
CS	5600	
Computer	Systems	

Programs,	Processes,	and	Threads	
	

• Programs	
• Processes	
• Context	Switching	
• Protected	Mode	Execu<on	
•  Inter-process	Communica<on	
• Threads	

2	

Running	Dynamic	Code	

•  One	basic	func<on	of	an	OS	is	to	execute	and	
manage	code	dynamically,	e.g.:	
– A	command	issued	at	a	command	line	terminal	
– An	icon	double	clicked	from	the	desktop	
–  Jobs/tasks	run	as	part	of	a	batch	system	
(MapReduce)	

•  A	process	is	the	basic	unit	of	a	program	in	
execu<on	

3	

Programs	and	Processes	

4	

Program	
An	executable	
file	in	long-term	

storage	

Process	
The	running	

instan<a<on	of	a	
program,	stored	in	

RAM	

One-to-many	
rela<onship	

between	program	
and	processes	

How	to	Run	a	Program?	

•  When	you	double-click	on	an	.exe,	how	does	
the	OS	turn	the	file	on	disk	into	a	process?	

•  What	informa<on	must	the	.exe	file	contain	in	
order	to	run	as	a	program?	

5	

Program	Formats	

•  Programs	obey	specific	file	formats	
– CP/M	and	DOS:	COM	executables	(*.com)	
– DOS:	MZ	executables	(*.exe)	

•  Named	aZer	Mark	Zbikowski,	a	DOS	developer	

– Windows	Portable	Executable	(PE,	PE32+)	(*.exe)	
•  Modified	version	of	Unix	COFF	executable	format	
•  PE	files	start	with	an	MZ	header.	Why?	

– Unix/Linux:	Executable	and	Linkable	Format	(ELF)	
– Mac	OSX:	Mach	object	file	format	(Mach-O)	

6	

test.c	
#include	<stdio.h>	
	
int	big_big_array[10	*	1024	*	1024];	
char	*a_string	=	"Hello,	World!";	
int	a_var_with_value	=	100;	
	
int	main(void)	{	

big_big_array[0]	=	100;	
prinm("%s\n",	a_string);	
a_var_with_value	+=	20;	
	
prinm("main	is	:	%p\n",	&main);	
return	0;	

}	
7	

ELF	File	Format	

•  ELF	Header	
– Contains	compa<bility	info	
– Entry	point	of	the	executable	code	

•  Program	header	table	
– Lists	all	the	segments	in	the	file	
– Used	to	load	and	execute	the	
program	

•  Sec<on	header	table	
– Used	by	the	linker	

8	

ELF	Header	Format	
typedef	struct	{	
1 	unsigned	char	e_ident[EI_NIDENT];	

	Elf32_Half	e_type;	
5	 	Elf32_Half	e_machine;	

	Elf32_Word	e_version;	
	Elf32_Addr	e_entry;	
	Elf32_Off	e_phoff;	
	Elf32_Off	e_shoff;	

10 	Elf32_Word	e_flags;	
	Elf32_Half	e_ehsize;	
	Elf32_Half	e_phentsize;	
	Elf32_Half	e_phnum;	
	Elf32_Half	e_shentsize;	

15 	Elf32_Half	e_shnum;	
	Elf32_Half	e_shstrndx;	

}	Elf32_Ehdr;	 9	

ISA	of	executable	code		

Offset	of	program	headers	

Offset	of	sec<on	headers	

#	of	program	headers	

#	of	sec<on	headers	

•  Entry	point	of	
executable	code	

•  What	should	EIP	be	
set	to	ini<ally?	

ELF	Header	Example	
$	gcc	–g	–o	test	test.c	
$	readelf	--header	test	
ELF	Header:	
	Magic:			 	7f	45	4c	46	02	01	01	00	00	00	00	00	00	00	00	00	
		Class:																													 	ELF64	
		Data:																														 	2's	complement,	li{le	endian	
		Version:																											 	1	(current)	
		OS/ABI:																												 	UNIX	-	System	V	
		ABI	Version:																							 	0	
		Type:																														 	EXEC	(Executable	file)	
		Machine:																											 	Advanced	Micro	Devices	X86-64	
		Version:																											 	0x1	
		Entry	point	address:															 	0x400460	
		Start	of	program	headers:										 	64	(bytes	into	file)	
		Start	of	sec<on	headers:										 	5216	(bytes	into	file)	
		Flags:																													 	0x0	
		Size	of	this	header:															 	64	(bytes)	
		Size	of	program	headers:											 	56	(bytes)	
		Number	of	program	headers:									 	9	
		Size	of	sec<on	headers:											 	64	(bytes)	
		Number	of	sec<on	headers:									 	36	
		Sec<on	header	string	table	index:	 	33	 10	

Inves<ga<ng	the	Entry	Point	
int	main(void)	{	

	…	
												prinm("main	is	:	%p\n",	&main);	
												return	0;	
}	

11	

$	gcc	-g	-o	test	test.c	
$	readelf	--headers	./test	|	grep	Entry	point'	
						Entry	point	address:															0x400460	
$./test	
				Hello	World!	
				main	is	:	0x400544	

Entry	point	!=	&main	

12	

$./test	
				Hello	World!	
				main	is	:	0x400544	
$	readelf	--headers	./test	|	grep	Entry	point'	
						Entry	point	address:															0x400460	
$	objdump	--disassemble	–M	intel	./test	
…	
0000000000400460	<_start>:	
		400460: 	31	ed																			 	xor				ebp,ebp	
		400462: 	49	89	d1																 	mov				r9,rdx	
		400465: 	5e																						 	pop				rsi	
		400466: 	48	89	e2																 	mov				rdx,rsp	
		400469: 	48	83	e4	f0													 	and				rsp,0xfffffffffffffff0	
		40046d: 	50																						 	push			rax	
		40046e: 	54																						 	push			rsp	
		40046f: 	49	c7	c0	20	06	40	00				mov				r8,0x400620	
		400476: 	48	c7	c1	90	05	40	00				mov				rcx,0x400590	
		40047d: 	48	c7	c7	44	05	40	00				mov				rdi,0x400544	
		400484: 	e8	c7	ff	ff	ff										 	call			400450	<__libc_start_main@plt>	
…	

•  Most	compilers	insert	extra	
code	into	compiled	programs	

•  This	code	typically	runs	
before	and	aZer	main()	

Sec<ons	and	Segments	

•  Sec<ons	are	the	various	
pieces	of	code	and	data	that	
get	linked	together	by	the	
compiler	

•  Each	segment	contains	one	
or	more	sec<ons	
– Each	segment	contains	
sec<ons	that	are	related	

•  E.g.	all	code	sec<ons	
– Segments	are	the	basic	units	
for	the	loader	

13	

Segments	

Mul<ple	sec<ons	in	
one	segments	

Common	Sec<ons	

•  Sec<ons	are	the	various	pieces	of	code	and	
data	that	compose	a	program	

•  Key	sec<ons:	
–  	.text	–	Executable	code	
–  	.bss	–	Global	variables	ini<alized	to	zero	
–  	.data,	.rodata	–	Ini<alized	data	and	strings	
–  	.strtab	–	Names	of	func<ons	and	variables	
–  	.symtab	–	Debug	symbols	

14	

Sec<on	Example	
int	big_big_array[10*1024*1024];	
char	*a_string	=	"Hello,	World!";	
int	a_var_with_value	=	0x100;	
	
int	main(void)	{	
				 	big_big_array[0]	=	100;	
				 	prinm("%s\n",	a_string);	
				 	a_var_with_value	+=	20;	

