
CS	5600	
Computer	Systems	

Lecture	10:	File	Systems	
	



What	are	We	Doing	Today?	
•  Last	week	we	talked	extensively	about	hard	
drives	and	SSDs	
– How	they	work	
– Performance	characterisEcs	

•  This	week	is	all	about	managing	storage	
– Disks/SSDs	offer	a	blank	slate	of	empty	blocks	
– How	do	we	store	files	on	these	devices,	and	keep	
track	of	them?	

– How	do	we	maintain	high	performance?	
– How	do	we	maintain	consistency	in	the	face	of	
random	crashes?	

2	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	

3	



Building	the	Root	File	System	
•  One	of	the	first	tasks	of	an	OS	during	bootup	is	to	
build	the	root	file	system	

1.  	Locate	all	bootable	media	
–  Internal	and	external	hard	disks	
–  SSDs	
–  Floppy	disks,	CDs,	DVDs,	USB	sEcks	

2.  	Locate	all	the	parEEons	on	each	media	
–  Read	MBR(s),	extended	parEEon	tables,	etc.	

3.  	Mount	one	or	more	parEEons	
–  Makes	the	file	system(s)	available	for	access	

4	



MBR	 ParEEon	1	
(ext3)	

ParEEon	2	
(swap)	

ParEEon	3	
(NTFS)	

ParEEon	4	
(FAT32)	

The	Master	Boot	Record	

5	

Address	
Descrip6on	 Size	

(Bytes)	Hex	 Dec.	

0x000	 0	 Bootstrap	code	area	 446	

0x1BE	 446	 ParEEon	Entry	#1	 16	

0x1CE	 462	 ParEEon	Entry	#2	 16	

0x1DE	 478	 ParEEon	Entry	#3	 16	

0x1EE	 494	 ParEEon	Entry	#4	 16	

0x1FE	 510	 Magic	Number	 2	

Total:	 512	

Includes	the	starEng	
LBA	and	length	of	

the	parEEon	

Di
sk
	1
	

MBR	 ParEEon	1	
(NTFS)	Di

sk
	2
	



Extended	ParEEons	
•  In	some	cases,	you	may	want	>4	parEEons	
•  Modern	OSes	support	extended	parEEons	

6	

ParEEon	1	
(ext3)	

ParEEon	2	
(swap)	

ParEEon	3	
(Extended	ParEEon)	

ParEEon	4	
(FAT32)	Di

sk
	1
	 Logical	

ParEEon	1	
(NTFS)	

Logical	
ParEEon	2	
(NTFS)	

•  Extended	parEEons	may	use	OS-specific	parEEon	
table	formats	(meta-data)	
– Thus,	other	OSes	may	not	be	able	to	read	the	logical	
parEEons	

MBR	 Ext.	
Part.	



Types	of	Root	File	Systems	
•  Windows	exposes	a	mulE-rooted	
system	
– Each	device	and	parEEon	is	assigned	
a	leder	

–  Internally,	a	single	root	is	maintained	

•  Linux	has	a	single	root	
– One	parEEon	is	mounted	as	/	
– All	other	parEEons	are	mounted	
somewhere	under	/	

•  Typically,	the	parEEon	containing	
the	kernel	is	mounted	as	/	or	C:	 7	

[cbw@aEv9	~]	df	-h	
Filesystem 	Size 	Used 	Avail 	Use% 	Mounted	on	
/dev/sda7 	39G 	14G 	23G 	38% 	/	
/dev/sda2 	296M 	48M 	249M 	16% 	/boot/efi	
/dev/sda5 	127G 	86G 	42G 	68% 	/media/cbw/Data	
/dev/sda4 	61G 	34G 	27G 	57% 	/media/cbw/Windows	
/dev/sdb1 	1.9G 	352K 	1.9G 	1% 	/media/cbw/NDSS-2013	

1	drive,	4	
parEEons	

1drive,	1	
parEEon	



MounEng	a	File	System	
1.  Read	the	super	block	for	the	target	file	system	
–  Contains	meta-data	about	the	file	system	
–  Version,	size,	locaEons	of	key	structures	on	disk,	etc.	

2.  Determine	the	mount	point		
–  On	Windows:	pick	a	drive	leder	
–  On	Linux:	mount	the	new	file	system	under	a	

specific	directory	

8	

Filesystem 	Size 	Used 	Avail 	Use% 	Mounted	on	
/dev/sda5 	127G 	86G 	42G 	68% 	/media/cbw/Data	
/dev/sda4 	61G 	34G 	27G 	57% 	/media/cbw/Windows	
/dev/sdb1 	1.9G 	352K 	1.9G 	1% 	/media/cbw/NDSS-2013	



•  Problem:	the	OS	may	mount	several	parEEons	
containing	different	underlying	file	systems	
–  It	would	be	bad	if	processes	had	to	use	different	APIs	
for	different	file	systems	

•  Linux	uses	a	Virtual	File	System	interface	(VFS)	
– Exposes	POSIX	APIs	to	processes	
– Forwards	requests	to	lower-level	file	system	specific	
drivers	

