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Concurrency	vs.	Parallelism	

•  Concurrent	execu1on	on	a	single-core	system:	

•  Parallel	execu1on	on	a	dual-core	system:	
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Transistors	

Clock	Speed	

Power	Draw	

Perf/Clock	



Implica1ons	of	CPU	Evolu1on	

•  Increasing	transistor	count/clock	speed	
– Greater	number	of	tasks	can	be	executed	
concurrently	

•  However,	clock	speed	increases	have	essen1ally	
stopped	in	the	past	few	years	
–  Instead,	more	transistors	=	more	CPU	cores	
– More	cores	=	increased	opportunity	for	parallelism	
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Two	Types	of	Parallelism	

•  Data	parallelism	
– Same	task	executes	on	many	cores	
– Different	data	given	to	each	task	
– Example:	MapReduce	

•  Task	parallelism	
– Different	tasks	execute	on	each	core	
– Example:	any	high-end	videogame	

•  1	thread	handles	game	AI	
•  1	thread	handles	physics	
•  1	thread	handles	sound	effects	
•  1+	threads	handle	rendering	 6	



Amdahl’s	Law	
•  Upper	bound	on	performance	gains	from	
parallelism	
–  If	I	take	a	single-threaded	task	and	parallelize	it	over	N	
CPUs,	how	much	more	quickly	will	my	task	complete?	

•  Defini1on:	
– S	is	the	frac1on	of	processing	1me	that	is	serial	
(sequen1al)	

– N	is	the	number	of	CPU	cores	

Speedup	≤	​1/𝑆+ ​(1−𝑆)/𝑁  	
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Example	of	Amdahl’s	Law	
•  Suppose	we	have	an	applica1on	that	is	75%	
parallel	and	25%	serial	
–  	1	core:	1/(.25+(1-.25)/1)	=	1	(no	speedup,	obviously)	
–  	2	core:	1/(.25+(1-.25)/2)	=	1.6	
–  	4	core:	1/(.25+(1-.25)/4)	=	2.29	

•  What	happens	as	Nà∞?	
– Speedup	≤	​1/𝑆+ ​(1−𝑆)/𝑁  	
– Speedup	approaches	1/S	
– The	serial	por.on	of	the	process	has	a	dispropor.onate	
effect	on	performance	improvement	
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Limits	of	Parallelism	

•  Amdahl’s	Law	is	a	simplifica1on	of	reality	
– Assumes	code	can	be	cleanly	divided	into	serial	
and	parallel	por1ons	

–  In	other	words,	trivial	parallelism	

•  Real-world	code	is	typically	more	complex	
– Mul1ple	threads	depend	on	the	same	data	
–  In	these	cases,	parallelism	may	introduce	errors	

•  Real-world	speedups	are	typically	<	what	is	
predicted	by	Amdahl’s	Law		
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The	Bank	of	Lost	Funds	

•  Consider	a	simple	banking	applica1on	
– Mul1-threaded,	centralized	architecture	
– All	deposits	and	withdrawals	sent	to	the	central	server		
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class account { 
    private money_t balance; 
    public deposit(money_t sum) { 

  balance = balance + sum; 
    } 
} 

•  What	happens	if	two	people	try	to	deposit	
money	into	the	same	account	at	the	same	
1me?	
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balance = balance + sum; 
 

mov eax, balance 
mov ebx, sum 
add eax, ebx 
mov balance, eax 

Thread 1 Thread 2 

balance 
$50	

mov eax, balance 
mov ebx, sum 

add eax, ebx 
mov balance, eax 

deposit($50) 	

eax = $50	

mov eax, balance 
mov ebx, sum	

eax = $100	

deposit($100) 	Context	Switch	

Context	Switch	

add eax, ebx 
mov balance, eax	



Race	Condi1ons	

•  The	previous	example	shows	a	race	condi1on	
– Two	threads	“race”	to	execute	code	and	update	
shared	(dependent)	data	

– Errors	emerge	based	on	the	ordering	of	
opera1ons,	and	the	scheduling	of	threads	

– Thus,	errors	are	nondeterminis1c	
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Example:	Linked	List	

