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• Hard	Drives	
• RAID	
• SSD	
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Hard	Drive	Hardware	
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Addressing	and	Geometry	
•  Externally,	hard	drives	expose	a	large	number	of	
sectors	(blocks)	
–  Typically	512	or	4096	bytes	
–  Individual	sector	writes	are	atomic	
– Mul>ple	sectors	writes	may	be	interrupted	(torn	write)	

•  Drive	geometry	
–  Sectors	arranged	into	tracks	
– A	cylinder	is	a	par>cular	track	on	mul>ple	plaAers	
–  Tracks	arranged	in	concentric	circles	on	plaAers	
– A	disk	may	have	mul>ple,	double-sided	plaAers	

•  Drive	motor	spins	the	plaAers	at	a	constant	rate	
– Measured	in	revolu>ons	per	minute	(RPM)	
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Geometry	Example	
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Common	Disk	Interfaces	
•  ST-506	à	ATA	à	IDE	à	SATA	
– Ancient	standard	
– Commands	(read/write)	and	addresses	in	cylinder/
head/sector	format	placed	in	device	registers	

– Recent	versions	support	Logical	Block	Addresses	(LBA)		
•  SCSI	(Small	Computer	Systems	Interface)	
– Packet	based,	like	TCP/IP	
– Device	translates	LBA	to	internal	format	(e.g.	c/h/s)	
– Transport	independent	
•  USB	drives,	CD/DVD/Bluray,	Firewire	
•  iSCSI	is	SCSI	over	TCP/IP	and	Ethernet	 7	



Types	of	Delay	With	Disks	
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Three	types	of	delay	
1.  Rota>onal	Delay	
–  Time	to	rotate	the	desired	

sector	to	the	read	head	
–  Related	to	RPM	

2.  Seek	delay	
–  Time	to	move	the	read	

head	to	a	different	track	

3.  Transfer	>me	
–  Time	to	read	or	write	bytes	
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How	To	Calculate	Transfer	Time	

Cheetah	15K.5	 Barracuda	

Capacity	 300	GB	 1	TB	

RPM	 15000	 7200	

Avg.	Seek	 4	ms	 9	ms	

Max	Transfer	 125	MB/s	 105	MB/s	
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Transfer	9me	
TI/O	=	Tseek	+	Trota/on	+	Ttransfer	

	



Sequen>al	vs.	Random	Access	
Rate	of	I/O	

RI/O	=	transfer_size	/	TI/O	
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Access	Type	 Transfer	Size	 Cheetah	15K.5	 Barracuda	

Random	 4096	B	
TI/O	 6	ms	 13.2	ms	

RI/O	 0.66	MB/s	 0.31	MB/s	

Sequen>al	 100	MB	
TI/O	 800	ms	 950	ms	

RI/O	 125	MB/s	 105	MB/s	

Max	Transfer	Rate	 125	MB/s	 105MB/s	

Random	I/O	results	in	very	
poor	disk	performance!	



Caching	
•  Many	disks	incorporate	caches	(track	buffer)	
–  Small	amount	of	RAM	(8,	16,	or	32	MB)	

•  Read	caching	
–  Reduces	read	delays	due	to	seeking	and	rota>on	

•  Write	caching	
–  	Write	back	cache:	drive	reports	that	writes	are	
complete	aeer	they	have	been	cached	
•  Possibly	dangerous	feature.	Why?	

–  	Write	through	cache:	drive	reports	that	writes	are	
complete	aeer	they	have	been	wriAen	to	disk	

•  Today,	some	disks	include	flash	memory	for	
persistent	caching	(hybrid	drives)	
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Disk	Scheduling	
•  Caching	helps	improve	disk	performance	
•  But	it	can’t	make	up	for	poor	random	access	
>mes	

•  Key	idea:	if	there	is	a	queue	of	requests	to	the	
disk,	they	can	be	reordered	to	improve	
performance		
– First	come,	first	serve	(FCFC)	
– Shortest	seek	>me	first	(SSTF)	
– SCAN,	otherwise	know	as	the	elevator	algorithm	
– C-SCAN,	C-LOOK,	etc.	
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FCFS	Scheduling	