	…	
}	

15	Code	à	.text	

	
Empty	10	MB	
array	à	.bss	

	

	
String	variable	à	.data	

	

	
String	constant	à	.rodata	

	

	
Ini<alized	global	
variable	à	.data	

	

$	readelf	--headers	./test	
…	
	Sec<on	to	Segment	mapping:	
		Segment	Sec<ons...	
			00	
			01					.interp	
			02					.interp	.note.ABI-tag	.note.gnu.build-
id	.gnu.hash	.dynsym	.dynstr	.gnu.version	.gnu.version_r	.rela.dyn	.rela.plt	.init	.plt	.text	.fini	.rodata	.eh_fra
me_hdr	.eh_frame	
			03					.ctors	.dtors	.jcr	.dynamic	.got	.got.plt	.data	.bss	
			04					.dynamic	
			05					.note.ABI-tag	.note.gnu.build-id	
			06					.eh_frame_hdr	
			07	
			08					.ctors	.dtors	.jcr	.dynamic	.got	
…	
There	are	36	sec<on	headers,	star<ng	at	offset	0x1460:	
Sec<on	Headers:	
[Nr] 	Name 	Type 	Address 	Offset 	Size 	ES 	Flags 	Link 	Info 	Align	
[0] 	 	NULL 	00000000 	00000000 	00000000 	00 	 	0 	0 	0	
[1] 	.interp 	PROGBITS 	00400238 	00000238 	0000001c 	00 	A 	0 	0 	1	
[2] 	.note.ABI-tag 	NOTE 	00400254 	00000254 	00000020 	00 	A 	0 	0 	4	
[3] 	.note.gnu.build-I 	NOTE 	00400274 	00000274 	00000024 	00 	A 	0 	0 	4	
[4] 	.gnu.hash 	GNU_HASH 	00400298 	00000298 	0000001c		00 	A 	5 	0 	8	
[5] 	.dynsym 	DYNSYM 	004002b8 	000002b8 	00000078 	18 	A 	6 	1 	8	
[6] 	.dynstr 	STRTAB 	00400330 	00000330 	00000044 	00 	A 	0 	0 	1	
[7] 	.gnu.version 	VERSYM 	00400374 	00000374 	0000000a 	02 	A 	5 	0 	2	
…	

$	readelf	--sec<ons	./test	
...	
Sec<on	Headers:	
…	
[Nr] 	Name 	Type 	Address 	Offset 	Size 	ES 	Flags			Link		Info 	Align	
[13]	.text													PROGBITS 	00400460 	00000460 	00000218 	00 	AX 	0 	0 	16	
…	

.text	Example	Header	
typedef	struct	{	
														Elf32_Word	p_type; 		
														Elf32_Off		p_offset;	
		5										Elf32_Addr	p_vaddr;	
														Elf32_Addr	p_paddr;	
														Elf32_Word	p_filesz;	
														Elf32_Word	p_memsz;	
														Elf32_Word	p_flags;	
	10									Elf32_Word	p_align;	
	}	

Address	to	load	
sec<on	in	memory	

Data	for	the	
program	

Offset	of	data	in	the	file	

Executable	

How	many	bytes	(in	hex)	
are	in	the	sec<on	

$	readelf	--sec<ons	./test	
...	
Sec<on	Headers:	
…	
[Nr] 	Name 	Type 	Address 	Offset 	Size 	ES 	Flags			Link		Info 	Align	
[25]	.bss 	NOBITS 	00601040 	00001034 	02800020	 	00 	WA	 	0	 	0	 	32	
[26]	.comment 	PROGBITS 	00000000	 	00001034 	000002a 	01 	MS 	0 	0 	1	
…	

.bss	Example	Header	
int	big_big_array[10*1024*1024];	
	

typedef	struct	{	
														Elf32_Word	p_type; 		
														Elf32_Off		p_offset;	
		5										Elf32_Addr	p_vaddr;	
														Elf32_Addr	p_paddr;	
														Elf32_Word	p_filesz;	
														Elf32_Word	p_memsz;	
														Elf32_Word	p_flags;	
	10									Elf32_Word	p_align;	
	}	

Address	to	load	
sec<on	in	memory	

Contains	
no	data	

Offset	of	data	in	the	file	
(No<ce	the	length	=	0)	

Writable	

hex(4*10*1024*1024)	=	
0x2800020	

Segments	

•  Each	segment	contains	one	or	more	sec<ons	
– All	of	the	sec<ons	in	a	segment	are	related,	e.g.:	

•  All	sec<ons	contain	compiled	code	
•  Or,	all	sec<ons	contain	ini<alized	data	
•  Or,	all	sec<ons	contain	debug	informa<on	
•  …	etc…	

•  Segments	are	used	by	the	loader	to:	
– Place	data	and	code	in	memory	
– Determine	memory	permissions	(read/write/execute)	

19	

Segment	Header	
	typedef	struct	{	
														Elf32_Word	p_type;		//	Type	of	Segment	
														Elf32_Off		p_offset;				//	Offset	for	the	segment	
		5										Elf32_Addr	p_vaddr;	//	Loca<on	to	load	
														Elf32_Addr	p_paddr;	//	the	segmen<nto	memory	
														Elf32_Word	p_filesz;	//	Size	on	disk	
														Elf32_Word	p_memsz;	//	Size	in	memory	
														Elf32_Word	p_flags;	//	Flags	describing	data	
	10									Elf32_Word	p_align;	
	}		

20	

$	readelf	--segments	./test	
Elf	file	type	is	EXEC	(Executable	file)	
Entry	point	0x400460	
There	are	9	program	headers,	star<ng	at	offset	64	
	
Program	Headers:	
		Type											 	Offset										 	VirtAddr				 	PhysAddr 	FileSiz							 	MemSiz					 	Flags 	Align	
		PHDR											 	0x00000040 	0x00400040	 	0x00400040 	0x000001f8	 	0x000001f8		 	R	E				 	8	
		INTERP									 	0x00000238	 	0x00400238	 	0x00400238 	0x0000001c	 	0x0000001c		 	R						 	1	
		LOAD											 	0x00000000	 	0x00400000	 	0x00400000 	0x0000077c	 	0x0000077c		 	R	E				 	200000	
		LOAD											 	0x00000e28	 	0x00600e28	 	0x00600e28 	0x0000020c	 	0x02800238		 	RW					 	200000	
		DYNAMIC								 	0x00000e50	 	0x00600e50	 	0x00600e50 	0x00000190	 	0x00000190		 	RW					 	8	
		NOTE											 	0x00000254	 	0x00400254	 	0x00400254 	0x00000044	 	0x00000044		 	R						 	4	
		GNU_EH_FRAME	 	0x000006a8	 	0x004006a8	 	0x004006a8 	0x0000002c	 	0x0000002c		 	R						 	4	
		GNU_STACK						 	0x00000000	 	0x00000000	 	0x00000000 	0x00000000	 	0x00000000		 	RW					 	8	
		GNU_RELRO						 	0x00000e28	 	0x00600e28	 	0x00600e28 	0x000001d8	 	0x000001d8		 	R						 	1	
	
	Sec<on	to	Segment	mapping:	
		Segment	Sec<ons...	
			00	
			01					.interp	
			02					.interp	.note.ABI-tag	.note.gnu.build-
id	.gnu.hash	.dynsym	.dynstr	.gnu.version	.gnu.version_r	.rela.dyn	.rela.plt	.init	.plt	.text	.fini	.rodata	.eh_frame_hdr	.eh_fra
me	
			03					.ctors	.dtors	.jcr	.dynamic	.got	.got.plt	.data	.bss	
			04					.dynamic	
…	

Executable	

#include	<stdio.h>	
	
int	big_big_array[10	*	1024	*	1024];	
char	*a_string	=	"Hello,	World!";	
int	a_var_with_value	=	100;	
	
int	main(void)	{	

big_big_array[0]	=	100;	
prinm("%s\n",	a_string);	
a_var_with_value	+=	20;	
	
prinm("main	is	:	%p\n",	&main);	
return	0;	

}	

What	About	Sta<c	Data?	