•  What	happens	if	
one	thread	calls	
pop(),	and	another	
calls	push()	at	the	
same	1me?	
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elem = pop(&list): 
 tmp = list 
 list = list->next 
 tmp->next = NULL 
 return tmp 

push(&list, elem): 
elem->next = list 
list = elem 

1 2 3 0. list 	 ∅ 

Thread 1 Thread 2 
1. tmp = list 

2. elem->next = list 
3. list = list->next 

4. list = elem 
5. tmp->next = NULL 

1. tmp	

4 

3. list	

2. elem	

4. list	

5. ∅ 



Cri1cal	Sec1ons	

•  These	examples	highlight	the	cri1cal	sec1on	
problem	

•  Classical	defini1on	of	a	cri1cal	sec1on:	
“A	piece	of	code	that	accesses	a	shared	resource	
that	must	not	be	concurrently	accessed	by	more	

than	one	thread	of	execu.on.”	
•  Two	problems	

– Code	was	not	designed	for	concurrency	
– Shared	resource	(data)	does	not	support	concurrent	
access	
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Atomicity	
•  Race	condi1ons	lead	to	

errors	when	sec1ons	of	
code	are	interleaved	
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Interleaved Execution 

Read 

Add 

Store 

Read 

Add 

Store 

•  These	errors	can	be	
prevented	by	ensuring	
code	executes	atomically	

Non-Interleaved (Atomic) Execution 

Read 
Add 

Store 

Read 
Add 

Store 

Read 
Add 

Store 

Read 
Add 

Store 

(a) (b) 



Mutexes	for	Atomicity	

•  Mutual	exclusion	lock	(mutex)	is	a	construct	
that	can	enforce	atomicity	in	code	
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m	=	mutex_create();	
…	
mutex_lock(m);	
//	do	some	stuff	
mutex_unlock(m);	

mutex_lock(m)	

(returns)	

(returns)	

unlock(m)	 blocked	

Thread 1 	 Thread 2	

critical 
section	

critical 
section	

(returns)	



Fixing	the	Bank	Example	

class	account	{	
				mutex			m;	
				money_t	balance	
	
				public	deposit(money_t	sum)	{	
									m.lock();	
									balance	=	balance	+	sum;	
									m.unlock();	
				}	
}	
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LOCK 

UNLOCK 

LOCK 

UNLOCK 

Read 

Add 

Store 

Read 

Add 

Store 

Thread	1	 Thread	2	



Implemen1ng	Mutual	Exclusion	

•  Typically,	developers	don’t	write	their	own	
locking-primi1ves	
– You	use	an	API	from	the	OS	or	a	library	

•  Why	don’t	people	write	their	own	locks?	
– Much	more	complicated	than	they	at-first	appear	
– Very,	very	difficult	to	get	correct	
– May	require	access	to	privileged	instruc1ons	
– May	require	specific	assembly	instruc1ons	

•  Instruc1on	architecture	dependent	
19	



Mutex	on	a	Single-CPU	System	

•  On	a	single-CPU	system,	the	only	preemp1on	
mechanism	is	interrupts	
–  If	interrupts	are	disabled,	the	currently	execu1ng	
code	is	guaranteed	to	be	atomic	

•  This	system	is	concurrent,	but	not	parallel	
20	

void	lock_acquire(struct	lock	*	lock)	{	
					sema_down(&lock->semaphore);	
					lock->holder	=	thread_current();	
}	

void	sema_down(struct	semaphore	*	sema)	{	
					enum	intr_level	old_level;	
					old_level	=	intr_disable();	
					while	(sema->value	==	0)	{	/*	wait	*/	}	
					sema->value--;	
					intr_level(old_level);	
}	



The	Problem	With	Mul1ple	CPUs	
•  In	a	mul1-CPU	(SMP)	system,	two	or	more	
threads	may	execute	in	parallel	
– Data	can	be	read	or	wriwen	by	parallel	threads,	
even	if	interrupts	are	disabled	
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sema_down() { 

     while (sema->value == 0) { … } 

     sema->value--; 

} 

CPU	1	-	Thread	1	

sema_down() { 

     while (sema->value == 0) { … } 

     sema->value--; 

} 

CPU	2	-	Thread	2	
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sema->value	=	1	

sema->value	=	?	



Instruc1on-level	Atomicity	

•  Modern	CPUs	have	atomic	instruc1on(s)	
– Enable	you	to	build	high-level	synchronized	objects	

•  On	x86:	
–  	The	lock	prefix	makes	an	instruc1on	atomic		

	lock	inc	eax	;	atomic	increment	
	lock	dec	eax	;	atomic	decrement	
•  Only	legal	with	some	instruc1ons	

– The	xchg	instruc1on	is	guaranteed	to	be	atomic	
xchg	eax,	[addr]	;	swap	eax	and	the	value	in	memory	
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Behavior	of	xchg	