•  Head	starts	
at	block	53	

•  Queue:	98,	
183,	37,	
122,	14,	
124,	65,	67	

13	•  Total	movement:	640	cylinders	

Lot’s	of	>me	spent	seeking	

•  Most	basic	scheduler,	serve	requests	in	order	received	



SSTF	Scheduling	
•  Idea:	minimize	seek	>me	by	always	selec>ng	
the	block	with	the	shortest	seek	>me	

14	•  Total	movement:	236	cylinders	

•  Head	starts	
at	block	53	

•  Queue:	98,	
183,	37,	
122,	14,	
124,	65,	67	

The	good:	SSTF	is	
op>mal,	and	it	can	

be	easily	
implemented!	

The	bad:	SSTF	is	
prone	to	
starva>on	



SCAN	Example	
•  Head	sweeps	across	the	disk	servicing	requests	
in	order	

15	•  Total	movement:	236	cylinders	

•  Head	starts	
at	block	53	

•  Queue:	98,	
183,	37,	
122,	14,	
124,	65,	67	

The	good:	
reasonable	

performance,	no	
starva>on	

The	bad:	average	
access	>mes	are	
less	for	requests	
at	high	and	low	

addresses	



C-SCAN	Example	
•  Like	SCAN,	but	only	service	requests	in	one	
direc>on	

16	•  Total	movement:	382	cylinders	

•  Head	starts	
at	block	53	

•  Queue:	98,	
183,	37,	
122,	14,	
124,	65,	67	

The	good:	fairer	
than	SCAN	

The	bad:	worse	
performance	than	

SCAN	



C-LOOK	Example	
•  Peek	at	the	upcoming	addresses	in	the	queue	
– Addresses	in	your	direc>on,	service	them		
– No	address	lee	in	your	direc>on,	change	direc>on	

17	•  Total	movement:	322	cylinders	

•  Head	starts	
at	block	53	

•  Queue:	98,	
183,	37,	
122,	14,	
124,	65,	67	



Implemen>ng	Disk	Scheduling	
•  We	have	talked	about	several	scheduling	problems	
that	take	place	in	the	kernel	
– Process	scheduling	
– Page	swapping	

•  Where	should	disk	scheduling	be	implemented?	
– OS	scheduling	
•  OS	can	implement	SSTF	or	LOOK	by	ordering	the	queue	by	LBA	
•  However,	the	OS	cannot	account	for	rota>on	delay	

– On-disk	scheduling	
•  Disk	knows	the	exact	posi>on	of	the	head	and	plaAers	
•  Can	implement	more	advanced	schedulers	(SPTF)	
•  But,	requires	specialized	hardware	and	drivers		
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Command	Queuing	
•  Feature	where	a	disk	stores	a	queue	of	pending	
read/write	requests	
– Called	Na>ve	Command	Queuing	(NCQ)	in	SATA	

•  Disk	may	reorder	items	in	the	queue	to	
improve	performance	
– E.g.	batch	opera>ons	to	close	sectors/tracks	

•  Supported	by	SCSI	and	modern	SATA	drives	
•  Tagged	command	queuing:	allows	the	host	to	
place	constraints	on	command	re-ordering	

19	



• Hard	Drives	
• RAID	
• SSD	

20	



Beyond	Single	Disks	
•  Hard	drives	are	great	devices	
– Rela>vely	fast,	persistent	storage	

•  Shortcomings:	
– How	to	cope	with	disk	failure?	

•  Mechanical	parts	break	over	>me	
•  Sectors	may	become	silently	corrupted	

– Capacity	is	limited	
•  Managing	files	across	mul>ple	physical	devices	is	
cumbersome	
•  Can	we	make	10x	1	TB	drives	look	like	a	10	TB	drive?	

