
CS	5600	
Computer	Systems	

Lecture	6:	Process	Scheduling	
	



• Scheduling	Basics	
• Simple	Schedulers	
• Priority	Schedulers	
• Fair	Share	Schedulers	
• Mul<-CPU	Scheduling	
• Case	Study:	The	Linux	Kernel	

2	



SeEng	the	Stage	

•  Suppose	we	have:	
– A	computer	with	N	CPUs	
– P	process/threads	that	are	ready	to	run	

•  Ques<ons	we	need	to	address:	
–  In	what	order	should	the	processes	be	run?	
– On	what	CPU	should	each	process	run?	

3	



Factors	Influencing	Scheduling	
•  Characteris<cs	of	the	processes	
– Are	they	I/O	bound	or	CPU	bound?	
– Do	we	have	metadata	about	the	processes?	

•  Example:	deadlines	
–  Is	their	behavior	predictable?	

•  Characteris<cs	of	the	machine	
– How	many	CPUs?	
–  Can	we	preempt	processes?	
– How	is	memory	shared	by	the	CPUs?	

•  Characteris<cs	of	the	user	
– Are	the	processes	interac<ve	(e.g.	desktop	apps)…	
– Or	are	the	processes	background	jobs?	

4	



Basic	Scheduler	Architecture	
•  Scheduler	selects	from	the	ready	processes,	and	
assigns	them	to	a	CPU	
–  System	may	have	>1	CPU	
–  Various	different	approaches	for	selec<ng	processes	

•  Scheduling	decisions	are	made	when	a	process:	
1.  Switches	from	running	to	wai-ng	
2.  Terminates	
3.  Switches	from	running	to	ready	
4.  Switches	from	wai-ng	to	ready	

•  Scheduler	may	have	access	to	addi<onal	informa<on	
–  Process	deadlines,	data	in	shared	memory,	etc.	

5	

No	preemp7on	

Preemp7on	



Dispatch	Latency	
•  The	dispatcher	gives	control	of	the	CPU	to	the	
process	selected	by	the	scheduler	
– Switches	context	
– Switching	to/from	kernel	mode/user	mode	
– Saving	the	old	EIP,	loading	the	new	EIP	

•  Warning:	dispatching	incurs	a	cost	
– Context	switching	and	mode	switch	are	expensive	
– Adds	latency	to	processing	<mes	

•  It	is	advantageous	to	minimize	process	
switching	 6	



A	Note	on	Processes	&	Threads	

•  Let’s	assume	that	processes	and	threads	are	
equivalent	for	scheduling	purposes	
– Kernel	supports	threads	

•  System-conten<on	scope	(SCS)	

– Each	process	has	>=1	thread	
•  If	kernel	does	not	support	threads	
– Each	process	handles	it’s	own	thread	scheduling	
– Process	conten<on	scope	(PCS)	

7	



Basic	Process	Behavior	
•  Processes	alternate	
between	doing	work	
and	wai<ng	
– Work	à	CPU	Burst	

•  Process	behavior	varies	
–  I/O	bound	
–  CPU	bound	

•  Expected	CPU	burst	
distribu<on	is	
important	for	scheduler	
design	
– Do	you	expect	more	CPU	
or	I/O	bound	processes?	

8	

Process	1	 Process	2	

Execute	
Code	

Execute	
Code	

Execute	
Code	

Execute	
Code	

Execute	
Code	

Wai<ng	
on	I/O	

Wai<ng	
for	mutex	

sleep(1)	

CPU	
Burst	

Wait	

Wai<ng	
on	I/O	

Wai<ng	
on	I/O	



Scheduling	Op<miza<on	Criteria	
•  	Max	CPU	u<liza<on	–	keep	the	CPU	as	busy	as	possible	
•  	Max	throughput	–	#	of	processes	that	finish	over	<me	
–  	Min	turnaround	<me	–	amount	of	<me	to	finish	a	process	
–  	Min	wai<ng	<me	–	amount	of	<me	a	ready	process	has	
been	wai<ng	to	execute	

•  	Min	response	<me	–	amount	<me	between	submiEng	
a	request	and	receiving	a	response	
–  E.g.	<me	between	clicking	a	bumon	and	seeing	a	response	

•  	Fairness	–	all	processes	receive	min/max	fair	CPU	
resources	

9	



Impossible	To	Meet	

•  No	scheduler	can	meet	all	previous	criteria	
•  Most	important	criteria	depends	on	factors	
– Types	of	processes	
– Expecta<ons	of	the	system	

•  Response	<me	important	on	desktop	
•  Throughput	is	more	important	for	MapReduce	