•  Windows	uses	a	similar	system	

Virtual	File	System	Interface	

9	



VFS	Flowchart	

10	

Ke
rn
el
	

Process	1	 Process	2	 Process	3	

Virtual	File	System	Interface	

ext3	Driver	 NTFS	Driver	 FAT32	Driver	

ext3	ParEEon	 NTFS	ParEEon	 FAT32	ParEEon	

Processes	(usually)	don’t	
need	to	know	about	low-
level	file	system	details	

RelaEvely	simple	to	
add	addiEonal	file	
system	drivers	



Mount	isn’t	Just	for	Bootup	
•  When	you	plug	storage	
devices	into	your	running	
system,	mount	is	executed	
in	the	background	

•  Example:	plugging	in	a	USB	
sEck	

•  What	does	it	mean	to	
“safely	eject”	a	device?	
– Flush	cached	writes	to	that	
device	

– Cleanly	unmount	the	file	
system	on	that	device	 11	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	

12	



Status	Check	
•  At	this	point,	the	OS	can	locate	and	mount	
parEEons	

•  Next	step:	what	is	the	on-disk	layout	of	the	file	
system?	
– We	expect	certain	features	from	a	file	system	
•  Named	files	
•  Nested	hierarchy	of	directories	
•  Meta-data	like	creaEon	Eme,	file	permissions,	etc.	

– How	do	we	design	on-disk	structures	that	support	
these	features?	

13	



The	Directory	Tree	

•  Navigated	using	a	path	
– E.g.	/home/amislove/music.mp3	 14	

home	

/	(root)	

bin	

tmp	

python	

cbw	

amislove	

cs5600	



Absolute	and	RelaEve	Paths	
•  Two	types	of	file	system	paths	
– Absolute	
•  Full	path	from	the	root	to	the	object	
•  Example:	/home/cbw/cs5600/hw4.pdf	
•  Example:	C:\Users\cbw\Documents\	

– RelaEve	
•  OS	keeps	track	of	the	working	directory	for	each	process	
•  Path	relaEve	to	the	current	working	directory	
•  Examples	[working	directory	=	/home/cbw]:	

–  syllabus.docx	[	à	/home/cbw/syllabus.docx]	
–  cs5600/hw4.pdf	[	à	/home/cbw/cs5600/hw4.pdf]	
–  ./cs5600/hw4.pdf	[	à	/home/cbw/cs5600/hw4.pdf]	
–  ../amislove/music.mp3	[	à	/home/amislove/music.mp3]	 15	



Files	
•  A	file	is	a	composed	of	two	components	
– The	file	data	itself	
•  One	or	more	blocks	(sectors)	of	binary	data	
•  A	file	can	contain	anything	

– Meta-data	about	the	file	
•  Name,	total	size	
• What	directory	is	it	in?	
•  Created	Eme,	modified	Eme,	access	Eme	
•  Hidden	or	system	file?		
•  Owner	and	owner’s	group	
•  Permissions:	read/write/execute	

16	



File	Extensions	
•  File	name	are	ouen	wriden	in	doded	notaEon	
– E.g.	program.exe,	image.jpg,	music.mp3	

•  A	file’s	extension	does	not	mean	anything	
– Any	file	(regardless	of	its	contents)	can	be	given	any	
name	or	extension	

17	

Rename	

•  Graphical	shells	(like	Windows	explorer)	use	
extensions	to	try	and	match	files	à	programs	
– This	mapping	may	fail	for	a	variety	of	reasons	

Has	the	data	in	the	
file	changed	from	
music	to	an	image?	



More	File	Meta-Data	
•  Files	have	addiEonal	meta-data	that	is	not	
typically	shown	to	users	
– Unique	idenEfier	(file	names	may	not	be	unique)	
– Structure	that	maps	the	file	to	blocks	on	the	disk	

•  Managing	the	mapping	from	files	to	blocks	is	one	
of	the	key	jobs	of	the	file	system		

18	Disk	



Mapping	Files	to	Blocks	
•  Every	file	is	composed	of	>=1	blocks	
•  Key	quesEon:	how	do	we	map	a	file	to	its	blocks?	

19	

0	 2	 3	 4	 5	 7	 9	1	 8	6	

[1]	 [4,	5,	7,	8]	 [6]	

List	of	blocks	

0	 2	 3	 4	 5	 6	 8	1	 7	 9	

(1,	1)	 (4,	4)	 (9,	1)	

As	(start,	length)	pairs	

•  Problem?	
– Really	large	files	

•  Problem?	
– FragmentaEon	
– E.g.	try	to	add	a	new	
file	with	3	blocks	



Directories	
•  TradiEonally,	file	systems	have	used	a	
hierarchical,	tree-structured	namespace	
– Directories	are	objects	that	contain	other	objects	

•  i.e.	a	directory	may	(or	may	not)	have	children	

– Files	are	leaves	in	the	tree	
•  By	default,	directories	contain	at	least	two	entries	

20	
/	(root)	 bin	

python	

.	

..	