22	

$	strings	–t	d	./test	
				568		/lib64/ld-linux-x86-64.so.2	
				817		__gmon_start__	
				832		libc.so.6	
				842		puts	
				847		prinm	
				854		__libc_start_main	
				872		GLIBC_2.2.5	
			1300	 	fff.	
			1314	 	=	
			1559	 	l$	L	
			1564	 	t$(L	
			1569	 	|$0H	
			1676	 	Hello,	World!	
			1690	 	main	is	:	%p	
			1807	 	;*3$"	

Single-Process	Address	Space	

•  The	stack	is	used	for	local	variables	and	
func<on	calls	
– Grows	downwards	

•  Heap	is	allocated	dynamically	(malloc/
new)	
– Grows	upwards	

•  When	the	stack	and	heap	meet,	there	is	
no	more	memory	leZ	in	the	process	
–  Process	will	probably	crash	

•  Sta<c	data	and	global	variables	are	fixed	
at	compile	<me	

23	

Memory	

.text	
.data	
.rodata	

.bss	

Heap	

Stack	

The	Program	Loader	
•  OS	func<onality	that	loads	
programs	into	memory,	
creates	processes	
– Places	segments	into	
memory	

•  Expands	segments	like	.bss	
– Loads	necessary	dynamic	
libraries	

– Performs	reloca<on	
– Allocated	the	ini<al	stack	
frame	

– Sets	EIP	to	the	programs	
entry	point	 24	

ELF	Header	

.text	

.data	

.rodata	

.bss	

ELF	Program	

Memory	

.text	
.data	
.rodata	

.bss	

Heap	

Stack	
ESP	

Problem:	Pointers	in	Programs	
•  Consider	the	following	code:	

	int	foo(int	a,	int	b)	{	return	a	*b	–	a	/	b;	}	
	int	main(void)	{	return	foo(10,	12);	}	

	
•  Compiled,	it	might	look	like	this:	

	000FE4D8	<foo>:	
	000FE4D8: 	mov	eax,	[esp+4]	
	000FE4DB: 	mov	ebx,	[esp+8]	
	000FE4DF: 	mul	eax,	ebx	
	…	
	000FE21A: 	push	eax	
	000FE21D: 	push	ebx	
	000FE21F: 	call	0x000FE4D8	

•  …	but	this	assembly	assumes	foo()	is	at	address	0x000FE4D8	

Program	Load	Addresses	

•  Loader	must	place	each	
process	in	memory	

•  Program	may	not	be	placed	
at	the	correct	loca<on!	
– Example:	two	copies	of	the	
same	program	

26	

0xFFFFFFFF	

0x00000000	

Code	

Heap	

Stack	

Process	1	

Code	

Heap	

Stack	

Process	2	

Addr	of	foo():	
0x000FE4D8	

Addr	of	foo():	
0x0DEB49A3	

Address	Spaces	for	Mul<ple	Processes	
•  Many	features	of	processes	
depend	on	pointers	
– Addresses	of	func<ons	
– Addresses	of	strings,	data	
– Etc.	

•  For	mul<ple	processes	to	run	
together,	they	all	have	to	fit	into	
memory	together	

•  However,	a	process	may	not	
always	be	loaded	into	the	same	
memory	loca<on	

27	

0xFFFFFFFF	

0x00000000	

Code	

Heap	

Stack	

Process	2	

Code	

Heap	

Stack	

Process	1	

Code	

Heap	

Stack	

Process	3	

Address	Spaces	for	Mul<ple	Processes	

•  There	are	several	methods	for	configuring	
address	spaces	for	mul<ple	processes	
1.  Fixed	address	compila<on	
2.  Load-<me	fixup	
3.  Posi<on	independent	code	
4.  Hardware	support	

28	

Fixed-Address	Compila<on	

Single	Copy	of	Each	Program	
•  Compile	each	program	

once,	with	fixed	addresses	
•  OS	may	only	load	program	

at	the	specified	offset	in	
memory	

•  Typically,	only	one	process	
may	be	run	at	any	<me	

•  Example:	MS-DOS	1.0	

Mul=ple	Copies	of	Each	Program	
•  Compile	each	program	

mul<ple	<mes	
•  Once	for	each	possible	

star<ng	address	
•  Load	the	appropriate	

compiled	program	when	
the	user	starts	the	program	

•  Bad	idea	
–  Mul<ple	copies	of	the	same	

program	

29	

Load-Time	Fixup	
•  Calculate	addresses	at	load-<me	instead	of	
compile-<me	

•  The	program	contains	a	list	of	loca<ons	that	must	
be	modified	at	startup	
– All	rela<ve	to	some	star<ng	address	

•  Used	in	some	OSes	that	run	on	low-end	
microcontrollers	without	virtual	memory	
hardware	

Program
0x000 CALL xxx

 ...
0x300 ...

000: xxx=+300

Fix-up
information

After
loading

0x200 CALL 0x500
 ...

0x500 ...

30	

Posi<on-Independent	Code	

•  Compiles	programs	in	a	way	that	is	
independent	of	their	star<ng	address	
– PC-rela<ve	address	

•  Slightly	less	efficient	than	absolute	addresses	
•  Commonly	used	today	for	security	reasons	

PC-relative
addressing

Absolute
addressing

0x200 CALL 0x500
 ...

0x500 ...

0x200 CALL PC+0x300
 ...

0x500 ...
31	

Hardware	Support	
•  Hardware	address	transla<on	
•  Most	popular	way	of	sharing	memory	between	
mul<ple	processes	
–  Linux	
– OS	X	
– Windows	

•  Program	is	compiled	to	run	at	a	fixed	loca<on	in	
virtual	memory	

•  The	OS	uses	the	MMU	to	map	these	loca<ons	to	
physical	memory	

32	

MMU	and	Virtual	Memory	

•  The	Memory	Management	Unit	(MMU)	
translates	between	virtual	addresses	and	
physical	addresses	
– Process	uses	virtual	address	for	calls	and	data	
load/store	

– MMU	translates	virtual	addresses	to	physical	
addresses	

– The	physical	addresses	are	the	true	loca<ons	of	
code	and	data	in	RAM	

33	

Advantages	of	Virtual	Memory	
•  Flexible	memory	sharing	

–  Simplifies	the	OS’s	job	of	alloca<ng	memory	to	
different	programs	

•  Simplifies	program	wri<ng	and	compila<ons	
–  Each	program	gets	access	to	4GB	of	RAM	(on	a	32-bit	
CPU)	

•  Security	
–  Can	be	used	to	prevent	one	process	from	accessing	
the	address	of	another	process	

•  Robustness	
–  Can	be	used	to	prevent	wri<ng	to	addresses	belonging	
to	the	OS	(which	may	cause	the	OS	to	crash)	

34	

Base	and	Bounds	Registers	
•  A	simple	mechanism	for	address	transla<on	
•  Maps	a	con<guous	virtual	address	region	to	a	
con<guous	physical	address	region	

35	
0x0000	

0xFFFF	 Kernel	
Memory	

Process	1	

Physical	Memory	

0x00FF	

0x10FF	
Process	1	

Process’	View	of	
Virtual	Memory	

0x0001	

0x1001	

Register	 Value	

EIP	 0x0023	

ESP	 0x0F76	

BASE	 0x00FF	

BOUND	 0x1000	

Base	and	Bounds	Example	

36	

0x0000	

0xFFFF	 Kernel	
Memory	

Process	1	

Physical	Memory	

0x00FF	

0x10FF	
Process	1	

Process’	View	of	
Virtual	Memory	

0x0001	

0x1001	

Register	 Value	

EIP	 0x0023	

ESP	 0x0F76	

BASE	 0x00FF	

BOUND	 0x1000	

0x0023	mov	eax,	[esp]	
	
1)	Fetch	instruc<on	
0x0023	+	0x00FF	=	0x0122	
	
2)	Translate	memory	access	
0x0F76	+	0x00FF	=	0x1075	
	
3)	Move	value	to	register	
[0x1075]	à	eax	

1	

2	1	

2	

Confused	About	Virtual	Memory?	