10	



• Scheduling	Basics	
• Simple	Schedulers	
• Priority	Schedulers	
• Fair	Share	Schedulers	
• Mul<-CPU	Scheduling	
• Case	Study:	The	Linux	Kernel	

11	



First	Come,	First	Serve	(FCFS)	
•  Simple	scheduler	
– Processes	stored	in	a	FIFO	queue	
– Served	in	order	of	arrival	

12	

Process	 Burst	
Time	

Arrival	
Time	

P1	 24	 0.000	

P2	 3	 0.001	

P3	 3	 0.002	

P1	 P2	 P3	
Time:	0	 24	 27	 30	

•  Turnaround	<me	=	comple<on	<me	-	arrival	<me		
–  P1	=	24;	P2	=	27;	P3	=	30	
– Average	turnaround	<me:	(24	+	27	+	30)	/	3	=	27	



The	Convoy	Effect	
•  FCFS	scheduler,	but	the	arrival	order	has	changed	

13	

P1	P2	 P3	
Time:	0	 3	 6	 30	

•  Turnaround	<me:	P1	=	30;	P2	=3;	P3	=	6	
– Average	turnaround	<me:	(30	+	3	+	6)	/	3	=	13	
– Much	bemer	than	the	previous	arrival	order!	

•  Convoy	effect	(a.k.a.	head-of-line	blocking)	
– Long	process	can	impede	short	processes	
– E.g.:	CPU	bound	process	followed	by	I/O	bound	process	

Process	 Burst	
Time	

Arrival	
Time	

P1	 24	 0.002	

P2	 3	 0.000	

P3	 3	 0.001	



Shortest	Job	First	(SJF)	
•  Schedule	processes	based	on	the	length	of	
their	next	CPU	burst	<me	
– Shortest	processes	go	first	

14	

Process	 Burst	
Time	

Arrival	
Time	

P1	 6	 0	

P2	 8	 0	

P3	 7	 0	

P4	 3	 0	

P3	P4	 P1	
Time:	0	 3	 9	 16	

P2	
24	

•  Average	turnaround	<me:	(3	+	16	+	9	+	24)	/	4	=	
13	

•  SJF	is	op<mal:	guarantees	minimum	average	wait	
<me	



Predic<ng	Next	CPU	Burst	Length	
•  Problem:	future	CPU	burst	<mes	may	be	
unknown	

•  Solu<on:	es<mate	the	next	burst	<me	based	on	
previous	burst	lengths	
– Assumes	process	behavior	is	not	highly	variable	
– Use	exponen<al	averaging	
•  tn	–	measured	length	of	the	nth	CPU	burst	
•  τn+1	–	predicted	value	for	n+1th	CPU	burst	
•  α	–	weight	of	current	and	previous	measurements	(0	≤	α	≤	
1)	
•  τn+1	=	αtn	+	(1	–	α)	τn	

– Typically,	α	=	0.5	 15	



16	

6	

4	

6	

4	

13	 13	 13	

10	

8	

6	 6	

5	

9	

11	

12	

0	

2	

4	

6	

8	

10	

12	

14	

Bu
rs
t	L
en

gt
h	

Time	

Actual	and	Es7mated	CPU	Burst	Times	

True	CPU	Burst	Length	 Es<mated	Burst	Length	



What	About	Arrival	Time?	

•  SJF	scheduler,	CPU	burst	lengths	are	known	

17	

Process	 Burst	
Time	

Arrival	
Time	

P1	 24	 0	

P2	 3	 2	

P3	 3	 3	

P1	 P2	 P3	
Time:	0	 24	 27	 30	

•  Scheduler	must	choose	from	available	
processes	
– Can	lead	to	head-of-line	blocking	
– Average	turnaround	<me:	(24	+	25	+	27)	/	3	=	25.3	



Shortest	Time-To-Comple<on	First	(STCF)	
•  Also	known	as	Preemp<ve	SJF	(PSJF)	
– Processes	with	long	bursts	can	be	context	
switched	out	in	favor	or	short	processes		

18	

Process	 Burst	
Time	

Arrival	
Time	

P1	 24	 0	

P2	 3	 2	

P3	 3	 3	

P1	 P2	 P3	
Time:	0	 2	 5	 8	

P1	
30	

•  Turnaround	<me:	P1	=	30;	P2	=	3;	P3	=	5	
– Average	turnaround	<me:	(30	+	3	+	5)	/	3	=	12.7	

•  STCF	is	also	op<mal	
– Assuming	you	know	future	CPU	burst	<mes		



Interac<ve	Systems	

•  Imagine	you	are	typing/clicking	in	a	desktop	app	
– You	don’t	care	about	turnaround	<me	
– What	you	care	about	is	responsiveness	
•  E.g.	if	you	start	typing	but	the	app	doesn’t	show	the	text	for	
10	seconds,	you’ll	become	frustrated		