“.”	self	pointer	“..”	points	the	the	
parents	directory	



More	on	Directories	
•  Directories	have	associated	meta-data	
– Name,	number	of	entries	
– Created	Eme,	modified	Eme,	access	Eme	
– Permissions	(read/write),	owner,	and	group	

•  The	file	system	must	encode	directories	and	store	
them	on	the	disk	
– Typically,	directories	are	stored	as	a	special	type	of	file	
– File	contains	a	list	of	entries	inside	the	directory,	plus	
some	meta-data	for	each	entry	

21	



Example	Directory	File	

22	

2	 3	 4	 5	 6	 7	 8	 9	

Disk	

C:\	

Windows	

Users	

C:\	

Name	 Index	 Dir?	 Perms	

.	 2	 Y	 rwx	

Windows	 3	 Y	 rwx	

Users	 4	 Y	 rwx	

pagefile.sys	 5	 N	 r	

1	0	

pagefile.sys	



Directory	File	ImplementaEon	
•  Each	directory	file	stores	many	entries	
•  Key	QuesEon:	how	do	you	encode	the	entries?	

Name	 Index	 Dir?	 Perms	

.	 2	 Y	 rwx	

Windows	 3	 Y	 rwx	

Users	 4	 Y	 rwx	

pagefile.sys	 5	 N	 r	

Unordered	List	of	Entries	

•  Good:	O(1)	to	add	new	entries	
–  Just	append	to	the	file	

•  Bad:	O(n)	to	search	for	an	
entry	

Name	 Index	 Dir?	 Perms	

.	 2	 Y	 rwx	

pagefile.sys	 5	 N	 r	

Users	 4	 Y	 rwx	

Windows	 3	 Y	 rwx	

Sorted	List	of	Entries	

•  Good:	O(log	n)	to	search	for	
an	entry	

•  Bad:	O(n)	to	add	new	entries	
–  EnEre	file	has	the	be	rewriden		

•  Other	alternaEves:	hash	tables,	B-trees	
•  More	on	B-trees	later…	

•  In	pracEce,	implemenEng	directory	files	is	complicated	
•  Example:	do	filenames	have	a	fixed,	maximum	length	

or	variable	length?	



File	AllocaEon	Tables	(FAT)	
•  Simple	file	system	popularized	by	MS-DOS	
– First	introduced	in	1977	
– Most	devices	today	use	the	FAT32	spec	from	1996	
– FAT12,	FAT16,	VFAT,	FAT32,	etc.	

•  SEll	quite	popular	today	
– Default	format	for	USB	sEcks	and	memory	cards	
– Used	for	EFI	boot	parEEons	

•  Name	comes	from	the	index	table	used	to	track	
directories	and	files	

24	



25	

Super	
Block	Disk	

•  Stores	basic	info	about	the	file	system	
•  FAT	version,	locaEon	of	boot	files	
•  Total	number	of	blocks	
•  Index	of	the	root	directory	in	the	FAT	

•  Store	file	and	directory	data	
•  Each	block	is	a	fixed	size	(4KB	–	64KB)	
•  Files	may	span	mulEple	blocks	

•  File	allocaEon	table	(FAT)	
•  Marks	which	blocks	are	free	or	in-use	
•  Linked-list	structure	to	manage	large	files	



2	 3	 4	 5	 6	 7	 8	 9	

26	

Super	
Block	Disk	

C:\	

Windows	

Users	

2	 3	 4	 5	 6	 7	 8	 9	

Root	directory	
index	=	2	

C:\	

Name	 Index	 Dir?	 Perms	

.	 2	 Y	 rwx	

Windows	 3	 Y	 rwx	

Users	 4	 Y	 rwx	

pagefile.sys	 5	 N	 r	

•  Directories	are	special	files	
–  File	contains	a	list	of	entries	inside	
the	directory	

•  Possible	values	for	FAT	entries:	
–  0	–	entry	is	empty	
–  1	–	reserved	by	the	OS	
–  1	<	N	<	0xFFFF	–	next	block	in	a	chain	
–  0xFFFF	–	end	of	a	chain	



Fat	Table	Entries	
•  len(FAT)	==	Number	of	clusters	on	the	disk	
– Max	number	of	files/directories	is	bounded	
– Decided	when	you	format	the	parEEon	

•  The	FAT	version	roughly	corresponds	to	the	size	
in	bits	of	each	FAT	entry	
– E.g.	FAT16	à	each	FAT	entry	is	16	bits	
– More	bits	à	larger	disks	are	supported	

27	



FragmentaEon	
•  Blocks	for	a	file	need	not	be	conEguous	

28	

68	67	65	64	63	62	61	60	59	58	57	56	

0	61	67	0	58	0	0xFF
FF	

0	0	65	0	0	

68	67	65	64	63	62	61	60	59	58	57	56	

FAT	

Blocks	

Possible	values	for	FAT	entries:	
•  0	–	entry	is	empty	
•  1	<	N	<	0xFFFF	–	next	block	in	a	chain	
•  0xFFFF	–	end	of	a	chain	