•  That’s	okay	:)	
•  We	will	discuss	virtual	memory	at	great	length	
later	in	the	semester	

•  In	project	3,	you	will	implement	virtual	
memory	in	Pintos	

37	

• Programs	
• Processes	
• Context	Switching	
• Protected	Mode	Execu<on	
•  Inter-process	Communica<on	
• Threads	

38	

From	the	Loader	to	the	Kernel	

•  Once	a	program	is	loaded,	the	kernel	must	
manage	this	new	process	

•  Program	Control	Block	(PCB):	kernel	data	
structure	represen<ng	a	process	
– Has	at	least	one	thread	(possibly	more…)	
– Keeps	track	of	the	memory	used	by	the	process	

•  Code	segments	
•  Data	segments	(stack	and	heap)	

– Keeps	run<me	state	of	the	process	
•  CPU	register	values	
•  EIP	

39	

Program	Control	Block	(PCB)	
•  OS	structure	that	represents	a	process	in	memory	
•  Created	for	each	process	by	the	loader	
•  Managed	by	the	kernel	
	
struct	task_struct	{ 	 	 	//	Typical	Unix	PCB	

	pid	t_pid; 	 	 	//	process	iden<fier		
	long	state; 	 	 	//	state	of	the	process		
	unsigned	int	<me_slice;	 	//scheduling	informa<on		
	struct	task_struct	*parent; 	//	this	process’s	parent		
	struct	list_head	children; 	//	this	process’s	children		
	struct	files_struct	*files;	 	//	list	of	open	files	
	struct	mm_struct	*mm;	//	address	space	of	this	process	

};	

40	

Process	States	
•  As	a	process	executes,	it	changes	state	

–  new:		The	process	is	being	created	
–  running:		Instruc<ons	are	being	executed	
–  wai=ng:		The	process	is	wai<ng	for	some	event	to	occur	
–  ready:		The	process	is	wai<ng	to	be	assigned	to	a	processor	
–  terminated:		The	process	has	finished	execu<on	

41	

Parents	and	Children	

•  On	Unix/Linux,	all	processes	have	parents	
–  i.e.	which	process	executed	this	new	process?	

•  If	a	process	spawns	other	processes,	they	
become	it’s	children	
– This	creates	a	tree	of	processes	

•  If	a	parent	exits	before	its	children,	the	
children	become	orphans	

•  If	a	child	exits	before	the	parent	calls	wait(),	
the	child	becomes	a	zombie	

42	

Process	Tree	
•  init	is	a	special	process	started	by	the	kernel	

– Always	roots	the	process	tree	

43	

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

Addi<onal	Execu<on	Context	

•  File	descriptors	
– stdin,	stdout,	stderr	
– Files	on	disck	
– Sockets	
– Pipes	

•  Permissions	
– User	and	group	
– Access	to	specific	APIs	
– Memory	protec<on	

44	

•  Environment	
– $PATH	

•  Shared	Resources	
– Locks	
– Mutexes	
– Shared	Memory	

UNIX	Process	Management	

•  	fork()	–	system	call	to	create	a	copy	of	the	
current	process,	and	start	it	running	
– No	arguments!	

•  	exec()	–	system	call	to	change	the	program	
being	run	by	the	current	process	

•  	wait()	–	system	call	to	wait	for	a	process	to	
finish	

•  	signal()	–	system	call	to	send	a	no<fica<on	to	
another	process	

45	

UNIX	Process	Management	

pid	=	fork();	
if	(pid	==	0)	
								exec(…);	
else	
								wait(pid);	

pid	=	fork();	
if	(pid	==	0)	
								exec(…);	
else	
								wait(pid);	

pid	=	fork();	
if	(pid	==	0)	
								exec(…);	
else	
								wait(pid);	

main()	{	
									…	
}	

pid	=	0	

pid	=	9418	

Original	Process	

Child	Process	

46	

Ques<on:	What	does	this	code	print?	

int	child_pid	=	fork();	
if	(child_pid	==	0)	{											//	I'm	the	child	process	
				prinm("I	am	process	#%d\n",	getpid());	
				return	0;	
}	else	{																								//	I'm	the	parent	process	
				prinm("I	am	parent	of	process	#%d\n",	child_pid);	
				return	0;	
}	
	

47	

Ques<ons	

•  Can	UNIX	fork()	return	an	error?		Why?	

•  Can	UNIX	exec()	return	an	error?		Why?	

•  Can	UNIX	wait()	ever	return	immediately?		
Why?	

48	

Implemen<ng	UNIX	fork()	

•  Steps	to	implement	UNIX	fork()	
1.  Create	and	ini<alize	the	process	control	block	(PCB)	

in	the	kernel	
2.  Create	a	new	address	space	
3.  Ini<alize	the	address	space	with	a	copy	of	the	en<re	

contents	of	the	address	space	of	the	parent	
4.  Inherit	the	execu<on	context	of	the	parent	(e.g.,	any	

open	files)	
5.  Inform	the	scheduler	that	the	new	process	is	ready	

to	run	

	 49	

Implemen<ng	UNIX	exec()	

•  Steps	to	implement	UNIX	exec()	
1.  Load	the	new	program	into	the	current	address	

space	
2.  Copy	command	line	arguments	into	memory	in	

the	new	address	space	
3.  Ini<alize	the	hardware	context	to	start	execu<on	

•  EIP	=	Entry	point	in	the	ELF	header	
•  ESP	=	A	newly	allocated	stack	

50	

Process	Termina<on	

•  Typically,	a	process	will	wait(pid)	un<l	its	child	
process(es)	complete	

•  abort(pid)	can	be	used	to	immediately	end	a	
child	process	

51	

• Programs	
• Processes	
• Context	Switching	
• Protected	Mode	Execu<on	
•  Inter-process	Communica<on	
• Threads	

52	

The	Story	So	Far…	

•  At	this	point,	we	have	gone	over	how	the	OS:	
– Turns	programs	into	processes	
– Represents	and	manages	running	process	

•  Next	step:	context	switching	
– How	does	a	process	access	OS	APIs?	

•  i.e.	System	calls	

– How	does	the	OS	share	the	CPU	between	several	
programs?	

•  Mul<processing	

53	

Context	Switching	

•  Context	switching	
– Saves	state	of	a	process	before	a	switching	to	
another	process	

– Restores	original	process	state	when	switching	
back	

•  Simple	concept,	but:	
– How	do	you	save	the	state	of	a	process?	
– How	do	you	stop	execu<on	of	a	process?	
– How	do	you	restart	the	execu<on	of	process	that	
has	been	switched	out?	