21	



Redundant	Array	of	Inexpensive	Disks	
•  RAID:	use	mul>ple	disks	to	create	the	illusion	of	
a	large,	faster,	more	reliable	disk	

•  Externally,	RAID	looks	like	a	single	disk	
–  i.e.	RAID	is	transparent	
– Data	blocks	are	read/wriAen	as	usual	
– No	need	for	soeware	to	explicitly	manage	mul>ple	
disks	or	perform	error	checking/recovery	

•  Internally,	RAID	is	a	complex	computer	system	
– Disks	managed	by	a	dedicated	CPU	+	soeware	
– RAM	and	non-vola>le	memory	
– Many	different	configura>on	op>ons	(RAID	levels)	 22	



Example	RAID	Controller	
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RAID	0:	Striping	
•  Key	idea:	present	an	array	of	disks	as	a	single	
large	disk	

•  Maximize	parallelism	by	striping	data	cross	all	N	
disks	

24	

0	
4	
8	
12	

Disk	0	

1	
5	
9	
13	

Disk	1	

2	
6	
10	
14	

Disk	2	

3	
7	
11	
15	

Disk	3	

Stripe	

Data	block	=	
512	bytes	

Random	
accesses	are	

naturally	spread	
over	all	drives	

Sequen>al	
accesses	
spread	
across	all	
drives	



Addressing	Blocks	
•  How	do	you	access	specific	data	blocks?	
– Disk	=	logical_block_number	%	number_of_disks	
– Offset	=	logical_block_number	/	number_of_disks	

•  Example:	read	block	11	
– 11	%	4	=	Disk	3	
– 11	/	4	=	Physical	Block	2	(star>ng	from	0)	
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Chunk	Sizing	
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Measuring	RAID	Performance	(1)	
•  As	usual,	we	focus	on	sequen>al	and	random	
workloads	

•  Assume	disks	in	the	array	have	sequen9al	access	
>me	S	
– 10	MB	transfer		
– S	=	transfer_size	/	/me_to_access	
– 10	MB	/	(7	ms	+	3	ms	+	(10	MB	/	50	MB/s))		
=	47.62	MB/s	
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Average	seek	>me	 7	ms	
Average	rota>onal	delay	 3	ms	
Transfer	rate	 50	MB/s	



Measuring	RAID	Performance	(2)	
•  As	usual,	we	focus	on	sequen>al	and	random	
workloads	

•  Assume	disks	in	the	array	have	random	access	
>me	R	
– 10	KB	transfer		
– R	=	transfer_size	/	/me_to_access	
– 10	KB	/	(7	ms	+	3	ms	+	(10	KB	/	50	MB/s))		
	=	0.98	MB/s	
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Average	seek	>me	 7	ms	
Average	rota>onal	delay	 3	ms	
Transfer	rate	 50	MB/s	



Analysis	of	RAID	0	
•  Capacity:	N	
– All	space	on	all	drives	can	be	filled	with	data	

•  Reliability:	0	
–  If	any	drive	fails,	data	is	permanently	lost	

•  Sequen>al	read	and	write:	N	*	S	
– Full	paralleliza>on	across	drives	

•  Random	read	and	write:	N	*	R	
– Full	paralleliza>on	across	all	drives	
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RAID	1:	Mirroring	
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RAID	0+1	and	1+0	Examples	
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Analysis	of	RAID	1	(1)	
•  Capacity:	N	/	2	
– Two	copies	of	all	data,	thus	half	capacity	

•  Reliability:	1	drive	can	fail,	some>me	more	
–  If	you	are	lucky,	N	/	2	drives	can	fail	without	data	
loss	
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Analysis	of	RAID	1	(2)	
•  Sequen>al	write:	(N	/	2)	*	S	
– Two	copies	of	all	data,	thus	half	throughput	

•  Sequen>al	read:	(N	/	2)	*	S	
– Half	of	the	read	blocks	are	wasted,	thus	halving	
throughput	
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Analysis	of	RAID	1	(3)	
•  Random	read:	N	*	R	
– Best	case	scenario	for	RAID	1	
– Reads	can	parallelize	across	all	disks	

