free Queue Example: Enqueue

• Usage: one reader, one writer

```
void enqueue(int& t) {
  last->next = new Node(t);
  last = last->next;

// garbage collect dequeued nodes
  while (first != divider) {
    Node * tmp = first;
    first = first->next;
    delete tmp;
  }
}
```

```
class Node {
  Node * next;
  int data;
};
// Queue pointers
volatile Node * first;
volatile Node * last;
volatile Node * divider;
lock free queue() {
  // add the dummy node
  first = last = divider
    = new Node (0);
```



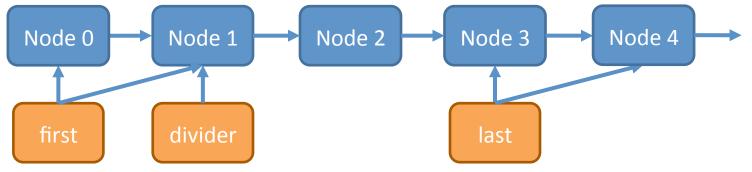
Lock-free Queue Example: Dequeue

Usage: one reader, one writer

```
bool dequeue(int& t) {
  if (divider != last) {
    t = divider->next->value;
    divider = divider->next;
    return true;
  }
  return false;
}
```

```
class Node {
  Node * next;
  int data;
};
// Queue pointers
volatile Node * first;
volatile Node * last;
volatile Node * divider;
lock free queue() {
  // add the dummy node
  first = last = divider
    = new Node (0);
```


Lock-free Queue Example: Enqueue


Usage: one reader, one writer

```
void enqueue(int& t) {
  last->next = new Node(t);
  last = last->next;

// garbage collect dequeued nodes
  while (first != divider) {
    Node * tmp = first;
    first = first->next;
    delete tmp;
  }
}
```

```
class Node {
  Node * next;
  int data;
};
// Queue pointers
volatile Node * first;
volatile Node * last;
volatile Node * divider;
lock free queue() {
  // add the dummy node
  first = last = divider
    = new Node (0);
```

56

Why Does This Work?

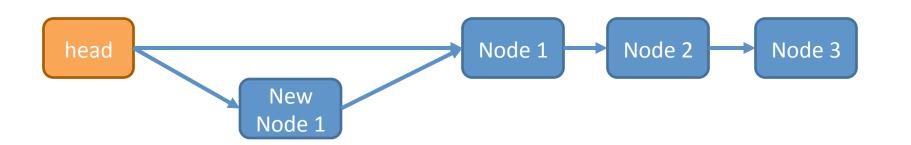
- The enqueue thread and dequeue thread write different pointers
 - Enqueue: last, last->next, first, first->next
 - Dequeue: divider, divider->next
 - Enqueue operations are independent of dequeue operations
 - If these pointers overlap, then no work needs to be done
- The queue always has >1 nodes (starting with the dummy node)

More Advanced Lock-Free Tricks

 Many lock-free data structures can be built using compare and swap (CAS)

```
bool cas(int * addr, int oldval, int newval) {
   if (*addr == oldval) { *addr = newval; return true; }
   return false;
}
```

- This can be done atomically on x86 using the cmpxchg instruction
- Many compilers have built in atomic swap functions
 - GCC: __sync_bool_compare_and_swap(ptr, oldval, newval)
 - MSVC: InterlockedCompareExchange(ptr,oldval,newval)

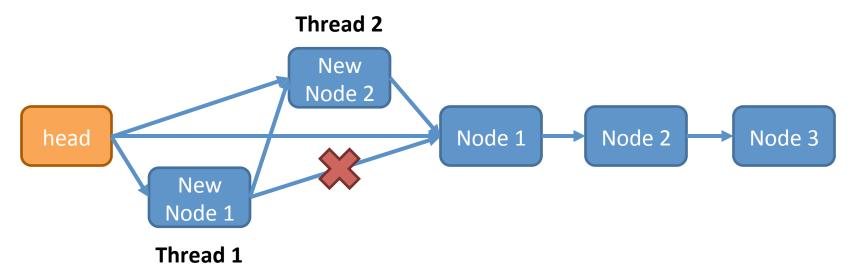

Lock-free Stack Example: Push

Usage: any number of readers and writers

```
class Node {
  Node * next;
  int data;
};

// Root of the stack
volatile Node * head;

void push(int t) {
  Node* node = new Node(t);
  do {
    node->next = head;
  }
  while (!cas(&head, node->next, node));
}
```