54	

The	Process	Stack	
•  Each	process	has	a	stack	in	memory	that	stores:	

– Local	variables	
– Arguments	to	func<ons	
– Return	addresses	from	func<ons	

•  On	x86:	
– The	stack	grows	downwards	
– ESP	(Stack	Pointer	register)	points	to	the	bo{om	of	
the	stack	(i.e.	the	newest	data)	

•  EBP	(Base	Pointer)	points	to	the	base	of	the	current	frame	
–  Instruc<ons	like	push,	pop,	call,	ret,	int,	and	iret	all	
modify	the	stack	

55	

stack_exam.c	

int	bar(int	a,	int	b)	{	
		int	r	=	rand();	
		return	a	+	b	-	r;	
}	
	
int	foo(int	a)	{	
		int	x,	y;	
		x	=	a	*	2;	
		y	=	a	-	7;	
		return	bar(x,	y);	
}	
	
int	main(void)	{	
		…	
		foo(12);	
		…	
}	

56	

foo()’s	
Frame	

$	gcc	-g	-fno-stack-protector	-m32	-o	stack_exam	
stack_exam.c	
$	objdump	--disassemble	–M	intel	./stack_exam	
…	
	804842a: 	e8	c0	ff	ff	ff	 	call			80483ef	<foo>	
	804842f: 	b8	00	00	00	00 	mov				eax,0x0	
…	
080483ef	<foo>:	
	80483ef: 	55						 	push			ebp	
	80483f0: 	89	e5			 	mov				ebp,	esp	
	80483f2: 	83	ec	28	 	sub				esp,	0x28	
	80483f5: 	8b	45	08	 	mov				eax,	[ebp+0x8]	
	80483f8: 	01	c0		 	add				eax,	eax	
	80483fa: 	89	45	f4	 	mov				[ebp-0xc],	eax	
	80483fd: 	8b	45	08	 	mov				eax,	[ebp+0x8]	
	8048400: 	83	e8	07	 	sub				eax,	0x7	
	8048403: 	89	45	f0	 	mov				[ebp-0x10],eax	
	8048406: 	8b	45	f0	 	mov				eax,	[ebp-0x10]	
	8048409: 	89	44	24	04	 	mov				[esp+0x4],eax	
	804840d: 	8b	45	f4			 	mov				eax,	[ebp-0xc]	
	8048410: 	89	04	24			 	mov				[esp],	eax	
	8048413: 	e8	bc	ff	ff	ff 	call			80483d4	<bar>	
	8048418: 	c9									 	leave	
	8048419: 	c3							 	ret	
…	

main()’s	local	variables	

12	 Argument	to	foo()	

0x804842f	 Return	addr	to	main()	

Saved	EBP	

24	 x	=	a	*	2	

5	 y	=	a	-	7	

5	 2nd	arg	for	bar()	

24	 1st	arg	for	bar()	

0x8048418	 Return	addr	to	foo()	

Memory	
EBP	

ESP	

main()’s	
Frame	EIP	

58	

…	
080483d4	<bar>:	
	80483d4:	 	55								 	push			ebp	
	80483d5:		 	89	e5				 	mov				ebp,	esp	
	80483d7:		 	83	ec	18			 	sub				esp,	0x18	
	80483da:	 	e8	31	ff	ff	ff 	call			8048310	<rand@plt>	
	80483df:		 	89	45	f4		 	mov				[ebp-0xc],	eax	
	80483e2:		 	8b	45	0c			 	mov				eax,	[ebp+0xc]	
	80483e5:	 	8b	55	08	 	mov				edx,	[ebp+0x8]	
	80483e8:		 	01	d0				 	add				eax,edx	
	80483ea:	 	2b	45	f4 	sub				eax,	[ebp-0xc]	
	80483ed:		 	c9	 	leave	
	80483ee:		 	c3				 	ret	
…	
	

bar()’s	
Frame	

foo()’s	local	variables	

5	 2nd	arg	for	bar()	

24	 1st	arg	for	bar()	

0x8048418	 Return	addr	to	foo()	

Saved	EBP	

Some	#	 Result	of	rand()	

Memory	

foo()’s	
Frame	EIP	

EBP	

ESP	

•  	leave	à	mov	esp,	ebp;	pop	ebp;	
•  	Return	value	is	placed	in	EAX	

Stack	Switching	

•  We’ve	seen	that	the	stack	holds	
– Local	variables	
– Arguments	to	func<ons	
– Return	addresses	
– …	basically,	the	state	of	a	running	program	

•  Crucially,	a	process’	control	flow	is	stored	on	
the	stack	

•  If	you	modify	the	stack,	you	also	modify	
control	flow	
– Stack	switching	is	effec<vely	process	switching	

59	

Switching	Between	Processes	

1.  Process 1 calls into switch() routine
2.  CPU registers are pushed onto the stack
3.  The stack pointer is saved into memory
4.  The stack pointer for process 2 is loaded
5.  CPU registers are restored
6.  switch() returns back to process 2

60	

Top	Frame	

Return	addr	

Saved	EAX	

…	

Saved	EDX	

Process	1’s	Stack	

Top	Frame	

Return	addr	

Saved	EAX	

…	

Saved	EDX	

Process	2’s	Stack	

<switch>:	
	push			eax	
	push			ebx	
	…	
	push			edx	
	mov				[cur_esp],	esp	
	mov				esp,	[saved_esp]	
	pop					edx	
	…	
	pop					ebx	
	pop					eax	
	ret	

Saved	ESP	for	Process	1	

Saved	ESP	for	Process	2	

OS	Memory	

a	=	b	+	1;	
switch();	
b--;	

Process	1’s	Code	

puts(my_str);	
switch();	
my_str[0]	=	‘\n’;	
i	=	strlen(my_str);	
switch();	

Process	2’s	Code	

ESP	
EIP	

OS	Code	

Abusing	Call	and	Return	
•  Context	switching	uses	func<on	call	and	return	
mechanisms	
– Switches	into	a	process	by	returning	from	a	func<on	
– Switches	out	of	a	process	by	calling	into	a	func<on	

62	

What	About	New	Processes?	

•  But	how	do	you	start	a	process	in	the	first	
place?	
– A	new	process	doesn’t	have	a	stack…	
– …	and	it	never	called	into	switch()	

•  Pretend	that	there	was	a	previous	call	
– Build	a	fake	ini<al	stack	frame	
– This	frame	looks	exactly	like	the	instruc<on	just	
before	main()	called	into	switch()	

– When	switch()	returns,	it’ll	allow	main()	to	run	
from	the	beginning	

63	

argv[…]	

argc	

0	(null	return	addr)	

Address	of	main()	

0	(null	EDX)	

…	

0	(null	EAX)	

Ini=al	Stack	Frame	

<switch>:	
	push			eax	
	push			ebx	
	…	
	push			edx	
	mov				[cur_esp],	esp	
	mov				esp,	[saved_esp]	
	pop					edx	
	…	
	pop					ebx	
	pop					eax	
	iret	

Saved	ESP	for	Process	1	

Address	of	New	Stack	

OS	Memory	

a	=	b	+	1;	
switch();	
b--;	

Process	1’s	Code	

main()	{	
	…	

}	

New	Process	 ESP	

EIP	

OS	Code	

When	Do	You	Switch	Processes?	

•  To	share	CPU	between	mul<ple	processes,	
control	must	eventually	return	to	the	OS	
– When	should	this	happen?	
– What	mechanisms	implements	the	switch	from	
user	process	back	to	the	OS?	