FAT:	The	Good	and	the	Bad	
•  The	Good	–	FAT	supports:	
– Hierarchical	tree	of	directories	and	files	
– Variable	length	files	
– Basic	file	and	directory	meta-data		

•  The	Bad	
– At	most,	FAT32	supports	2TB	disks	
– LocaEng	free	chunks	requires	scanning	the	enEre	FAT	
– Prone	to	internal	and	external	fragmentaEon	
•  Large	blocks	à	internal	fragmentaEon	

– Reads	require	a	lot	of	random	seeking	
29	



Lots	of	Seeking	
•  Consider	the	following	code:	

int	fd	=	open(“my_file.txt”,	“r”);	
int	r	=	read(fd,	buffer,	1024	*	4	*	4);	//	4	4KB	blocks	

	

30	

68	67	65	64	63	62	61	60	59	58	57	56	

60	59	0	0	57	56	0	63	0xFF
FF	

0	0xFF
FF	

67	

68	67	65	64	63	62	61	60	59	58	57	56	

FAT	

Blocks	

FAT	may	have	very	low	
spaEal	locality,	thus	a	
lot	of	random	seeking	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)		
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	

31	



Status	Check	
•  At	this	point,	we	have	on-disk	structures	for:	
– Building	a	directory	tree	
– Storing	variable	length	files	

•  But,	the	efficiency	of	FAT	is	very	low	
– Lots	of	seeking	over	file	chains	in	FAT	
– Only	way	to	idenEfy	free	space	is	to	scan	over	the	
enEre	FAT	

•  Linux	file	system	uses	more	efficient	structures	
– Extended	File	System	(ext)	uses	index	nodes	(inodes)	
to	track	files	and	directories	

32	



Size	DistribuEon	of	Files	
•  FAT	uses	a	linked	list	for	all	files	
– Simple	and	uniform	mechanism	
– …	but,	it	is	not	opEmized	for	short	or	long	files	

•  QuesEon:	are	short	or	long	files	more	common?	
– Studies	over	the	last	30	years	show	that	short	files	
are	much	more	common	

– 2KB	is	the	most	common	file	size	
– Average	file	size	is	200KB	(biased	upward	by	a	few	
very	large	files)	

•  Key	idea:	opEmize	the	file	system	for	many	small	
files	 33	



34	

•  Super	block,	storing:	
•  Size	and	locaEon	of	bitmaps	
•  Number	and	locaEon	of	inodes	
•  Number	and	locaEon	of	data	blocks	
•  Index	of	root	inodes	

Data	blocks	(4KB	each)	

Bitmap	of	free	&	
used	data	blocks	

•  Table	of	inodes	
•  Each	inode	is	a	file/directory	
•  Includes	meta-data	and	lists	

of	associated	data	blocks	

Bitmap	of	free	&	
used	inodes	



35	

SB	

/	

bin	

home	 cbw	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

Root	inode	=	0	

•  Directories	are	files	
•  Contains	the	list	of	

entries	in	the	directory	
Name	 inode	

.	 0	

bin	 1	

home	 2	

initrd.img	 3	

•  Each	inode	can	directly	point	to	12	
blocks	

•  Can	also	indirectly	point	to	blocks	
at	1,	2,	and	3	levels	of	depth	



ext2	inodes	
Size	(bytes)	 Name	 What	is	this	field	for?	
2	 mode	 Read/write/execute?	
2	 uid	 User	ID	of	the	file	owner	
4	 size	 Size	of	the	file	in	bytes	
4	 Eme	 Last	access	Eme	
4	 cEme	 CreaEon	Eme	
4	 mEme	 Last	modificaEon	Eme	
4	 dEme	 DeleEon	Eme	
2	 gid	 Group	ID	of	the	file	
2	 links_count	 How	many	hard	links	point	to	this	file?	
4	 blocks	 How	many	data	blocks	are	allocated	to	this	file?	
4	 flags	 File	or	directory?	Plus,	other	simple	flags	
60	 block	 15	direct	and	indirect	pointers	to	data	blocks	

36	



inode	Block	Pointers	

37	

•  Each	inode	is	the	root	of	an	unbalanced	tree	of	
data	blocks	 15	total	pointers	

12	blocks	*	
4KB	=	48KB	

230	blocks	*	4KB	=	4TB	1024	blocks	*	
4KB	=	4MB	 1024	*	1024	blocks	*	4KB	=	4GB	

inode	

Single	
Indirect	

Double	
Indirect	

Triple	
Indirect	



Advantages	of	inodes	
•  OpEmized	for	file	systems	with	many	small	files	
– Each	inode	can	directly	point	to	48KB	of	data	
– Only	one	layer	of	indirecEon	needed	for	4MB	files	

•  Faster	file	access	
– Greater	meta-data	locality	à	less	random	seeking	
– No	need	to	traverse	long,	chained	FAT	entries	

•  Easier	free	space	management	
– Bitmaps	can	be	cached	in	memory	for	fast	access	
–  inode	and	data	space	handled	independently	