•  Response	<me	=	first	run	<me	–	arrival	<me	

19	



Response	vs.	Turnaround	

•  Assume	an	STCF	scheduler	

20	

Process	 Burst	
Time	

Arrival	
Time	

P1	 6	 0	

P2	 8	 0	

P3	 10	 0	

P1	
Time:	0	 6	 24	

P2	 P3	
14	

•  Avg.	turnaround	<me:	(6	+	14	+	24)	/	3	=	14.7	
•  Avg.	response	<me:	(0	+	6	+	14)	/	3	=	6.7	



Round	Robin	(RR)	

•  Round	robin	(a.k.a	<me	slicing)	scheduler	is	
designed	to	reduce	response	<mes	
– RR	runs	jobs	for	a	<me	slice	(a.k.a.	scheduling	
quantum)	

– Size	of	<me	slice	is	some	mul<ple	of	the	<mer-
interrupt	period	

21	



RR	vs.	STCF	

22	

Process	 Burst	
Time	

Arrival	
Time	

P1	 6	 0	

P2	 8	 0	

P3	 10	 0	

P1	
Time:	0	 6	 24	

P2	 P3	
14	

•  Avg.	turnaround	<me:	(6	+	14	+	24)	/	3	=	14.7	
•  Avg.	response	<me:	(0	+	6	+	14)	/	3	=	6.7	

P1	

Time:	0	 2	

•  2	second	<me	slices	
•  Avg.	turnaround	<me:	(14	+	20	+	24)	/	3	=	19.3	
•  Avg.	response	<me:	(0	+	2	+	4)	/	3	=	2	

P2	 P3	 P1	 P2	 P3	 P1	 P2	 P3	 P2	 P3	

4	 6	 8	 10	 12	 14	 16	 18	 20	 24	

STCF	

RR	



Tradeoffs	
RR	

+  Excellent	response	<mes	
+  With	N	process	and	<me	slice	of	Q…	
+  No	process	waits	more	than	(N-1)/Q	

<me	slices	

+  Achieves	fairness	
+  Each	process	receives	1/N	CPU	<me	

-  Worst	possible	turnaround	<mes	
-  	If	Q	is	large	à	FIFO	behavior	

STCF	
+  Achieves	op<mal,	low	

turnaround	<mes	
-  Bad	response	<mes	
-  Inherently	unfair	

-  Short	jobs	finish	first	

23	

•  Op<mizing	for	turnaround	or	response	<me	is	a	trade-off	
•  Achieving	both	requires	more	sophis<cated	algorithms	



Selec<ng	the	Time	Slice	

•  Smaller	<me	slices	=	faster	response	<mes	
•  So	why	not	select	a	very	<ny	<me	slice?	
– E.g.	1µs	

•  Context	switching	overhead	
– Each	context	switch	wastes	CPU	<me	(~10µs)	
–  If	<me	slice	is	too	short,	context	switch	overhead	
will	dominate	overall	performance	

•  This	results	in	another	tradeoff	
– Typical	<me	slices	are	between	1ms	and	100ms	

24	



Incorpora<ng	I/O	

•  How	do	you	incorporate	I/O	waits	into	the	scheduler?	
–  Treat	<me	in-between	I/O	waits	as	CPU	burst	<me	

25	

Process	 Total	
Time	

Burst	
Time	

Wait	
Time	

Arrival	
Time	

P1	 22	 5	 5	 0	

P2	 20	 20	 0	 0	

P1	

Time:	0	 5	

P2	

10	 15	 20	 25	 30	 35	 40	

P1	 P2	 P1	 P2	 P1	 P2	

P1	

CPU	

Disk	 P1	 P1	 P1	

P1	

42	

STCF	
Scheduler	



• Scheduling	Basics	
• Simple	Schedulers	
• Priority	Schedulers	
• Fair	Share	Schedulers	
• Mul<-CPU	Scheduling	
• Case	Study:	The	Linux	Kernel	

26	



Status	Check	

•  Introduced	two	different	types	of	schedulers	
– SJF/STCF:	op<mal	turnaround	<me	
– RR:	fast	response	<me	

•  Open	problems:	
–  Ideally,	we	want	fast	response	<me	and	turnaround	
•  E.g.	a	desktop	computer	can	run	interac<ve	and	CPU	
bound	processes	at	the	same	<me	

– SJF/STCF	require	knowledge	about	burst	<mes	
•  Both	problems	can	be	solved	by	using	
priori<za<on	