•  Atomicity	ensures	that	each	xchg	occurs	
before	or	a{er	xchgs	from	other	CPUs	
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eax: 1 
1 
0 
0 

eax: 2 
2 
0 

0 
0 
1 
1 
1 

xchg xchg 

Illegal execution 

CPU 1 CPU 2 memory 

Non-Atomic	xchg	

eax: 1 
1 
0 
0 

eax: 2 
2 
1 xchg xchg 

Legal execution 

CPU 1 CPU 2 
0 
0 
1 
2 
2 

memory 

Atomic	xchg	



Building	a	Spin	Lock	with	xchg	
spin_lock:	
						mov	eax,	1	
						xchg	eax,	[lock_addr]	
						test	eax,	eax	
						jnz	spin_lock	
	
spin_unlock:	
						mov	[lock_addr],	0	

24	

CPU 1 locks. 

CPUs 0 and 2 both try 
to lock, but cannot. 

CPU 1 unlocks. 

CPU 0 locks, simply 
because it requested 
it slightly before CPU 
2.  



Building	a	Mul1-CPU	Mutex	
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typedef struct mutex_struct { 
int spinlock = 0; // spinlock variable 
int locked = 0;   // is the mutex locked? guarded by spinlock 
queue waitlist;   // waiting threads, guarded by spinlock 

} mutex; 
 
void mutex_lock(mutex * m) { 

spin_lock(&m->spinlock); 
if (!m->locked){ 

m->locked = 1; 
spin_unlock(&m->spinlock); 

} else {   
m->waitlist.add(current_process); 
spin_unlock(&m->spinlock); 
yield(); 
// wake up here when the mutex is acquired 

} 
} 



Building	a	Mul1-CPU	Mutex	
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typedef struct mutex_struct { 
int spinlock = 0; // spinlock variable 
int locked = 0;   // is the mutex locked? guarded by spinlock 
queue waitlist;   // waiting threads, guarded by spinlock 

} mutex; 
 
void mutex_unlock(mutex * m) { 

spin_lock(&m->spinlock); 
if (m->waitlist.empty()) { 

m->locked = 0; 
spin_unlock(&m->spinlock); 

} else { 
next_thread = m->waitlist.pop_from_head(); 
spin_unlock(&m->spinlock); 
wake(next_thread); 

} 
} 
 
 



Compare	and	Swap	

•  Some1mes,	literature	on	locks	refers	to	compare	
and	swap	(CAS)	instruc1ons	
–  CAS	instruc1ons	combine	an	xchg	and	a	test	

•  On	x86,	known	as	compare	and	exchange	
spin_lock:	
						mov	ecx,	1	
						mov	eax,	0	
						lock	cmpxchg	ecx,	[lock_addr]	
						jnz	spinlock	

–  cmpxchg	compares	eax	and	the	value	of	lock_addr	
–  If	eax	==	[lock_addr],	swap	ecx	and	[lock_addr]	
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The	Price	of	Atomicity	

•  Atomic	opera1ons	are	very	expensive	on	a	
mul1-core	system	
– Caches	must	be	flushed	

•  CPU	cores	may	see	different	values	for	the	same	
variable	if	they	have	out-of-date	caches	

•  Cache	flush	can	be	forced	using	a	memory	fence	
(some1mes	called	a	memory	barrier)	

– Memory	bus	must	be	locked	
•  No	concurrent	reading	or	wri1ng	

– Other	CPUs	may	stall	
•  May	block	on	the	memory	bus	or	atomic	instruc1ons	

28	



• Mo1va1ng	Parallelism	
• Synchroniza1on	Basics	
• Types	of	Locks	and	Deadlock	
• Lock-Free	Data	Structures	
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Other	Types	of	Locks	

•  Mutex	is	perhaps	the	most	common	type	of	lock	
•  But	there	are	several	other	common	types	

–  	Semaphore	
–  	Read/write	lock	
–  	Condi1on	variable	

•  Used	to	build	monitors	

30	



Semaphores	

•  Generaliza1on	of	a	mutex	
–  Invented	by	Edsger	Dijkstra	
– Associated	with	a	posi1ve	integer	N	
– May	be	locked	by	up	to	N	concurrent	threads	

•  Semaphore	methods	
–  	wait()	–	if	N	>	0,	N--;	else	sleep	
–  	signal()	–	if	wai1ng	threads	>	0,	wake	one	up;	else	N++	
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The	Bounded	Buffer	Problem	

•  Canonical	example	of	semaphore	usage	
–  Some	threads	produce	items,	add	items	to	a	list	
–  Some	threads	consume	items,	remove	items	from	the	list	
–  Size	of	the	list	is	bounded	