38	



File	Reading	Example	
data	 inode	 root	 tmp	 file	 root	 tmp	 file[0]	 file[1]	 file[3]	

op
en

(“
/t
m
p/
fil
e”
)	 read	

read	

read	

read	

read	

read()	

read	

read	

write	

read()	

read	

read	

write	

read()	

read	

read	

write	

Bitmaps	 inodes	 Data	Blocks	

Update	the	last	
accessed	Eme	
of	the	file	Ti

m
e	



File	
Create	
and	
Write	

Example	

data	 inode	 root	 tmp	 file	 root	 tmp	 file[0]	

op
en

(“
/t
m
p/
fil
e”
)	

read	

read	

read	

read	

read	

write	

write	

write	

write	

write()	
	

read	

read	

write	

write	

write	

Bitmaps	 inodes	 Data	Blocks	

Update	the	
modified	Eme	
of	the	directory	

Ti
m
e	



ext2	inodes,	Again	
Size	(bytes)	 Name	 What	is	this	field	for?	
2	 mode	 Read/write/execute?	
2	 uid	 User	ID	of	the	file	owner	
4	 size	 Size	of	the	file	in	bytes	
4	 Eme	 Last	access	Eme	
4	 cEme	 CreaEon	Eme	
4	 mEme	 Last	modificaEon	Eme	
4	 dEme	 DeleEon	Eme	
2	 gid	 Group	ID	of	the	file	
2	 links_count	 How	many	hard	links	point	to	this	file?	
4	 blocks	 How	many	data	blocks	are	allocated	to	this	file?	
4	 flags	 File	or	directory?	Plus,	other	simple	flags	
60	 block	 15	direct	and	indirect	pointers	to	data	blocks	

41	



Hard	Link	Example	
•  MulEple	directory	entries	may	point	to	the	same	
inode	

42	

home	

cbw	

amislove	

my_file	

cbw_file	

[amislove@aEv9	~]	ln	–T	../cbw/my_file	cbw_file	

SB	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

1.  Add	an	entry	to	the	“amislove”	
directory	

2.  Increase	the	link_count	of	the	
“my_file”	inode	



Hard	Link	Details	
•  Hard	links	give	you	the	ability	to	create	many	
aliases	of	the	same	underlying	file	
– Can	be	in	different	directories	

•  Target	file	will	not	be	marked	invalid	(deleted)	
unEl	link_count	==	0	
– This	is	why	POSIX	“delete”	is	called	unlink()		

•  Disadvantage	of	hard	links	
–  Inodes	are	only	unique	within	a	single	file	system	
– Thus,	can	only	point	to	files	in	the	same	parEEon	

43	



Sou	Links	
•  	Sou	links	are	special	files	that	include	the	path	
to	another	file	
– Also	known	as	symbolic	links	
– On	Windows,	known	as	shortcuts	
– File	may	be	on	another	parEEon	or	device	

44	



Sou	Link	Example	

45	

home	

cbw	

amislove	

my_file	

cbw_file	

[amislove@aEv9	~]	ln	–s	../cbw/my_file	cbw_file	

SB	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

1.  Create	a	sou	link	file	
2.  Add	it	to	the	current	

directory	



ext:	The	Good	and	the	Bad	
•  The	Good	–	ext	file	system	(inodes)	support:	
– All	the	typical	file/directory	features	
– Hard	and	sou	links	
– More	performant	(less	seeking)	than	FAT	

•  The	Bad:	poor	locality	
– ext	is	opEmized	for	a	parEcular	file	size	distribuEon	
– However,	it	is	not	opEmized	for	spinning	disks	
–  inodes	and	associated	data	are	far	apart	on	the	disk!	

46	
SB	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	

47	



Status	Check	
•  At	this	point,	we’ve	moved	from	FAT	to	ext	
–  inodes	are	imbalanced	trees	of	data	blocks	
– OpEmized	for	the	common	case:	small	files	

•  Problem:	ext	has	poor	locality	
–  inodes	are	far	from	their	corresponding	data	
– This	is	going	to	result	in	long	seeks	across	the	disk	

•  Problem:	ext	is	prone	to	fragmentaEon	
– ext	chooses	the	first	available	blocks	for	new	data	
– No	adempt	is	made	to	keep	the	blocks	of	a	file	
conEguous	

48	



Fast	File	System	(FFS)	
•  FFS	developed	at	Berkeley	in	1984	
– First	adempt	at	a	disk	aware	file	system	
–  i.e.	opEmized	for	performance	on	spinning	disks	

•  ObservaEon:	processes	tend	to	access	files	that	
are	in	the	same	(or	close)	directories	
– SpaEal	locality	

•  Key	idea:	place	groups	of	directories	and	their	
files	into	cylinder	groups	
–  Introduced	into	ext2,	called	block	groups	

49	



50	
SB	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

Block	
Group	1	

Block	
Group	2	

Block	
Group	3	

Block	
Group	4	

Block	
Group	5	

Block	
Group	6	

Block	Groups	
•  In	ext,	there	is	a	single	set	of	key	data	structures	
– One	data	bitmap,	one	inode	bitmap	
– One	inode	table,	one	array	of	data	blocks	