Lock-free Stack Example: Push

Usage: any number of readers and writers

```
class Node {
  Node * next;
  int data;

// Root of the stack
volatile Node * head;

void push(int t) {
  Node* node = new Node(t);
  do {
    node->next = head;
  } while (!cas(&head, node->next, node));
}
```


Lock-free Stack Example: Pop

```
bool pop(int& t) {
                                                  class Node {
  Node* current = head;
                                                    Node * next;
                                                    int data;
  while(current) {
                                                  };
    if(cas(&head, current, current->next)) {
      t = current->data;
                                                  // Root of the stack
      delete current;
                                                  volatile Node * head;
      return true;
    current = head;
  return false;
               current
                              Node 1
                                          Node 2
                                                      Node 3
            head
```

Retry Looping is the Key

- Lock free data structures often make use of the retry loop pattern
 - 1. Read some state
 - 2. Do a useful operation
 - Attempt to modify global state if it hasn't changed (using CAS)
- This is similar to a spinlock
 - But, the assumption is that wait times will be small
 - However, retry loops may introduce starvation
- Wait-free data structures remove retry loops
 - But are much more complicated to implement

Many Reads, Few Writes

- Suppose we have a map (hashtable) that is:
 - Constantly read by many threads
 - Rarely, but occasionally written
- How can we make this structure lock free?

```
class readmap {
 mutex mtx;
 map<string, string> map;
  string lookup(const string& k) {
    lock l(mtx);
    return map[k];
 void update (const string& k,
                const string& v) {
    lock lock (mtx);
   map[k] = v;
```

Duplicate and Swap

```
class readmap {
 map<string, string> * map;
  readmap() { map = new map<string, string>(); }
  string lookup(const string& k) {
    return (*map)[k];
  void update(const string& k, const string& v) {
    map<string, string> * new map = 0;
    do {
      map<string, string> * old map = map;
      if (new map) delete new map;
      // clone the existing map data
      new map = new map<string, string>(*old map);
      (*new map)[k] = v;
      // swap the old map for the new, updated map!
    } while (cas(&map, old map, new_map));
};
```

Memory Problems

- What is the problem with the previous code?
 - } while (cas(&map, old_map, new_map));
- The old map is not deleted (memory leak)
- Does this fix things?

```
} while (cas(&map, old_map, new_map));
delete old_map;
```

- Readers may still be accessing the old map!
 - Deleting it will cause nondeterministic behavior
- Possible solution: store the old_map pointer, delete it after some time has gone by

Hazard Pointers

- Construct for managing memory in lock-free data structures
- Straightforward concept:
 - Read threads publish hazard pointers that point to any data they are currently reading
 - When a write thread wants to delete data:
 - If it is not associated with any hazard pointers, delete it
 - If it is associated with a hazard pointer, add it to a list
 - Periodically go through the list and reevaluate the data
- Of course, this is tricky in practice
 - You need lock-free structures to:
 - Enable publishing/updating hazard pointers
 - Store the list of data blocked by hazards

The ABA Problem

- Subtle problem that impacts many lock-free algorithms
- Compare and swap relies on the uniqueness of pointers
 - Example: cas(&head, current, current->next)
- However, sometimes the memory manager will reuse pointers

```
item * a = stack.pop();
free a;
item * b = new item();
stack.push(b);
assert(a != b); // this assertion may fail!
```

ABA Example

```
bool pop(int& t) {
  Node* current = head;
  while(current) {
    if (cas(&head, current, current->next)) {
       t = current->data;
      delete current;
                                                    Order of Events
       return true;
                                      Thread 1: pop() {
                                         current = head;
    current = head;
  return false;
       Thread 1: current
                                0x0F12:
                                             0x055D:
                                                         0xA8B0:
            head
                                Node 4
                                             Node 2
                                                          Node 3
```

Applications of Lock-Free Structures

- Stack
- Queue
- Deque
- Linked list
- Doubly linked list
- Hash table
- Many variations on each
 - Lock free vs. wait free

- Memory managers
 - Lock free malloc() and free()
- The Linux kernel
 - Many key structures are lock-free

References

- Geoff Langdale, Lock-free Programming
 - http://www.cs.cmu.edu/~410-s05/lectures/L31 LockFree.pdf
- Herb Sutter, Writing Lock-Free Code: A Corrected Queue
 - http://www.drdobbs.com/parallel/writing-lock-free-code-a-corrected-queue/210604448