32	

class semaphore_bounded_buffer: 
  mutex     m 
  list      buffer 
  semaphore S_space = semaphore(N) 
  semaphore S_items = semaphore(0) 
 
  put(item): 
      S_space.wait() 
      m.lock() 
      buffer.add_tail(item) 
      m.unlock() 
      S_items.signal() 

get(): 
    S_items.wait() 
    m.lock() 
    result = buffer.remove_head() 
    m.unlock() 
    S_space.signal() 
    return result	



Example	Bounded	Buffer	
buffer	 S_items	 S_space	

[]	 0	 2	

[a]	 1	 1	

[a,	b]	 2	 0	

[b]	 1	 1	

[b,	c]	 2	 0	

33	

Thread	1	 Thread	2	 Thread	3	 Thread	4	

put(a)	

put(b)	

put(c)	

get()	



Read/Write	Lock	

•  Some1mes	known	as	a	shared	mutex	
– Many	threads	may	hold	the	read	lock	in	parallel	
– Only	one	thread	may	hold	the	write	lock	at	a	1me	

• Write	lock	cannot	be	acquired	un1l	all	read	locks	are	released	
•  New	read	locks	cannot	be	acquired	if	a	writer	is	wai1ng	

•  Ideal	for	cases	were	updates	to	shared	data	are	
rare	
– Permits	maximum	read	paralleliza1on	

34	



Example	Read/Write	Lock	
list	 readers	 writers	

[a,	b]	 0	 0	

[a,	b]	 1	 0	

[a,	b]	 2	 0	

[a,	b]	 1	 0	

[a,	b]	 0	 0	

[a,	b]	 0	 1	

[a,	b,	c]	 0	 1	

[a,	b,	c]	 0	 0	

[a,	b,	c]	 1	 0	

[a,	b,	c]	 1	 0	
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Thread	1	 Thread	2	 Thread	3	

lock_r()	

lock_r()	

lock_w()	

unlock_r()	

unlock_r()	

lock_r()	

unlock_w()	



When	is	a	Semaphore	Not	Enough?	

•  In	this	case,	semaphores	are	not	sufficient	
–  	weight	is	an	unknown	parameter	
– A{er	each	put(),	totalweight	must	be	checked	 36	

class weighted_bounded_buffer: 
  mutex     m 
  list      buffer 
  int       totalweight 
 
get(weight): 
  while (1): 
    m.lock() 
    if totalweight >= weight: 
      result = buffer.remove_head() 
      totalweight -= result.weight 
      m.unlock() 
      return result 
    else: 
      m.unlock() 
      yield() 
 

put(item): 
  m.lock() 
  buffer.add_tail(item) 
  totalweight += item.weight 
  m.unlock() 
 

•  No	guarantee	the	
condi1on	will	be	sa1sfied	
when	this	thread	wakes	up	

•  Lots	of	useless	looping	:(	



Condi1on	Variables	
•  Construct	for	managing	control	flow	amongst	
compe1ng	threads	
– Each	condi1on	variable	is	associated	with	a	mutex	
– Threads	that	cannot	run	yet	wait()	for	some	
condi1on	to	become	sa1sfied	

– When	the	condi1on	is	sa1sfied,	some	other	thread	
can	signal()	to	the	wai1ng	thread(s)	

•  Condi2on	variables	are	not	locks	
– They	are	control-flow	managers	
– Some	APIs	combine	the	mutex	and	the	condi1on	
variable,	which	makes	things	slightly	easier	
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Condi1on	Variable	Example	

38	

class weighted_bounded_buffer: 
  mutex     m 
  condition c 
  list      buffer 
  int       totalweight = 0 
  int       neededweight = 0 
 
get(weight): 
  m.lock() 
  if totalweight < weight: 
    neededweight += weight 
    c.wait(m) 
 
  neededweight -= weight   
  result = buffer.remove_head() 
  totalweight -= result.weight 
  m.unlock() 
  return result 
 

put(item): 
  m.lock() 
  buffer.add_tail(item) 
  totalweight += item.weight 
  if totalweight >= neededweight 
          and neededweight > 0: 
    c.signal(m) 
  else: 
    m.unlock() 
 

•  wait()	unlocks	the	mutex	
and	blocks	the	thread	

•  When	wait()	returns,	the	
mutex	is	locked	

•  signal()	hands	the	locked	
mutex	to	a	wai1ng	thread	

•  In	essence,	we	have	built	a	construct	of	the	form:	
wait_un1l(totalweight	>=	weight)	



Monitors	
•  Many	textbooks	refer	to	monitors	when	they	
discuss	synchroniza1on	
– A	monitor	is	just	a	combina1on	of	a	mutex	and	a	
condi1on	variable	