•  In	ext2,	each	block	group	contains	its	own	key	
data	structures	



AllocaEon	Policy	
•  ext2	adempts	to	keep	related	files	and	
directories	within	the	same	block	group	

home	 cbw	amislove	

SB	 Block	
Group	1	

Block	
Group	2	

Block	
Group	3	

Block	
Group	4	

Block	
Group	5	

Block	
Group	6	



ext2:	The	Good	and	the	Bad	
•  The	good	–	ext2	supports:	
– All	the	features	of	ext…	
– …	with	even	beder	performance	(because	of	
increased	spaEal	locality)	

•  The	bad	
– Large	files	must	cross	block	groups	
– As	the	file	system	becomes	more	complex,	the	
chance	of	file	system	corrupEon	grows	
•  E.g.	invalid	inodes,	incorrect	directory	entries,	etc.	

52	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	

53	



Status	Check	

•  At	this	point,	we	have	a	full	featured	file	system	
– Directories	
– Fine-grained	data	allocaEon	
– Hard/sou	links	

•  File	system	is	opEmized	for	spinning	disks	
–  inodes	are	opEmized	for	small	files	
– Block	groups	improve	locality	

•  What’s	next?	
– Consistency	and	reliability	

54	



Maintaining	Consistency	

•  Many	operaEons	results	in	mulEple,	
independent	writes	to	the	file	system	
– Example:	append	a	block	to	an	exisEng	file	
1.  Update	the	free	data	bitmap	
2.  Update	the	inode	
3.  Write	the	user	data	

•  What	happens	if	the	computer	crashes	in	the	
middle	of	this	process?	

55	



File	Append	Example	

56	

v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

owner: 	christo	
permissions: 	rw	
size: 	1	
pointer: 	4	
pointer: 	null	
pointer: 	null		
pointer: 	null	

Update	
the	inode	

v2	 D2	

Write	the	
data	

owner: 	christo	
permissions: 	rw	
size: 	2	
pointer: 	4	
pointer: 	5	
pointer: 	null		
pointer: 	null	

Update	
the	data	
bitmap	

•  These	three	operaEons	can	
potenEally	be	done	in	any	order	

•  …	but	the	system	can	crash	at	
any	Eme	



v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

D2	

Write	the	data	Result:	file	system	is	consistent,	but	the	data	is	lost	

v1	 D1	

Result:	inode	points	to	garbage	data,	and	file	
system	is	inconsistent	(data	bitmap	vs.	inode)	

v2	

v1	 D1	

Result:	space	leakage,	and	file	system	is	
inconsistent	(data	bitmap	vs.	inode)	

Update	the	
data	bitmap	

Update	the	inode	



v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

D2	

Result:	inode	points	to	data,	but	file	system	is	inconsistent	

v1	 D1	

Result:	file	system	is	inconsistent,	and	the	data	is	
useless	since	it’s	not	associated	with	an	inode	

v1	 D1	

Result:	file	system	is	consistent,	but	the	inode	
points	to	garbage	data	

v2	

D2	

v2	



The	Crash	Consistency	Problem	
•  The	disk	guarantees	that	sector	writes	are	atomic	
– No	way	to	make	mulE-sector	writes	atomic	

•  How	to	ensure	consistency	auer	a	crash?	
1.  Don’t	bother	to	ensure	consistency	
•  Accept	that	the	file	system	may	be	inconsistent	auer	a	crash	
•  Run	a	program	that	fixes	the	file	system	during	bootup	
•  	File	system	checker	(fsck)	

2.  Use	a	transacEon	log	to	make	mulE-writes	atomic	
•  Log	stores	a	history	of	all	writes	to	the	disk	
•  Auer	a	crash	the	log	can	be	“replayed”	to	finish	updates	
•  	Journaling	file	system	

59	



Approach	1:	File	System	Checker	
•  Key	idea:	fix	inconsistent	file	systems	during	
bootup	
– Unix	uElity	called	fsck	(chkdsk	on	Windows)	
– Scans	the	enEre	file	system	mulEple	Emes,	idenEfying	
and	correcEng	inconsistencies	

•  Why	during	bootup?	
– No	other	file	system	acEvity	can	be	going	on	
– Auer	fsck	runs,	bootup/mounEng	can	conEnue	

60	



fsck	Tasks	
•  Superblock:	validate	the	superblock,	replace	it	
with	a	backup	if	it	is	corrupted	

•  Free	blocks	and	inodes:	rebuild	the	bitmaps	by	
scanning	all	inodes	

•  Reachability:	make	sure	all	inodes	are	reachable	
from	the	root	of	the	file	system	

•  inodes:	delete	all	corrupted	inodes,	and	rebuild	
their	link	counts	by	walking	the	directory	tree	

•  directories:	verify	the	integrity	of	all	directories	
•  …	and	many	other	minor	consistency	checks	