27	



Priority	Scheduling	

•  We	have	already	seen	examples	of	priority	
schedulers	
– SJF,	STCF	are	both	priority	schedulers	
– Priority	=	CPU	burst	<me	

•  Problem	with	priority	scheduling	
–  	Starva<on:	high	priority	tasks	can	dominate	the	CPU	

•  Possible	solu<on:	dynamically	vary	priori<es	
– Vary	based	on	process	behavior	
– Vary	based	on	wait	<me	(i.e.	length	of	<me	spent	in	
the	ready	queue)	

28	



Simple	Priority	Scheduler	

29	

Process	 Burst	Time	 Arrival	Time	 Priority	

P1	 10	 0	 3	

P2	 2	 0	 1	

P3	 3	 0	 4	

P4	 2	 0	 5	

P5	 5	 0	 2	

P2	
Time:	0	 2	 22	

P5	 P1	
17	

•  Avg.	turnaround	<me:	(17	+	2	+	20	+	22	+	7)	/	5	=	13.6	
•  Avg.	response	<me:	(7	+	0	+	17	+	20	+	2)	/	5	=	9.2	

P3	 P4	
7	 20	

•  Associate	a	priority	with	each	process	
–  Schedule	high	priority	tasks	first	
–  Lower	numbers	=	high	priority	
–  No	preemp<on	

•  Cannot	automa<cally	balance	response	vs.	turnaround	<me	
•  Prone	to	starva<on	



Earliest	Deadline	First	(EDF)	
•  Each	process	has	a	deadline	it	must	finish	by	
•  Priori<es	are	assigned	according	to	deadlines	
– Tighter	deadlines	are	given	higher	priority	

30	

•  EDF	is	op<mal	(assuming	preemp<on)	
•  But,	it’s	only	useful	if	processes	have	known	deadlines	
–  Typically	used	in	real-<me	OSes	

Process	 Burst	
Time	

Arrival	
Time	

Deadline	

P1	 15	 0	 40	

P2	 3	 4	 10	

P3	 6	 10	 20	

P4	 4	 13	 18	

P1	
0	 4	 17	

P2	 P1	
10	

P3	 P4	
7	 13	

P3	
20	

P1	
28	



Mul<level	Queue	(MLQ)	

•  Key	idea:	divide	the	ready	queue	in	two	
1.  High	priority	queue	for	interac<ve	processes	
•  RR	scheduling	

2.  Low	priority	queue	for	CPU	bound	processes	
•  FCFS	scheduling	

•  Simple,	sta<c	configura<on	
–  Each	process	is	assigned	a	priority	on	startup	
–  Each	queue	is	given	a	fixed	amount	of	CPU	<me	
•  80%	to	processes	in	the	high	priority	queue	
•  20%	to	processes	in	the	low	priority	queue	

31	



MLQ	Example	

32	

Process	 Arrival	Time	 Priority	

P1	 0	 1	

P2	 0	 1	

P3	 0	 1	

P4	 0	 2	

P5	 1	 2	

P1	 P4	P2	 P3	 P1	 P2	 P3	 P1	 P2	
Time:	0	 2	 4	 6	 8	 10	 12	 14	 16	 20	

P3	 P4	P1	 P2	 P3	 P1	 P2	 P3	 P1	
Time:	20	 22	 24	 26	 28	 30	 32	 34	 36	 40	

P2	 P4	P3	 P1	 P2	 P3	 P1	 P2	 P3	
Time:	40	 42	 44	 46	 48	 50	 52	 54	 56	 60	

P5	

80%	High	priority,	RR	 20%	low	priority,	FCFS	



Problems	with	MLQ	

•  Assumes	you	can	classify	processes	into	high	
and	low	priority	
– How	could	you	actually	do	this	at	run	<me?	
– What	of	a	processes’	behavior	changes	over	<me?	

•  i.e.	CPU	bound	por<on,	followed	by	interac<ve	por<on	
•  Highly	biased	use	of	CPU	<me	
– Poten<ally	too	much	<me	dedicated	to	interac<ve	
processes	

– Convoy	problems	for	low	priority	tasks	

33	



Mul<level	Feedback	Queue	(MLFQ)	

•  Goals	
– Minimize	response	<me	and	turnaround	<me	
– Dynamically	adjust	process	priori<es	over	<me	

•  No	assump<ons	or	prior	knowledge	about	burst	<mes	
or	process	behavior	

•  High	level	design:	generalized	MLQ	
– Several	priority	queues	
– Move	processes	between	queue	based	on	
observed	behavior	(i.e.	their	history)	