•  Random	write:	(N	/	2)	*	R	
– Two	copies	of	all	data,	thus	half	throughput	
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The	Consistent	Update	Problem	

•  Mirrored	writes	should	be	
atomic	
– All	copies	are	wriAen,	or	
none	are	wriAen	

•  However,	this	is	difficult	to	
guarantee	
–  Example:	power	failure	

•  Many	RAID	controllers	
include	a	write-ahead	log	
–  BaAery	backed,	non-vola>le	
storage	of	pending	writes	
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Decreasing	the	Cost	of	Reliability	
•  RAID	1	offers	highly	reliable	data	storage	
•  But,	it	uses	N	/	2	of	the	array	capacity	
•  Can	we	achieve	the	same	level	of	reliability	
without	was>ng	so	much	capacity?	
– Yes!	
– Use	informa>on	coding	techniques	to	build	light-
weight	error	recovery	mechanisms	
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RAID	4:	Parity	Drive	
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Upda>ng	Parity	on	Write	
•  How	is	parity	updated	when	blocks	are	wriAen?	
1.  Addi>ve	parity	
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2.  Subtrac>ve	parity	

Disk	0	 Disk	1	 Disk	2	 Disk	3	 Disk	4	

0	 0	 1	 1	 0	^	0	^	1	^	1	=	0	0	 0	^	0	^	0	^	1	=	1	

Read	other	blocks	 Update	parity	block	

Disk	0	 Disk	1	 Disk	2	 Disk	3	 Disk	4	

0	 0	 1	 1	 0	^	0	^	1	^	1	=	0	0	 1	

Pnew	=	Cold	^	Cnew	^	Pold	
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•  Random	writes	in	RAID	4	
1.  Read	the	target	block	and	the	parity	block	
2.  Use	subtrac>on	to	calculate	the	new	parity	block	
3.  Write	the	target	block	and	the	parity	block	

•  RAID	4	has	terrible	write	performance	
–  BoAlenecked	by	the	parity	drive	

All	writes	must	
update	the	parity	
drive,	causing	
serializa>on	:(	



Analysis	of	RAID	4	
•  Capacity:	N	–	1	
– Space	on	the	parity	drive	is	lost	

•  Reliability:	1	drive	can	fail	
•  Sequen>al	Read	and	write:	(N	–	1)	*	S	
– Paralleliza>on	across	all	non-parity	blocks	

•  Random	Read:	(N	–	1)	*	R	
– Reads	parallelize	over	all	but	the	parity	drive	

•  Random	Write:	R	/	2	
– Writes	serialize	due	to	the	parity	drive	
– Each	write	requires	1	read	and	1	write	of	the	parity	
drive,	thus	R	/	2	
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RAID	5:	Rota>ng	Parity	
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Random	Writes	and	RAID	5	

•  Random	writes	in	RAID	5	
1.  Read	the	target	block	and	the	parity	block	
2.  Use	subtrac>on	to	calculate	the	new	parity	block	
3.  Write	the	target	block	and	the	parity	block	

•  Thus,	4	total	opera>ons	(2	reads,	2	writes)	
–  Distributed	across	all	drives	 42	
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Analysis	of	Raid	5	
•  Capacity:	N	–	1	[same	as	RAID	4]	
•  Reliability:	1	drive	can	fail	[same	as	RAID	4]	
•  Sequen>al	Read	and	write:	(N	–	1)	*	S	[same]	
– Paralleliza>on	across	all	non-parity	blocks	

•  Random	Read:	N	*	R	[vs.	(N	–	1)	*	R]	
– Unlike	RAID	4,	reads	parallelize	over	all	drives	

•  Random	Write:	N	/	4	*	R	[vs.	R	/	2	for	RAID	4]	
– Unlike	RAID	4,	writes	parallelize	over	all	drives	
– Each	write	requires	2	reads	and	2	write,	hence	N	/	4	