•  There	is	no	API	that	gives	you	a	monitor	
–  You	use	mutexes	and	condi1on	variables	
–  You	have	to	write	your	own	monitors	

•  In	OO	design,	you	typically	make	some	user-defined	object	a	
monitor	if	it	is	shared	between	threads	

•  Monitors	enforce	mutual	exclusion	
– Only	one	thread	may	access	an	instance	of	a	monitor	
at	any	given	1me	

–  	synchronized	keyword	in	Java	is	a	simple	monitor	 39	



Be	Careful	When	Wri1ng	Monitors	

40	

get(weight): 
  m.lock() 
  if totalweight < weight: 
    neededweight += weight 
    c.wait(m) 
 
  neededweight -= weight   
  result = buffer.remove_head() 
  totalweight -= result.weight 
  m.unlock() 
  return result 
 
put(item): 
  m.lock() 
  buffer.add_tail(item) 
  totalweight += item.weight 
  if totalweight >= neededweight 
          and neededweight > 0: 
    c.signal(m) 
  else: 
    m.unlock() 

get(weight): 
  m.lock() 
  if totalweight < weight: 
    neededweight += weight 
    c.wait(m) 
 
  result = buffer.remove_head() 
  totalweight -= result.weight 
  m.unlock() 
  return result 
 
put(item): 
  m.lock() 
  buffer.add_tail(item) 
  totalweight += item.weight 
  if totalweight >= neededweight 
          and neededweight > 0: 
    c.signal(m) 
    neededweight -= item.weight 
  else: 
    m.unlock() 

Original	Code	 Modified	Code	

Incorrect!	The	mutex	is	not	
locked	at	this	point	in	the	code	



Pthread	Synchroniza1on	API	

41	

pthread_mutex_t m; 
pthread_mutex_init(&m, NULL); 
pthread_mutex_lock(&m); 
pthread_mutex_trylock(&m); 
pthread_mutex_unlock(&m); 
pthread_mutex_destroy(&m); 
 
 
 
pthread_rwlock_t rwl; 
pthread_rwlock_init(&rwl, NULL); 
pthread_rwlock_rdlock(&rwl); 
pthread_rwlock_wrlock(&rwl); 
pthread_rwlock_tryrdlock(&rwl); 
pthread_rwlock_trywrlock(&rwl); 
pthread_rwlock_unlock(&rwl); 
pthread_rwlock_destroy(&rwl); 

pthread_cond_t c; 
pthread_cond_init(&c, NULL); 
pthread_cond_wait(&c &m); 
pthread_cond_signal(&c); 
pthread_cond_broadcast(&c); 
pthread_cond_destroy(&c); 
 
 
 
sem_t s; 
sem_init(&s, NULL, <value>); 
sem_wait(&s); 
sem_post(&s); 
sem_getvalue(&s, &value); 
sem_destroy(&s); 

Mutex	 Condi2on	Variable	

Read/Write	Lock	 POSIX	Semaphore	



Layers	
of	Locks	
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mutex  A 
mutex  B  

Thread 1 
 
lock A 
lock B 
// do something 
unlock B 
unlock A 

Thread 2 
 

lock B 
lock A 
// do something 
unlock A 
unlock B 

Thread	1	 Thread	2	

lock(A)	

lock(B)	

unlock(B)	

unlock(A)	

lock(B)	

lock(A)	

unlock(A)	

unlock(B)	

Thread	1	 Thread	2	

lock(A)	

lock(B)	

lock(B)	

unlock(B)	

unlock(A)	 lock(A)	

unlock(A)	

unlock(B)	

Thread	1	 Thread	2	

lock(A)	 lock(B)	

lock(B)	 lock(A)	

Deadlock	:(	



When	Can	Deadlocks	Occur?	

•  Four	classic	condi1ons	for	deadlock	
1.  Mutual	exclusion:	resources	can	be	exclusively	held	

by	one	process	
2.  Hold	and	wait:	A	process	holding	a	resource	can	

block,	wai1ng	for	another	resource	
3.  No	preemp1on:	one	process	cannot	force	another	

to	give	up	a	resource	
4.  Circular	wait:	given	condi1ons	1-3,	if	there	is	a	

circular	wait	then	there	is	poten1al	for	deadlock	
•  One	more	issue:	

5.  Buggy	programming:	programmer	forgets	to	release	
one	or	more	resources	
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Circular	Wai1ng	