34	



First	4	Rules	of	MFLQ	

•  Rule	1:	If	Priority(A)	>	Priority(B),	A	runs,	B	doesn’t	
•  Rule	2:	If	Priority(A)	=	Priority(B),	A	&	B	run	in	RR	
•  Rule	3:	Processes	start	at	the	highest	priority	
•  Rule	4:		
– Rule	4a:	If	a	process	uses	an	en<re	<me	slice	while	
running,	its	priority	is	reduced	

– Rule	4b:	If	a	process	gives	up	the	CPU	before	its	<me	
slice	is	up,	it	remains	at	the	same	priority	level	

35	



MLFQ	Examples	
CPU	Bound	Process	 Interac7ve	Process	

36	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	

Hits	Time	
Limit		

Finished	

I/O	Bound	and	
CPU	Bound	
Processes	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	

Blocked	
on	I/O	

Hits	Time	
Limit		

Hits	Time	
Limit		



Problems	With	MLFQ	So	Far…	

•  Starva<on	

37	

High	priority	
processes	
always	take	
precedence	
over	low	
priority	

•  Chea<ng	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	

Unscrupulous	
process	never	
gets	demoted,	
monopolizes	
CPU	<me	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	sleep(1ms)	just	
before	<me	slice	

expires	



MLFQ	Rule	5:	Priority	Boost	

•  Rule	5:	A|er	some	<me	period	S,	move	all	
processes	to	the	highest	priority	queue	

•  Solves	two	problems:	
– Starva<on:	low	priority	processes	will	eventually	
become	high	priority,	acquire	CPU	<me	

– Dynamic	behavior:	a	CPU	bound	process	that	has	
become	interac<ve	will	now	be	high	priority	

38	



Priority	Boost	Example	

Without	Priority	Boost	 With	Priority	Boost	

39	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	

Priority	Boost	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	 16	 18	

Starva<on	:(	



Revised	Rule	4:	Cheat	Preven<on	

•  Rule	4a	and	4b	let	a	process	game	the	scheduler	
– Repeatedly	yield	just	before	the	<me	limit	expires	

•  Solu<on:	bemer	accoun<ng	
– Rule	4:	Once	a	process	uses	up	its	<me	allotment	at	a	
given	priority	(regardless	of	whether	it	gave	up	the	
CPU),	demote	its	priority	

– Basically,	keep	track	of	total	CPU	<me	used	by	each	
process	during	each	<me	interval	S	
•  Instead	of	just	looking	at	con<nuous	CPU	<me	

40	



Preven<ng	Chea<ng	

Without	Cheat	Preven7on	 With	Cheat	Preven7on	

41	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	

Q0	

Q1	

Q2	

Time:	0	 2	 4	 6	 8	 10	 12	 14	 16	

sleep(1ms)	just	before	
<me	slice	expires	

Time	allotment	
exhausted	

Time	allotment	
exhausted	

Round	robin	



MLFQ	Rule	Review	

•  Rule	1:	If	Priority(A)	>	Priority(B),	A	runs,	B	
doesn’t	

•  Rule	2:	If	Priority(A)	=	Priority(B),	A	&	B	run	in	RR	
•  Rule	3:	Processes	start	at	the	highest	priority	
•  Rule	4:	Once	a	process	uses	up	its	<me	allotment	
at	a	given	priority,	demote	it	

•  Rule	5:	A|er	some	<me	period	S,	move	all	
processes	to	the	highest	priority	queue	

42	



Parameterizing	MLFQ	
•  MLFQ	meets	our	goals	
– Balances	response	<me	and	turnaround	<me	
– Does	not	require	prior	knowledge	about	processes	

•  But,	it	has	many	knobs	to	tune	
– Number	of	queues?	
– How	to	divide	CPU	<me	between	the	queues?	
– For	each	queue:	
• Which	scheduling	regime	to	use?	
•  Time	slice/quantum?	

– Method	for	demo<ng	priori<es?	
– Method	for	boos<ng	priori<es?		

	
43	



MLFQ	In	Prac<ce	

•  Many	OSes	use	MLFQ-like	schedulers	
– Example:	Windows	NT/2000/XP/Vista,	Solaris,	FreeBSD	

•  OSes	ship	with	“reasonable”	MLFQ	parameters	
– Variable	length	<me	slices	
•  High	priority	queues	–	short	<me	slices	
•  Low	priority	queues	–	long	<me	slices	

– Priority	0	some<mes	reserved	for	OS	processes	

44	



Giving	Advice	

•  Some	OSes	allow	users/processes	to	give	the	
scheduler	“hints”	about	priori<es	

•  Example:	nice	command	on	Linux	
$	nice	<op<ons>	<command	[args	…]>	
– Run	the	command	at	the	specified	priority	
– Priori<es	range	from	-20	(high)	to	19	(low)	

45	



• Scheduling	Basics	
• Simple	Schedulers	
• Priority	Schedulers	
• Fair	Share	Schedulers	
• Mul<-CPU	Scheduling	
• Case	Study:	The	Linux	Kernel	

46	



Status	Check	

•  Thus	far,	we	have	examined	schedulers	
designed	to	op<mize	performance	
– Minimum	response	<mes	
– Minimum	turnaround	<mes	

•  MLFQ	achieves	these	goals,	but	it’s	complicated	
– Non-trivial	to	implement	
– Challenging	to	parameterize	and	tune	

•  What	about	a	simple	algorithm	that	achieves	
fairness?	