43	



Comparison	of	RAID	Levels	

RAID	0	 RAID	1	 RAID	4	 RAID	5	
Capacity	 N	 N	/	2	 N	–	1	 N	–	1	
Reliability	 0	 1	(maybe	N	/	2)	 1	 1	

Th
ro
ug
hp

ut
	 Sequen>al	Read	 N	*	S	 (N	/	2)	*	S	 (N	–	1)	*	S	 (N	–	1)	*	S	

Sequen>al	Write	 N	*	S	 (N	/	2)	*	S	 (N	–	1)	*	S	 (N	–	1)	*	S	
Random	Read	 N	*	R	 N	*	R	 (N	–	1)	*	R	 N	*	R	
Random	Write	 N	*	R	 (N	/	2)	*	R	 R	/	2	 (N	/	4)	*	R	

La
te
nc
y	 Read	 D	 D	 D	 D	

Write	 D	 D	 2	*	D	 2	*	D	
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•  N	–	number	of	drives	
•  S	–	sequen>al	access	
speed	

•  R	–	random	access	speed	
•  D	–	latency	to	access	a	
single	disk	



RAID	6	

•  Any	two	drives	can	fail	
•  N	–	2	usable	capacity	
•  No	overhead	on	read,	significant	overhead	on	write	
•  Typically	implemented	using	Reed-Solomon	codes	
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Choosing	a	RAID	Level	
•  Best	performance	and	most	capacity?	
– RAID	0	

•  Greatest	error	recovery?	
– RAID	1	(1+0	or	0+1)	or	RAID	6	

•  Balance	between	space,	performance,	and	
recoverability?	
– RAID	5	
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Other	Considera>ons	
•  Many	RAID	systems	include	a	hot	spare	
– An	idle,	unused	disk	installed	in	the	system	
–  If	a	drive	fails,	the	array	is	immediately	rebuilt	using	
the	hot	spare	

•  RAID	can	be	implemented	in	hardware	or	
soeware	
– Hardware	is	faster	and	more	reliable…	
– But,	migra>ng	a	hardware	RAID	array	to	a	different	
hardware	controller	almost	never	works	

– Soeware	arrays	are	simpler	to	migrate	and	cheaper,	
but	have	worse	performance	and	weaker	reliability	
•  Due	to	the	consistent	update	problem	
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• Hard	Drives	
• RAID	
• SSD	
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Beyond	Spinning	Disks	
•  Hard	drives	have	been	around	since	1956	
– The	cheapest	way	to	store	large	amounts	of	data	
– Sizes	are	s>ll	increasing	rapidly	

•  However,	hard	drives	are	typically	the	slowest	
component	in	most	computers	
– CPU	and	RAM	operate	at	GHz	
– PCI-X	and	Ethernet	are	GB/s	

•  Hard	drives	are	not	suitable	for	mobile	devices	
– Fragile	mechanical	components	can	break	
– The	disk	motor	is	extremely	power	hungry	
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Solid	State	Drives	
•  NAND	flash	memory-based	drives	
– High	voltage	is	able	to	change	the	configura>on	of	
a	floa>ng-gate	transistor	

– State	of	the	transistor	interpreted	as	binary	data	
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Flash	memory	
chip	

Data	is	striped	
across	all	chips	



Advantages	of	SSDs	
•  More	resilient	against	physical	damage	
– No	sensi>ve	read	head	or	moving	parts	
–  Immune	to	changes	in	temperature	

•  Greatly	reduced	power	consump>on	
– No	mechanical,	moving	parts	

•  Much	faster	than	hard	drives	
– >500	MB/s	vs	~200	MB/s	for	hard	drives	
– No	penalty	for	random	access	

•  Each	flash	cell	can	be	addressed	directly	
•  No	need	to	rotate	or	seek	

– Extremely	high	throughput	
•  Although	each	flash	chip	is	slow,	they	are	RAIDed	 51	
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Challenges	with	Flash	
•  Flash	memory	is	wriAen	in	pages,	but	erased	
in	blocks	
– Pages:	4	–	16	KB,	Blocks:	128	–	256	KB	
– Thus,	flash	memory	can	become	fragmented	
– Leads	to	the	write	amplifica>on	problem	