•  Four	approaches:	
1.  Voluntary	yielding	
2.  Switch	during	API	calls	to	the	OS	
3.  Switch	on	I/O	
4.  Switch	based	on	a	<mer	interrupt	
	 65	

Voluntary	Yielding	

•  Idea:	processes	must	voluntary	give	up	control	
by	calling	an	OS	API,	e.g.	thread_yield()	

•  Problems:	
– Misbehaving	or	buggy	apps	may	never	yield	
– No	guarantee	that	apps	will	yield	in	a	reasonable	
amount	of	<me	

– Wasteful	of	CPU	resources,	i.e.	what	if	a	process	is	
idle-wai<ng	on	I/O?	

66	

Interjec<on	on	OS	APIs	

•  Idea:	whenever	a	process	calls	an	OS	API,	this	
gives	the	OS	an	opportunity	to	context	switch	
–  E.g.	prinm(),	fopen(),	socket(),	etc…	

•  The	original	Apple	Macintosh	used	this	approach	
–  Coopera<ve	mul<-tasking	

•  Problems:	
– Misbehaving	or	buggy	apps	may	never	yield	
–  Some	normal	apps	don’t	use	OS	APIs	for	long	periods	
of	<me	

•  E.g.	a	long,	CPU	intensive	matrix	calcula<on	
67	

I/O	Context	Switch	Example	
•  What’s	happening	here?	

struct terminal {
queue<char> keystrokes; /* buffered keystrokes - array or list */
process *waiting; /* process waiting for input */
...

};
process *current; /* the currently running process */
queue<process *> active; /* linked list of other processes ready to run */

char get_char(terminal *term) {

if (term->keystrokes.empty()) {
term->waiting = current; /* sleep waiting for input */
switch_to(active.pop_head()); /* and switch to next active process
*/

}
return term->keystrokes.pop_head();

}

void interrupt(terminal *term, char key) {

term->keystrokes.push_tail(key); /* add keystroke to buffer */
if (term->waiting) {

active.push_tail(term->waiting); /* and wake up sleeping process */
term->waiting = NULL;

}
} 68	

Context	Switching	on	I/O	

•  Idea:	when	one	process	is	wai<ng	on	I/O,	
switch	to	another	process	
–  I/O	APIs	already	go	through	the	OS,	so	context	
switching	is	easy	

•  Problems:	
– Some	apps	don’t	have	any	I/O	for	long	periods	of	
<me	

	

69	

Preemp<ve	Context	Switching	
•  So	far,	our	processes	will	not	switch	to	another	
process	un<l	some	ac<on	is	taken	
–  e.g.	an	API	call	or	an	I/O	interrupt	

•  Idea:	use	a	<mer	interrupt	to	force	context	
switching	at	set	intervals	
–  Interrupt	handler	runs	at	a	fixed	frequency	to	
measure	how	long	a	process	has	been	running	

–  If	it’s	been	running	for	some	max	dura<on	(scheduling	
quantum),	the	handler	switches	to	the	next	process	

•  Problems:	
–  Requires	hardware	support	(a	programmable	<mer)	

•  Thankfully,	this	is	built-in	to	most	modern	CPUs	
70	

• Programs	
• Processes	
• Context	Switching	
• Protected	Mode	Execu<on	
•  Inter-process	Communica<on	
• Threads	

71	

Process	Isola<on	

•  At	this	point,	we	can	execute	mul<ple	
processes	concurrently	

•  Problem:	how	do	you	stop	processes	from	
behaving	badly?	
– Overwri<ng	kernel	memory	
– Reading/wri<ng	data	from	other	processes	
– Disabling	interrupts	
– Crashing	the	whole	computer	
– Etc.	

72	

Thought	Experiment	

•  How	can	we	implement	execu<on	with	limited	
privilege?	
– Use	an	interpreter	or	a	simulator	

•  Execute	each	program	instruc<on	in	a	simulator	
•  If	the	instruc<on	is	permi{ed,	do	the	instruc<on	
•  Otherwise,	stop	the	process	
•  Basic	model	in	Javascript,	Java,	…	

•  However,	interpreters	and	simulators	are	slow	
•  How	do	we	go	faster?	

– Run	the	unprivileged	code	directly	on	the	CPU	
73	

•  Most	modern	CPUs	support	protected	mode	

Protected	Mode	

Ring	0	
Kernel	

Ring	1	

Ring	2	

Ring	3	

Device	Drivers	

Device	Drivers	

Applica<ons	

•  x86	CPUs	support	three	rings	
with	different	privileges	
– Ring	0:	OS	kernel	
– Ring	1,	2:	device	drivers	
– Ring	3:	userland	

•  Most	OSes	only	use	rings	0	
and	3	

•  What	about	hypervisors?	
74	

Real	vs.	Protected	

•  On	startup,	the	CPU	starts	in	16-bit	real	mode	
– Protected	mode	is	disabled	
– Assumes	segment:offset	addressing	

•  Typically,	bootloader	switches	CPU	to	
protected	mode	

mov	eax,	cr0	
or	eax,	1			;	set	bit	1	of	CR0	to	1	to	enable	pmode	
mov	cr0,	eax	

75	

Dual-Mode	Opera<on	

•  Ring	0:	kernel/supervisor	mode	
– Execu<on	with	the	full	privileges	of	the	hardware	
– Read/write	to	any	memory,	access	any	I/O	device,	
read/write	any	disk	sector,	send/read	any	packet	

•  Ring	3:	user	mode	or	“userland”	
– Limited	privileges	
– Only	those	granted	by	the	opera<ng	system	
kernel	

76	

Protected	Features	

•  What	system	features	are	impacted	by	
protec<on?	
– Privileged	instruc<ons	

•  Only	available	to	the	kernel	
– Limits	on	memory	accesses	

•  Prevents	user	code	from	overwri<ng	the	kernel	
– Access	to	hardware	

•  Only	the	kernel	may	directly	interact	with	peripherals	
– Programmable	Timer	Interrupt	

•  May	only	be	set	by	the	kernel	
•  Used	to	force	context	switches	between	processes	

77	

Privileged	Instruc<ons	

•  Examples?	
–  s</cli	–	Enable	and	disable	interrupts	
– Any	instruc<on	that	modifies	the	CR0	register	

•  Controls	whether	protected	mode	is	enabled	

–  hlt	–	Halts	the	CPU	
•  What	should	happen	if	a	user	program	a{empts	
to	execute	a	privileged	instruc<on?	
– General	protec<on	(GP)	excep<on	gets	thrown	by	the	
CPU	

–  Control	is	transferred	to	the	OSes	excep<on	handler	
78	

Changing	Modes	

•  Applica<ons	oZen	need	to	access	the	OS	
–  i.e.	system	calls	
– Wri<ng	files,	displaying	on	the	screen,	receiving	
data	from	the	network,	etc…	

•  But	the	OS	is	ring	0,	and	apps	are	ring	3	
•  How	do	apps	get	access	to	the	OS?	