47	



Lomery	Scheduling	
•  Key	idea:	give	each	process	a	bunch	of	<ckets	
– Each	<me	slice,	scheduler	holds	a	lomery	
– Process	holding	the	winning	<cket	gets	to	run	

48	

•  Probabilis<c	scheduling	
– Over	<me,	run	<me	for	each	process	converges	to	the	
correct	value	(i.e.	the	#	of	<ckets	it	holds)	

Process	 Arrival	Time	 Ticket	Range	

P1	 0	 0-74	(75	total)	

P2	 0	 75-99	(25	total)	

P1	 P2	 P1	 P1	 P1	 P2	 P2	 P1	
Time:	0	 2	 4	 6	 8	 10	 12	 14	 16	 20	

P1	 P1	 P1	
18	 22	

•  P1	ran	8	of	11	slices	–	72%	
•  P2	ran	3	of	11	slices	–	27%	



Implementa<on	Advantages	
•  Very	fast	scheduler	execu<on	
– All	the	scheduler	needs	to	do	is	run	random()	
– No	need	to	manage	O(log	N)	priority	queues	

•  No	need	to	store	lots	of	state	
–  Scheduler	needs	to	know	the	total	number	of	<ckets	
– No	need	to	track	process	behavior	or	history	

•  Automa<cally	balances	CPU	<me	across	processes	
– New	processes	get	some	<ckets,	adjust	the	overall	size	of	
the	<cket	pool	

•  Easy	to	priori<ze	processes	
– Give	high	priority	processes	many	<ckets	
– Give	low	priority	processes	a	few	<ckets	
–  Priori<es	can	change	via	<cket	infla<on	(i.e.	min<ng	<ckets)	



Is	Lomery	Scheduling	Fair?	

•  Does	lomery	scheduling	
achieve	fairness?	
– Assume	two	processes	
with	equal	<ckets	

– Run<me	of	processes	
varies	

– Unfairness	ra<o	=	1	if	
both	processes	finish	at	
the	same	<me	

50	

Unfair	to	short	job	
due	to	randomness	

Randomness	is	
amor<zed	over	long	

<me	scales	



Stride	Scheduling	

•  Randomness	lets	us	build	a	simple	and	
approximately	fair	scheduler	
– But	fairness	is	not	guaranteed	

•  Why	not	build	a	determinis<c,	fair	scheduler?	
•  Stride	scheduling	
– Each	process	is	given	some	<ckets	
– Each	process	has	a	stride	=	a	big	#	/	#	of	<ckets	
– Each	<me	a	process	runs,	its	pass	+=	stride	
– Scheduler	chooses	process	with	the	lowest	pass	to	
run	next	 51	



Stride	Scheduling	Example	

52	

Process	 Arrival	
Time	

Tickets	 Stride	
(K	=	10000)	

P1	 0	 100	 100	

P2	 0	 50	 200	

P3	 0	 250	 40	

P1	
pass	

P2	
pass	

P3	
pass	

Who	
runs?	

0	 0	 0	 P1	

100	 0	 0	 P2	

100	 200	 0	 P3	

100	 200	 40	 P3	

100	 200	 80	 P3	

100	 200	 120	 P1	

200	 200	 120	 P3	

200	 200	 160	 P3	

200	 200	 200	 …	
•  P1	ran	2	of	8	slices	–	25%	
•  P2	ran	1	of	8	slices	–	12.5%	
•  P3	ran	5	of	8	slices	–	62.5%	

•  P1:	100	of	400	7ckets	–	25%	
•  P2:	50	of	400	7ckets	–	12.5%	
•  P3:	250	of	400	7ckets	–	62.5%	



Lingering	Issues	

•  Why	choose	lomery	over	stride	scheduling?	
– Stride	schedulers	need	to	store	a	lot	more	state	
– How	does	a	stride	scheduler	deal	with	new	processes?	
•  Pass	=	0,	will	dominate	CPU	un<l	it	catches	up	

•  Both	schedulers	require	<ckets	assignment	
– How	do	you	know	how	many	<ckets	to	assign	to	each	
process?	