•  Flash	memory	can	only	be	wriAen	a	fixed	
number	of	>mes	
– Typically	3000	–	5000	cycles	for	Mul>-Level	Cells	
– SSDs	use	wear	leveling	to	evenly	distribute	writes	
across	all	flash	cells	
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Write	Amplifica>on	

•  Once	all	pages	have	been	wriAen,	valid	pages	
must	be	consolidated	to	free	up	space	

•  	Write	amplifica>on:	a	write	triggers	garbage	
collec>on/compac>on	
– One	or	more	blocks	must	be	read,	erased,	and	
rewriAen	before	the	write	can	proceed	 54	
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Garbage	Collec>on	
•  Garbage	collec>on	(GC)	is	vital	for	the	
performance	of	SSDs	

•  Older	SSDs	had	fast	writes	up	un>l	all	pages	
were	wriAen	once	
– Even	if	the	drive	has	lots	of	“free	space,”	each	
write	is	amplified,	thus	reducing	performance	

•  Many	SSDs	over-provision	to	help	the	GC	
– 240	GB	SSDs	actually	have	256	GB	of	memory	

•  Modern	SSDs	implement	background	GC	
– However,	this	doesn’t	always	work	correctly	
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The	Ambiguity	of	Delete	
•  Goal:	the	SSD	wants	to	perform	background	GC	
– But	this	assumes	the	SSD	knows	which	pages	are	
invalid	

•  Problem:	most	file	systems	don’t	actually	delete	
data	
– On	Linux,	the	“delete”	func>on	is	unlink()	
– Removes	the	file	meta-data,	but	not	the	file	itself	
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Delete	Example	

1.  File	is	wriAen	to	SSD	
2.  File	is	deleted	
3.  The	GC	executes	
–  9	pages	look	valid	to	the	SSD	
–  The	OS	knows	only	2	pages	

are	valid	
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TRIM	
•  New	SATA	command	TRIM	(SCSI	–	UNMAP)	
– Allows	the	OS	to	tell	the	SSD	that	specific	LBAs	are	
invalid,	may	be	GCed	
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•  OS	support	for	TRIM	
– Win	7,	OSX	Snow	Leopard,	Linux	2.6.33,	Android	4.3	

•  Must	be	supported	by	the	SSD	firmware	
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Wear	Leveling	
•  Recall:	each	flash	cell	wears	out	aeer	several	
thousand	writes	

•  SSDs	use	wear	leveling	to	spread	writes	across	
all	cells	
– Typical	consumer	SSDs	should	last	~5	years	
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Wear	Leveling	Examples	
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SSD	Controllers	

•  All	opera>ons	handled	by	the	SSD	controller	
– Maps	LBAs	to	physical	pages	
– Keeps	track	of	free	pages,	controls	the	GC	
– May	implement	background	GC	
– Performs	wear	leveling	via	data	rota>on	

•  Controller	performance	is	crucial	for	overall	
SSD	performance	
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•  SSDs	are	extremely	complicated	
internally	



Flavors	of	NAND	Flash	Memory	
Mul9-Level	Cell	(MLC)	

•  One	bit	per	flash	cell	
–  0	or	1	

•  Lower	capacity	and	more	
expensive	than	MLC	flash	

•  Higher	throughput	than	MLC	
•  10000	–	100000	write	cycles	

Expensive,	enterprise	drives	

Single-Level	Cell	(SLC)	
•  Mul>ple	bits	per	flash	cell	

–  For	two-level:	00,	01,	10,	11	
–  2,	3,	and	4-bit	MLC	is	available	

•  Higher	capacity	and	cheaper	
than	SLC	flash	

•  Lower	throughput	due	to	the	
need	for	error	correc>on	

•  3000	–	5000	write	cycles	
•  Consumes	more	power	

Consumer-grade	drives	
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