– Apps	invoke	system	calls	with	an	interrupt	
•  E.g.	int	0x80	

–  	int	causes	a	mode	transfer	from	ring	3	to	ring	0	
79	

Mode	Transfer	
1.  Applica<on	executes	trap	(int)	instruc<on	

–  EIP,	CS,	and	EFLAGS	get	pushed	onto	the	stack	
– Mode	switches	from	ring	3	to	ring	0	

2.  Save	the	state	of	the	current	process	
–  Push	EAX,	EBX,	…,	etc.	onto	the	stack	

3.  Locate	and	execute	the	correct	syscall	handler	
4.  Restore	the	state	of	process	

–  Pop	EAX,	EBX,	…	etc.	
5.  Place	the	return	value	in	EAX	
6.  Use	iret	to	return	to	the	process	

–  Switches	back	to	the	original	mode	(typically	3)	
80	

U
se
rla

nd
	

Ke
rn
el
	M

od
e	

System	Call	Example	

81	

IVT	

Main	Memory	

0x80	Handler	

User	Program	

1.  SoZware	executes	int	0x80	
–  Pushes	EIP,	CS,	and	EFLAGS	

2.  CPU	transfers	execu<on	to	the	OS	handler	
–  Look	up	the	handler	in	the	IVT	
–  Switch	from	ring	3	to	0	

3.  OS	executes	the	system	call	
–  Save	the	processes	state	
–  Use	EAX	to	locate	the	system	call	
–  Execute	the	system	call	
–  Restore	the	processes	state	
–  Put	the	return	value	in	EAX	

4.  Return	to	the	process	with	iret	
–  Pops	EIP,	CS,	and	EFLAGS	
–  Switches	from	ring	0	to	3	

Syscall	Table	

prinm()	

OS	Code	

EIP	

Alterna<ve	Syscall	Mechanisms	

•  Thus	far,	all	examples	have	used	int/iret	
•  However,	there	are	other	syscall	mechanisms	
on	x86	
– sysenter/sysexit	
– syscall/sysret	

•  The	sys*	instruc<ons	are	much	faster	than	int/
iret	
–  Jump	directly	to	OS	code,	rather	than	looking	up	
handlers	in	the	IVT	

– Used	by	modern	OSes,	including	the	Linux	kernel	
82	

• Programs	
• Processes	
• Context	Switching	
• Protected	Mode	Execu<on	
•  Inter-process	Communica<on	
• Threads	

83	

Processes	are	not	Islands	
•  Thus	far:	

– We	can	load	programs	as	processes	
– We	can	context	switch	between	processes	
– Processes	are	protected	from	each	other	

•  What	if	one	or	more	processes	want	to	
communicate	with	each	other?	

84	
Browser	core	is	

a	process	
Each	tab	is	a	process	 Each	extension	is	a	process	

Mechanisms	for	IPC	

•  Typcially,	two	ways	of	implemen<ng	
Inter-process	communica<on	(IPC)	
– Shared	memory	

•  A	region	of	memory	that	many	processes	can	
all	read/write	

– Message	passing	
•  Various	OS-specific	APIs	
•  Pipes	
•  Sockets	
•  Signals	

85	

0x0000	

0xFFFF	

Process	1	

Process	2	

Message	
Queue	

Kernel	
Memory	

IPC	Examples	

86	

Message	Passing	Shared	Memory	

0x0000	

0xFFFF	 Kernel	
Memory	

Process	1	

Process	2	

Shared	
Memory	

Write	

Read	

Write	

Read	

Posix	Shared	Memory	API	
•  	shm_open()	–	create	and/or	open	a	shared	
memory	page	
–  Returns	a	file	descriptor	for	the	shared	page		

•  	ltrunc()	or	Zruncate()	–	limit	the	size	of	the	
shared	memory	page	

•  	mmap()	–	map	the	memory	page	into	the	
processes	address	space	
– Now	you	can	read/write	the	page	using	a	pointer	

•  	close()	–	close	a	file	descriptor	
•  	shm_unlink()	–	remove	a	shared	page	

–  Processes	with	open	references	may	s<ll	access	the	
page	 87	

Posix	Shared	Memory		
int	fd,	i;	
char	*addr,	c;	
	
fd	=	shm_open(“Physical",	O_RDWR,	0777);		/*	Open	physical	memory	*/	
if	(fd	==	-1)	{	/*	Handle	the	error	*/	}		
addr	=	mmap(0,	PAGESIZE,	PROT_READ	|	PROT_WRITE,	

	MAP_SHARED,	fd,	0xf0000);	/*Map	BIOS	ROM*/		
if	(addr	==	(void	*)	-1)	{	/*Handle	the	error	*/	}	
	
prinm("Map	addr	is	%6.6X\n",	addr);	
for	(i	=	0;	i	<	3	*	80;	++i)	{	

	c	=	*addr++;	
	if	(c	>=	'	'	&&	c	<=	0x7f)	putchar(c);	
	else	putchar('.');	

}	
88	

/*	Program	to	write	some	data	in	shared	memory	*/	
int	main()	{	

	const	int	SIZE	=	4096;	/*	size	of	the	shared	page	*/	
	 	/*	name	of	the	shared	page	*/	
	const	char	*	NAME	=	“MY_PAGE”;		
	const	char	*	msg	=	“Hello	World!”;	
	int	shm_fd;	
	char	*	ptr;	
		
	shm_fd	=	shm_open(name,	O_CREAT	|	O_RDRW,	0666);	
	Zruncate(shm_fd,	SIZE);	
	ptr	=	(char	*)	mmap(0,	SIZE,	PROT_WRITE,	
	 	MAP_SHARED,	shm_fd,	0);	
	sprinm(ptr,	“%s”,	msg);	
	close(shm_fd);	
	return	0;	

}	 89	

/*	Program	to	read	some	data	from	shared	memory	*/	
int	main()	{	

	const	int	SIZE	=	4096;	/*	size	of	the	shared	page	*/	
	 	/*	name	of	the	shared	page	*/	
	const	char	*	NAME	=	“MY_PAGE”;		
	int	shm_fd;	
	char	*	ptr;	
		
	shm_fd	=	shm_open(name,	O_RDONLY,	0666);	
	ptr	=	(char	*)	mmap(0,	SIZE,	PROT_READ,	
	 	MAP_SHARED,	shm_fd,	0);	
	prinm(“%s\n”,	ptr);	
	shm_unlink(shm_fd);	
	return	0;	

}	
90	

POSIX	Message	Queues	

•  Implementa<on	of	message	passing	
– Producers	add	messages	to	a	shared	FIFO	queue	
– Consumer(s)	remove	messages	
– OS	takes	care	of	memory	management,	
synchroniza<on	

•  Posix	API:	
–  	msgget()	–	creates	a	new	message	queue	
–  	msgsnd()	–	pushes	a	message	onto	the	queue	
–  	msgrcv()	–	pops	a	message	from	the	queue	

91	

Pipes	

•  File-like	abstrac<on	for	sending	data	between	processes	
–  Can	be	read	or	wri{en	to,	just	like	a	file	
–  Permissions	controlled	by	the	crea<ng	process	

•  Two	types	of	pipes	
–  Named	pipe:	any	process	can	a{ach	as	long	as	it	knows	the	
name	

•  Typically	used	for	long	lived	IPC	
–  Unnamed/anonymous	pipe:	only	exists	between	a	parent	and	
its	children	

•  Full	or	half-duplex	
–  Can	one	or	both	ends	of	the	pipe	be	read?	
–  Can	one	or	both	ends	of	the	pipe	be	wri{en?	 92	

Process	1	

fd[0]	 write(fd[0])	

fd[1]	 read(fd[1])	
Pipe	

Process	2	

fd[0]	 write(fd[0])	

fd[1]	 read(fd[1])	

You’ve	All	Used	Pipes	

$		ps	x	|	grep	ssh	
	3299	?								S						0:00	sshd:	cbw@pts/0	

93	

Pipe	the	output	from	one	process	to	
the	input	of	another	process	

int	main()	{		/*	Program	that	passes	a	string	to	a	child	process	through	a	pipe	*/	
	int	fd[2],	nbytes;	
	pid_t	childpid;	
	char	string[]	=	"Hello,	world!\n";	
	char	readbuffer[80];	

	
	pipe(fd);	
	if	((childpid	=	fork())	==	-1)	{	perror("fork");	exit(1);	}	
	if	(childpid	==	0)	{	
	 	/*	Child	process	closes	up	input	side	of	pipe	*/	
	 	close(fd[0]);		
	 	/*	Send	"string"	through	the	output	side	of	pipe	*/	
	 	write(fd[1],	string,	strlen(string)	+	1);	
	}	else	{		
	 	/*	Parent	process	closes	up	output	side	of	pipe	*/	 	 	
	 	close(fd[1]);	
	 	/*	Read	in	a	string	from	the	pipe	*/	
	 	nbytes	=	read(fd[0],	readbuffer,	sizeof(readbuffer));	 	 	
	 	prinm("Received	string:	%s",	readbuffer);	
	}	
	return(0);	