– This	is	an	open	problem	

53	



• Scheduling	Basics	
• Simple	Schedulers	
• Priority	Schedulers	
• Fair	Share	Schedulers	
• Mul<-CPU	Scheduling	
• Case	Study:	The	Linux	Kernel	

54	



Status	Check	

•  Thus	far,	all	of	our	schedulers	have	assumed	a	
single	CPU	core	

•  What	about	systems	with	mul<ple	CPUs?	
– Things	get	a	lot	more	complicated	when	the	
number	of	CPUs	>	1	

55	



Symmetric	Mul<processing	(SMP)	
•  ≥2	homogeneous	processors	
– May	be	in	separate	physical	packages	

•  Shared	main	memory	and	system	bus	
•  Single	OS	that	treats	all	processors	equally	

56	

Main	
Memory	

System	Bus	

L1	Cache	

Core	

L1	Cache	

Core	

CPU	1	

L2	Cache	

L1	Cache	

Core	

L1	Cache	

Core	

CPU	2	

L2	Cache	



Hyperthreading	

•  Two	threads	on	a	single	CPU	core	

57	

Non-	
Hyperthreaded	
Core	

Hyperthreaded	
Core	

Thread	1	 CPU	Busy	 Memory	
Stall	 CPU	Busy	 Memory	

Stall	

Thread	2	 CPU	Busy	CPU	Busy	 Memory	
Stall	

Thread	1	 CPU	Busy	 Memory	
Stall	 CPU	Busy	 Memory	

Stall	



Brief	Intro	to	CPU	Caches	

58	

Main	
Memory	

System	Bus	

L1	Cache	

Core	

L1	Cache	

Core	

CPU	1	

L2	Cache	

L1	Cache	

Core	

L1	Cache	

Core	

CPU	2	

L2	Cache	

P1	Data	

P2	Data	

P3	Data	

P1	

P1	

P1	

P2	

P2	

P2	

P3	

P3	

P3	

P1	

P1	

Memory	fetches	
are	slow	:(	

Cache	hits	
are	fast	:)	

P1	has	fast	access	
to	P2’s	data	

…	but	access	to	
P3’s	data	is	slow	

•  Process	performance	is	linked	to	locality	
–  Ideally,	a	process	should	be	placed	close	to	its	data	

•  Shared	data	is	problema<c	due	to	cache	coherency	
– P3	writes	variable	x,	new	value	is	cached	in	CPU	2	
– P2	in	CPU	1	reads	x,	but	value	in	main	memory	is	stale	



NUMA	and	Affinity	
•  Non-Uniform	Memory	Access	(NUMA)	architecture	
– Memory	access	<me	depends	on	the	loca<on	of	the	data	
rela<ve	to	the	reques<ng	process	

•  Leads	to	cache	affinity	
–  Ideally,	processes	want	to	stay	close	to	their	cached	data	

59	

CPU	1	 P1	

P2	

P3	

CPU	2	



CPU	0	

CPU	1	

CPU	2	

CPU	3	

Single	Queue	Scheduling	
•  Single	Queue	Mul<processor	Scheduling	(SQMS)	
– Most	basic	design:	all	processes	go	into	a	single	queue	
–  CPUs	pull	tasks	from	the	queue	as	needed	
– Good	for	load	balancing	(CPUs	pull	processes	on	demand)	

60	

Process	Queue	 P1	 P2	 P3	 P4	 P5	

P1	

P2	

P3	

P4	

P1	 P2	 P3	 P4	



Problems	with	SQMS	

•  The	process	queue	is	a	shared	data	structure	
– Necessitates	locking,	or	careful	lock-free	design	

•  SQMS	does	not	respect	cache	affinity	

61	

CPU	0	

CPU	1	

CPU	2	

CPU	3	

Process	Queue	 P1	 P2	 P3	 P4	 P5	

P1	

P2	

P3	

P4	

P1	 P2	 P3	 P4	

P5	

P1	

P2	

P3	

P5	 P1	 P2	 P3	

P4	

P5	

P1	

P2	

Time	

P4	 P5	 P1	 P2	

P3	

P4	

P5	

P1	

Worst	case	scenario:	
processes	rarely	run	
on	the	same	CPU	



Mul<-Queue	Scheduling	

•  SQMS	can	be	modified	to	preserve	affinity	
•  Mul<ple	Queue	Mul<processor	Scheduling	(MQMS)	
– Each	CPU	maintains	it’s	own	queue	of	processes	
– CPUs	schedule	their	processes	independently	