61	



fsck:	the	Good	and	the	Bad	
•  Advantages	of	fsck	
– Doesn’t	require	the	file	system	to	do	any	work	to	
ensure	consistency	

– Makes	the	file	system	implementaEon	simpler	

•  Disadvantages	of	fsck	
– Very	complicated	to	implement	the	fsck	program	
•  Many	possible	inconsistencies	that	must	be	idenEfied	
•  Many	difficult	corner	cases	to	consider	and	handle	

–  fsck	is	super	slow	
•  Scans	the	enEre	file	system	mulEple	Emes	
•  Imagine	how	long	it	would	take	to	fsck	a	40	TB	RAID	array	

62	



63	



Approach	2:	Journaling	
•  Problem:	fsck	is	slow	because	it	checks	the	enEre	
file	system	auer	a	crash	
– What	if	we	knew	where	the	last	writes	were	before	
the	crash,	and	just	checked	those?	

•  Key	idea:	make	writes	transacEonal	by	using	a	
write-ahead	log	
– Commonly	referred	to	as	a	journal	

•  Ext3	and	NTFS	use	journaling	

64	

Superblock	 Block	
Group	0	

Block	
Group	1	 …	 Block	

Group	N	
Journal	



Write-Ahead	Log	
•  Key	idea:	writes	to	disk	are	first	wriden	into	a	log	
– Auer	the	log	is	wriden,	the	writes	execute	normally	
–  In	essence,	the	log	records	transacEons	

•  What	happens	auer	a	crash…	
–  If	the	writes	to	the	log	are	interrupted?	
•  The	transacEon	is	incomplete	
•  The	user’s	data	is	lost,	but	the	file	system	is	consistent	

–  If	the	writes	to	the	log	succeed,	but	the	normal	
writes	are	interrupted?	
•  The	file	system	may	be	inconsistent,	but…	
•  The	log	has	exactly	the	right	informaEon	to	fix	the	problem	

65	



Data	Journaling	Example	
•  Assume	we	are	appending	to	a	file	
– Three	writes:	inode	v2,	data	bitmap	v2,	data	D2	

•  Before	execuEng	these	writes,	first	log	them	

66	

Jo
ur
na

l	

D2	B	v2	I	v2	TxB	
ID=1	

TxE	
ID=1	

1.  Begin	a	new	transacEon	with	a	unique	ID=k	
2.  Write	the	updated	meta-data	block(s)	
3.  Write	the	file	data	block(s)	
4.  Write	an	end-of-transacEon	with	ID=k	



Commits	and	Checkpoints	
•  We	say	a	transacEon	is	commided	auer	all	writes	
to	the	log	are	complete	

•  Auer	a	transacEon	is	commided,	the	OS	
checkpoints	the	update	

67	

Journal	 D2	B	v2	I	v2	TxB	 TxE	

v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

v2	 D2	

•  Final	step:	free	the	checkpointed	transacEon	

Commided!	

Checkpointed!	



Journal	ImplementaEon	
•  Journals	are	typically	implemented	as	a	circular	
buffer	
–  Journal	is	append-only	

•  OS	maintains	pointers	to	the	front	and	back	of	
the	transacEons	in	the	buffer	
– As	transacEons	are	freed,	the	back	is	moved	up	

•  Thus,	the	contents	of	the	journal	are	never	
deleted,	they	are	just	overwriden	over	Eme	

68	



Data	Journaling	Timeline	

TxB	 Meta-data	 Data	 TxE	 Meta-data	 Data	

Issue	 Issue	 Issue	 Issue	

Complete	

Complete	

Complete	

Complete	

Issue	 Issue	

Complete	

Complete	

69	

Time	

Journal	 File	System	



Crash	Recovery	(1)	
•  What	if	the	system	crashes	during	logging?	
–  If	the	transacEon	is	not	commided,	data	is	lost	
– But,	the	file	system	remains	consistent	

70	

Journal	 D2	B	v2	I	v2	TxB	

v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	



Crash	Recovery	(2)	
•  What	if	the	system	crashes	during	the	checkpoint?	
– File	system	may	be	inconsistent	
– During	reboot,	transacEons	that	are	commided	but	not	
free	are	replayed	in	order	

– Thus,	no	data	is	lost	and	consistency	is	restored	

71	

Journal	 D2	B	v2	I	v2	TxB	 TxE	

v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

v2	 D2	



Corrupted	TransacEons	
•  Problem:	the	disk	scheduler	may	not	execute	
writes	in-order	
– TransacEons	in	the	log	may	appear	commided,	when	
in	fact	they	are	invalid	

72	

Journal	 D2	B	v2	I	v2	TxB	 TxE	

•  TransacEon	looks	
valid,	but	the	data	is	
missing!	