}	 94	

Sockets	for	IPC	

•  Yes,	the	same	sockets	you	use	for	networking	
•  Server	opens	a	listen	socket,	as	usual	
•  Clients	connect	to	this	socket	

– The	server	can	check	the	clients	IP	and	drop	
connec<ons	from	anyone	other	than	127.0.0.1	

•  Send	and	receive	packets	as	usual	

95	

Implementa<on	Ques<ons	

•  How	are	links	established?	
•  Can	a	link	be	associated	with	more	than	two	
processes?	

•  What	is	the	capacity	of	each	link?	
•  Are	messages	fixed	size	or	variable	size?	
•  Is	the	link	unidirec<onal	or	bidirec<onal?	
•  Is	the	link	synchronous	or	asynchronous?	
•  Does	the	API	guarantee	atomicity?	
•  What	is	the	overhead	of	the	API?	

96	

• Programs	
• Processes	
• Context	Switching	
• Protected	Mode	Execu<on	
•  Inter-process	Communica<on	
• Threads	

97	

Are	Processes	Enough?	

•  At	this	point,	we	have	the	ability	to	run	
processes	
– And	processes	can	communicate	with	each	other	

•  Is	this	enough	func<onality?	
•  Possible	scenarios:	

– A	large	server	with	many	clients	
– A	powerful	computer	with	many	CPU	cores	

98	

Problems	with	Processes	

•  Process	crea<on	is	heavyweight	(i.e.	slow)	
– Space	must	be	allocated	for	the	new	process	
–  fork()	copies	all	state	of	the	parent	to	the	child	

•  IPC	mechanisms	are	cumbersome	
– Difficult	to	use	fine-grained	synchroniza<on	
– Message	passing	is	slow	

•  Each	message	may	have	to	go	through	the	kernel	

99	

Threads	

•  Light-weight	processes	that	share	the	same	
memory	and	state	space	

•  Every	process	has	at	least	one	thread	
•  Benefits:	

– Resource	sharing,	no	need	for	IPC	
– Economy:	faster	to	create,	faster	to	context	
switch	

– Scalability:	simple	to	take	advantage	of	mul<-core	
CPUs	

100	

101	

Process-Level	Shared	Data	

Code	 Global	
Data	

File	
Descriptors	

Registers	

Stack	

Registers	

Stack	

Registers	

Stack	

Thread	1	 Thread	2	 Thread	3	

Process-Level	Shared	Data	

Code	 Global	
Data	

File	
Descriptors	

Registers	 Stack	

Thread	1	

Single-Threaded	Process		 Mul<-Threaded	Process		

Thread	Implementa<ons	

•  Threads	can	be	implemented	in	two	ways:	
1.  User	threads	

•  User-level	library	manages	threads	within	a	single	
process	

2.  Kernel	threads	
•  Kernel	manages	threads	for	all	processes	

102	

POSIX	Pthreads	

•  POSIX	standard	API	for	thread	crea<on	
–  IEEE	1003.1c	
– Specifica*on,	not	implementa*on	

•  Defines	the	API	and	the	expected	behavior	
•  …	but	not	how	it	should	be	implemented	

•  Implementa<on	is	system	dependent	
– On	some	plamorms,	user-level	threads	
– On	others,	maps	to	kernel-level	threads	

103	

Pthread	API	

•  	pthread_a{r_init()	–	ini<alize	the	
threading	library		

•  	pthread_create()	–	create	a	new	thread	
•  	pthread_exit()	–	exit	the	current	thread	
•  	pthread_join()	–	wait	for	another	
thread	to	exit	

•  Pthreads	also	contains	a	full	range	of	
synchroniza<on	primi<ves	

104	

Pthread	Example	

						pthread_t	<d;	//	id	of	the	child	thread	
						pthread_a{r_t	a{r;	//	ini<aliza<on	data	
						pthread_a{r_init(&a{r);	
						pthread_create(&<d,	&a{r,	runner,	0);	
						pthread_join(<d,	0);	
	
void	*	runner(void	*	params)	{	

	…	
	pthread_exit(0);	

}	 105	

Linux	Threads	

•  In	the	kernel,	threads	are	just	tasks	
– Remember	the	task_struct	from	earlier?	

•  New	threads	created	using	the	clone()	API	
– Sort	of	like	fork()	
– Creates	a	new	child	task	that	copies	the	address	
space	of	the	parent	

•  Same	code,	same	environment,	etc.	
•  New	stack	is	allocated	
•  No	memory	needs	to	be	copied	(unlike	fork())	

106	

Thread	Oddi<es	

•  What	happens	if	you	fork()	a	process	that	has	
mul<ple	threads?	
– You	get	a	child	process	with	exactly	one	thread	
– Whichever	thread	called	fork()	survives	

•  What	happens	if	you	run	exec()	in	a	mul<-
threaded	process?	
– All	but	one	threads	are	killed	
–  	exec()	gets	run	normally	

107	

Advanced	Threading	

•  Thread	pools:	
– Create	many	threads	in	advance	
– Dynamically	give	work	to	threads	from	the	pool	as	
it	becomes	available	

•  Advantages:	
– Cost	of	crea<ng	threads	is	handled	up-front	
– Bounds	the	maximum	number	of	threads	in	the	
process	

108	

Thread	Local	Storage	
•  Some<mes,	you	want	
each	thread	to	have	its	
own	“global”	data	
– Not	global	to	all	threads	
– Not	local	storage	on	the	
stack	

•  Thread	local	storage	(TLS)	
allows	each	thread	to	
have	its	own	space	for	
“global”	variables	
– Similar	to	sta<c	variables	

109	

Process-Level	Shared	Data	

Code	 Global	
Data	

File	
Descriptors	

Registers	

Stack	

TLS	

Registers	

Stack	

TLS	

Registers	

Stack	

TLS	

Thread	1	 Thread	2	 Thread	3	

OpenMP	

•  Compiler	extensions	
for	C,	C++	that	adds	
na<ve	support	for	
parallel	programming	

•  Controlled	with	
parallel	regions	
– Automa<cally	creates	
as	many	threads	as	
there	are	cores	

110	

#include	<omp.h>	
	
int	main()	{	
					int	i,	N	=	20;	
					#pragma	omp	parallel	
					{	
											prinm(“I	am	a	parallel	region\n”);	
					}	
	
					#	pragma	omp	parallel	for	
					for	(i	=	0;	i	<	N;	i++)	
											prinm(“This	is	a	parallel	for	loop\n”);	
	
					return	0;	
}	

Processes	vs.	Threads	
•  Threads	are	be{er	if:	

– You	need	to	create	new	ones	quickly,	on-the-fly	
– You	need	to	share	lots	of	state	

•  Processes	are	be{er	if:	
– You	want	protec<on	

•  One	process	that	crashes	or	freezes	doesn’t	impact	the	
others	

– You	need	high	security	
•  Only	way	to	move	state	is	through	well-defined,	
sani<zed	message	passing	interface	

111	