62	

CPU	0	

CPU	1	

Queue	0	 P1	

P2	

P3	

P4	

P1	

P2	

P3	

P4	

P1	

P2	Queue	1	



CPU	0	

CPU	1	

Queue	0	

Queue	1	

Advantages	of	MQMS	

•  Very	limle	shared	data	
– Queues	are	(mostly)	independent	

•  Respects	cache	affinity	

63	

P1	

P2	

P3	

P4	

P1	

P2	

P3	

P4	

P1	

P2	

Time	

P3	

P4	

P1	

P2	



Shortcoming	of	MQMS	

•  MQMS	is	prone	to	load	imbalance	due	to:	
– Different	number	of	processes	per	CPU	
– Variable	behavior	across	processes	

•  Must	be	dealt	with	through	process	migra<on	
64	

Queue	0	

Queue	1	

P1	

P4	P2	

CPU	0	

CPU	1	

P1	

P2	 P4	

Time	

P1	

P2	

…	

Idle	the	CPU?	

CPU	0	

CPU	1	

P1	

P2	 P4	

Time	

P2	

Unfair	CPU	Usage?	



Strategies	for	Process	Migra<on	
•  	Push	migra<on	

65	

•  	Pull	migra<on,	a.k.a.	work	stealing	

CPU	0	/	Queue	0	

CPU	1	/	Queue	1	

P1	

P2	 P4	 P3	
“I	have	too	many	

processes,	take	one”	

CPU	0	/	Queue	0	

CPU	1	/	Queue	1	

P1	

P2	 P4	 P3	

“I	don’t	have	enough	
processes,	give	me	one”	



• Scheduling	Basics	
• Simple	Schedulers	
• Priority	Schedulers	
• Fair	Share	Schedulers	
• Mul<-CPU	Scheduling	
• Case	Study:	The	Linux	Kernel	

66	



Final	Status	Check	
•  At	this	point,	we	have	looked	at	many:	
– Scheduling	algorithms	
– Types	of	processes	(CPU	vs.	I/O	bound)	
– Hardware	configura<ons	(SMP)	

•  What	do	real	OSes	do?	
•  Case	study	on	the	Linux	kernel	
– Old	scheduler:	O(1)	
– Current	scheduler:	Completely	Fair	Scheduler	(CFS)	

67	



O(1)	Scheduler	

•  Replaced	the	very	old	O(n)	scheduler	
– Designed	to	reduce	the	cost	of	context	switching	
– Used	in	kernels	prior	to	2.6.23	

•  Implements	MLFQ	
– 140	priority	levels,	2	queues	per	priority	
•  Ac<ve	and	inac<ve	queue	
•  Process	are	scheduled	from	the	ac<ve	queue	
• When	the	ac<ve	queue	is	empty,	refill	from	inac<ve	queue	

– RR	within	each	priority	level	

68	



Priority	Assignment	

•  Sta<c	priori<es	–	nice	values	[-20,19]	
– Default	=	0	
– Used	for	<me	slice	calcula<on	

•  Dynamic	priori<es	[0,	139]	
– Used	to	demote	CPU	bound	processes	
– Maintain	high	priori<es	for	interac<ve	processes	
– sleep()	<me	for	each	process	is	measured	
•  High	sleep	<me	à	interac<ve	or	I/O	boundà	high	priority	

69	



SNP	/	NUMA	Support	

•  Processes	are	placed	into	a	virtual	hierarchy	
– Groups	are	scheduled	onto	a	physical	CPU	
– Processes	are	preferen<ally	pinned	to	individual	
cores	

•  Work	stealing	used	for	load	balancing	

70	



Completely	Fair	Scheduler	(CFS)	
•  Replaced	the	O(1)	scheduler	
–  In	use	since	2.6.23,	has	O(log	N)	run<me	

•  Moves	from	MLFQ	to	Weighted	Fair	Queuing	
– First	major	OS	to	use	a	fair	scheduling	algorithm	
– Very	similar	to	stride	scheduling	
– Processes	ordered	by	the	amount	of	CPU	<me	they	use	

•  Gets	rid	of	ac<ve/inac<ve	run	queues	in	favor	of	a	
red-black	tree	of	processes	

•  CFS	isn’t	actually	“completely	fair”	
– Unfairness	is	bounded	O(N)	

71	



Red-Black	Process	Tree	
•  Tree	organized	according	to	amount	of	CPU	
<me	used	by	each	process	
– Measured	in	nanoseconds,	obviates	the	need	for	
<me	slices	

72	

17	

15	 25	

22	 27	

•  Leb-most	
process	
has	always	
used	the	
least	7me	

•  Scheduled	
next	17	

38	
25	

22	

27	

•  Add	the	
process	back	
to	the	tree	

•  Rebalance	
the	tree	