•  Simple	example	of	circular	
wai1ng	
– Thread	1	holds	lock	a,	waits	on	
lock	b	

– Thread	2	holds	lock	b,	waits	on	
lock	a	
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Thread	1	 Thread	2	

lock(A)	 lock(B)	

lock(B)	 lock(A)	

Lock	A	 Lock	B	

Thread	2	

Thread	1	



Avoiding	Deadlock	

•  If	circular	wai1ng	can	be	prevented,	no	deadlocks	
can	occur	

•  Technique	to	prevent	circles:	lock	ranking	
1.  Locate	all	locks	in	the	program	
2.  Number	the	locks	in	the	order	(rank)	they	should	be	

acquired	
3.  Add	asser1ons	that	trigger	if	a	lock	is	acquired	out-

of-order	

•  No	automated	way	of	doing	this	analysis	
–  Requires	careful	programming	by	the	developer(s)	

45	



Lock	Ranking	Example	

•  Rank	the	locks	
•  Add	asser1ons	to	enforce	rank	ordering	
•  In	this	case,	Thread	2	asser1on	will	fail	at	
run1me	

46	

 
 
#1: mutex  A 
#2: mutex  B  

Thread 1 
 
lock A 
assert(islocked(A)) 
lock B 
// do something 
unlock B 
unlock A 

Thread 2 
 

assert(islocked(A)) 
lock B 
lock A 
// do something 
unlock A 
unlock B 



When	Ranking	Doesn’t	Work	

•  In	some	cases,	it	may	
be	impossible	to	rank	
order	locks,	or	
prevent	circular	
wai1ng	

•  In	these	cases,	
eliminate	the	hold	
and	wait	condi1on	
using	trylock()	
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class SafeList { 
method append(SafeList more_items){ 

lock(self) 
lock(more_items) 

Example:	Thread	Safe	List	

Safelist	A,	B	
Thread	1:	A.append(B)	
Thread	2:	B.append(A)	

Problem:	

Solu2on:	Replace	lock()	with	trylock()	
method append(SafeList more_items){ 
  while (true) { 

lock(self) 
if (trylock(more_items) == locked_OK) 
  break 
unlock(self) 

  } 
  // now both lists are safely locked 



• Mo1va1ng	Parallelism	
• Synchroniza1on	Basics	
• Types	of	Locks	and	Deadlock	
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Beyond	Locks	

•  Mutual	exclusion	(locking)	solves	many	issues	
in	concurrent/parallel	applica1ons	
– Simple,	widely	available	in	APIs	
–  (Rela1vely)	straigh�orward	to	reason	about	

•  However,	locks	have	drawbacks	
– Priority	inversion	and	deadlock	only	exist	because	
of	locks	

– Locks	reduce	parallelism,	thus	hinder	
performance	
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Lock-Free	Data	Structures	

•  Is	it	possible	to	build	data	structures	that	are	
thread-safe	without	locks?	
–  	YES	

•  Lock-free	data	structures	
–  Include	no	locks,	but	are	thread	safe	
– However,	may	introduce	starva1on	

•  Due	to	retry	loops	(example	in	a	few	slides)	
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Wait-Free	Data	Structures	

•  Wait-free	data	structures	
–  Include	no	locks,	are	thread	safe,	and	avoid	
starva1on	

– Wait-free	implies	lock-free	
• Wait-free	is	much	stronger	than	lock-free	

•  Wait-free	structures	are	very	hard	to	
implement	
–  Impossible	to	implement	for	many	data	structures	
– O{en	restricted	to	a	fixed	number	of	threads	
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Advantages	of	Going	Lock-Free	

•  Poten1ally	much	more	performant	than	locking	
– Locks	necessitate	waits,	context	switching,	CPU	stalls,	
etc…	

•  Immune	to	thread	killing	
–  If	a	thread	dies	while	holding	a	lock,	you	are	screwed	

•  Immune	to	deadlock	and	priority	inversion	
– You	can’t	deadlock/invert	when	you	have	no	locks	:)	
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Caveats	to	Going	Lock-Free	

•  Very	few	standard	libraries/APIs	implement	
these	data	structures	
–  Implementa1ons	are	o{en	pla�orm-dependent	
– Rely	on	low-level	assembly	instruc1ons	
– Many	structures	are	very	new,	not	widely	known	

•  Not	all	data	structures	can	be	made	lock-free	
– For	many	years,	nobody	could	figure	out	how	to	
make	a	lock-free	doubly	linked	list	

•  Buyer	beware	if	implemen1ng	yourself	
– Very	difficult	to	get	right	

53	



Lock-free	Queue	Example:	Enqueue	
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void enqueue(int& t) { 
  last->next = new Node(t); 

  last = last->next; 

 

  // garbage collect dequeued nodes 

  while (first != divider) { 

    Node * tmp = first; 

    first = first->next; 

    delete tmp; 

  } 

} 

 

class Node { 
  Node * next; 
  int data; 
};  
 
// Queue pointers 
volatile Node * first; 
volatile Node * last; 
volatile Node * divider; 
 
lock_free_queue() { 
  // add the dummy node 
  first = last = divider 
    = new Node(0); 
} 

•  Usage:	one	reader,	one	writer	

first	

Node	1	 Node	2	 Node	3	

last	divider	

Node	0	



Lock-free	Queue	Example:	Dequeue	
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bool dequeue(int& t) { 
  if (divider != last) { 

    t = divider->next->value; 

    divider = divider->next; 

    return true; 

  } 

  return false; 

} 

 

class Node { 
  Node * next; 
  int data; 
};  
 
// Queue pointers 
volatile Node * first; 
volatile Node * last; 
volatile Node * divider; 
 
lock_free_queue() { 
  // add the dummy node 
  first = last = divider 
    = new Node(0); 
} 

•  Usage:	one	reader,	one	writer	

first	

Node	1	 Node	2	 Node	3	

last	divider	

Node	0	



Lock-free	Queue	Example:	Enqueue	
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void enqueue(int& t) { 
  last->next = new Node(t); 

  last = last->next; 

 

  // garbage collect dequeued nodes 

  while (first != divider) { 

    Node * tmp = first; 

    first = first->next; 

    delete tmp; 

  } 

} 

 

class Node { 
  Node * next; 
  int data; 
};  
 
// Queue pointers 
volatile Node * first; 
volatile Node * last; 
volatile Node * divider; 
 
lock_free_queue() { 
  // add the dummy node 
  first = last = divider 
    = new Node(0); 
} 

•  Usage:	one	reader,	one	writer	

first	

Node	1	 Node	2	 Node	3	

last	divider	

Node	0	 Node	4	



Why	Does	This	Work?	
•  The	enqueue	thread	and	dequeue	thread	write	
different	pointers	
– Enqueue:	last,	last->next,	first,	first->next	
– Dequeue:	divider,	divider->next	
– Enqueue	opera1ons	are	independent	of	dequeue	
opera1ons	

–  If	these	pointers	overlap,	then	no	work	needs	to	be	
done	

•  The	queue	always	has	>1	nodes	(star1ng	with	
the	dummy	node)	
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More	Advanced	Lock-Free	Tricks	

•  Many	lock-free	data	structures	can	be	built	using	
compare	and	swap	(CAS)	
	
bool cas(int * addr, int oldval, int newval) { 
    if (*addr == oldval) { *addr = newval; return true; } 
    return false; 
} 

	
•  This	can	be	done	atomically	on	x86	using	the	cmpxchg	
instruc1on	

•  Many	compilers	have	built	in	atomic	swap	func1ons	
–  GCC:	__sync_bool_compare_and_swap(ptr,	oldval,	newval)	
– MSVC:	InterlockedCompareExchange(ptr,oldval,newval)	
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Lock-free	Stack	Example:	Push	

void push(int t) { 
  Node* node = new Node(t); 

  do { 

    node->next = head; 

  } while (!cas(&head, node->next, node)); 

} 
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class Node { 
  Node * next; 
  int data; 
};  
 
// Root of the stack  
volatile Node * head; 

head	 Node	1	 Node	2	 Node	3	

New	
Node	1	

•  Usage:	any	number	of	readers	and	writers	



Lock-free	Stack	Example:	Push	

void push(int t) { 
  Node* node = new Node(t); 

  do { 

    node->next = head; 

  } while (!cas(&head, node->next, node)); 

} 
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class Node { 
  Node * next; 
  int data; 
};  
 
// Root of the stack  
volatile Node * head; 

•  Usage:	any	number	of	readers	and	writers	

head	 Node	1	 Node	2	 Node	3	

New	
Node	2	

New	
Node	1	

Thread	1	

Thread	2	



Lock-free	Stack	Example:	Pop	
bool pop(int& t) { 
  Node* current = head; 

  while(current) { 

    if(cas(&head, current, current->next)) { 

      t = current->data; 

      delete current; 

      return true; 

    } 

    current = head; 

  } 

  return false; 

} 
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class Node { 
  Node * next; 
  int data; 
};  
 
// Root of the stack  
volatile Node * head; 

head	 Node	1	 Node	2	 Node	3	

current	



Retry	Looping	is	the	Key	

•  Lock	free	data	structures	o{en	make	use	of	the	
retry	loop	pawern	
1.  Read	some	state	
2.  Do	a	useful	opera1on	
3.  Awempt	to	modify	global	state	if	it	hasn’t	changed	

(using	CAS)	
•  This	is	similar	to	a	spinlock	

–  But,	the	assump1on	is	that	wait	1mes	will	be	small	
– However,	retry	loops	may	introduce	starva1on	

•  Wait-free	data	structures	remove	retry	loops	
–  But	are	much	more	complicated	to	implement	
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Many	Reads,	Few	Writes	

•  Suppose	we	have	a	
map	(hashtable)	that	is:	
– Constantly	read	by	
many	threads	

– Rarely,	but	occasionally	
wriwen	

•  How	can	we	make	this	
structure	lock	free?	
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class readmap { 
  mutex mtx; 
  map<string, string> map;  
     
  string lookup(const string& k) { 
    lock l(mtx); 
    return map[k]; 
  } 
 
  void update(const string& k, 
                const string& v) { 
    lock lock(mtx); 
    map[k] = v; 
  } 
}; 



Duplicate	and	Swap	
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class readmap { 
  map<string, string> * map;  
    
  readmap() { map = new map<string, string>(); } 
 
  string lookup(const string& k) { 
    return (*map)[k]; 
  } 
 
  void update(const string& k, const string& v) { 
    map<string, string> * new_map = 0; 
    do {  
      map<string, string> * old_map = map; 
      if (new_map) delete new_map; 
      // clone the existing map data 
      new_map = new map<string, string>(*old_map); 
      (*new_map)[k] = v; 
      // swap the old map for the new, updated map! 
    } while (cas(&map, old_map, new_map)); 
  } 
}; 



Memory	Problems	

•  What	is	the	problem	with	the	previous	code? 
 } while (cas(&map, old_map, new_map)); 

•  The	old	map	is	not	deleted	(memory	leak)	
•  Does	this	fix	things?	

 } while (cas(&map, old_map, new_map)); 
 delete old_map; 

•  Readers	may	s1ll	be	accessing	the	old	map!	
– Dele1ng	it	will	cause	nondeterminis1c	behavior	

•  Possible	solu1on:	store	the	old_map	pointer,	
delete	it	a{er	some	1me	has	gone	by	
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Hazard	Pointers	
•  Construct	for	managing	memory	in	lock-free	data	
structures	

•  Straigh�orward	concept:	
–  Read	threads	publish	hazard	pointers	that	point	to	
any	data	they	are	currently	reading	

– When	a	write	thread	wants	to	delete	data:	
•  If	it	is	not	associated	with	any	hazard	pointers,	delete	it	
•  If	it	is	associated	with	a	hazard	pointer,	add	it	to	a	list	
•  Periodically	go	through	the	list	and	reevaluate	the	data	

•  Of	course,	this	is	tricky	in	prac1ce	
–  You	need	lock-free	structures	to:	

•  Enable	publishing/upda1ng	hazard	pointers	
•  Store	the	list	of	data	blocked	by	hazards	 66	



The	ABA	Problem	
•  Subtle	problem	that	impacts	many	lock-free	
algorithms	

•  Compare	and	swap	relies	on	the	uniqueness	of	
pointers	
–  Example:	cas(&head,	current,	current->next)	

•  However,	some1mes	the	memory	manager	will	
reuse	pointers	
item * a = stack.pop(); 
free a; 
item * b = new item(); 
stack.push(b); 
assert(a != b); // this assertion may fail! 
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ABA	Example	
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bool pop(int& t) { 
  Node* current = head; 

  while(current) { 

    if(cas(&head, current, current->next)) { 

      t = current->data; 

      delete current; 

      return true; 

    } 

    current = head; 

  } 

  return false; 

} 

 

head	 0xA8B0:	
Node	3	

Thread	1:	current	

Order	of	Events	

Thread	1:	pop()	{	
					current	=	head;	

Thread	2:	pop()	{…}	

Thread	2:	push(int	N)	{…}	

					cas(...);	

0x055D:
Node	2	

0x0F12:	
Node	1	
0x0F12:	
Node	4	



Applica1ons	of	Lock-Free	Structures	

•  Stack	
•  Queue	
•  Deque	
•  Linked	list	
•  Doubly	linked	list	
•  Hash	table	
•  Many	varia1ons	on	each	

– Lock	free	vs.	wait	free	
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•  Memory	managers	
– Lock	free	malloc()	and	
free()	

•  The	Linux	kernel	
– Many	key	structures	are	
lock-free	
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