•  During	replay,	garbage	
data	is	wriden	to	the	
file	system	

•  SoluEon:	add	a	checksum	to	TxB	
•  During	recovery,	reject	transacEons	

with	invalid	checksums	
•  Implemented	on	Linux	in	ext4	



Journaling:	The	Good	and	the	Bad	
•  Advantages	of	journaling	
– Robust,	fast	file	system	recovery	
•  No	need	to	scan	the	enEre	journal	or	file	system	

– RelaEvely	straight	forward	to	implement	

•  Disadvantages	of	journaling	
– Write	traffic	to	the	disk	is	doubled	
•  Especially	the	file	data,	which	is	probably	large	

– Deletes	are	very	hard	to	correctly	log	
•  Example	in	a	few	slides…	

73	



Making	Journaling	Faster	
•  Journaling	adds	a	lot	of	write	overhead	
•  OSes	typically	batch	updates	to	the	journal	
– Buffer	sequenEal	writes	in	memory,	then	issue	one	
large	write	to	the	log	

– Example:	ext3	batches	updates	for	5	seconds	

•  Tradeoff	between	performance	and	persistence	
– Long	batch	interval	=	fewer,	larger	writes	to	the	log	
•  Improved	performance	due	to	large	sequenEal	writes	

– But,	if	there	is	a	crash,	everything	in	the	buffer	will	be	
lost	

74	



Meta-Data	Journaling	
•  The	most	expensive	part	of	data	journaling	is	
wriEng	the	file	data	twice	
– Meta-data	is	small	(~1	sector),	file	data	is	large	

•  ext3	implements	meta-data	journaling	

75	

Journal	 B	v2	I	v2	TxB	 TxE	

v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

v2	 D2	



Meta-Journaling	Timeline	

76	

TxB	 Meta-data	 TxE	 Meta-data	 Data	

Issue	 Issue	 Issue	

Complete	

Complete	

Complete	

Issue	

Complete	

Issue	

Complete	

Ti
m
e	

Journal	 File	System	

TransacEon	
can	only	be	
commided	

auer	the	meta-
data	and	data	
are	wriden	



Crash	Recovery	Redux	(1)	
•  What	if	the	system	crashes	during	logging?	
–  If	the	transacEon	is	not	commided,	data	is	lost	
– D2	will	eventually	be	overwriden	
– The	file	system	remains	consistent	

77	

Journal	 B	v2	I	v2	TxB	

v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

D2	



Crash	Recovery	Redux	(2)	
•  What	if	the	system	crashes	during	the	checkpoint?	
– File	system	may	be	inconsistent	
– During	reboot,	transacEons	that	are	commided	but	not	
free	are	replayed	in	order	

– Thus,	no	data	is	lost	and	consistency	is	restored	

78	

Journal	 B	v2	I	v2	TxB	 TxE	

v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

v2	 D2	



Delete	and	Block	Reuse	

1.  Create	a	directory:	inode	and	data	are	wriden	
2.  Delete	the	directory:	inode	is	removed	
3.  Create	a	file:	inode	and	data	are	wriden	

79	

Journal	 dir	dir	TxB	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

f1	
dir	

TxE	 dir	dir	TxB	 TxE	

dir	f1	

f1	f1	TxB	 TxE	

The	block	that	previously	held	directory	
info	is	reused	to	hold	file	data	



The	Trouble	With	Delete	
•  What	happens	when	the	log	is	replayed?	

80	

Journal	 dir	dir	TxB	

Data	Blocks	

TxE	 dir	dir	TxB	 TxE	

f1	

f1	f1	TxB	 TxE	

file	data	is	overwriden	
by	directory	meta-data	

dir	

file	data	is	not	in	the	
log,	thus	it	is	lost!	:(	



Handling	Delete	
•  Strategy	1:	don’t	reuse	blocks	unEl	the	delete	is	
checkpointed	and	freed	

•  Strategy	2:	add	a	revoke	record	to	the	log	
– ext3	used	revoke	records	

81	

Journal	 dir	TxB	
ID=1	 TxE	 Rx	

ID=1	 dir	TxB	
ID=2	 TxE	 f1	TxB	

ID=3	 TxE	

If	the	log	is	replayed,	
ignore	transacEon	ID=1	



Journaling	Wrap-Up	
•  Today,	most	OSes	use	journaling	file	systems	
– ext3/ext4	on	Linux	
– NTFS	on	Windows	

•  Provides	excellent	crash	recovery	with	relaEvely	
low	space	and	performance	overhead	

•  Next-gen	OSes	will	likely	move	to	file	systems	
with	copy-on-write	semanEcs	
– btrfs	and	zfs	on	Linux	

82	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	

83	



Status	Check	
•  At	this	point:	
– We	not	only	have	a	fast	file	system	
– But	it	is	also	resilient	against	corrupEon	

•  What’s	next?	
– More	efficiency	improvements!	

84	



RevisiEng	inodes	
•  Recall:	inodes	use	indirecEon	to	acquire	
addiEonal	blocks	of	pointers	

•  Problem:	inodes	are	not	efficient	for	large	files	
– Example:	for	a	100MB	file,	you	need	25600	block	
pointers	(assuming	4KB	blocks)	

•  This	is	unavoidable	if	the	file	is	100%	fragmented	
– However,	what	if	large	groups	of	blocks	are	
conEguous?	

85	



From	Pointers	to	Extents	
•  Modern	file	systems	try	hard	to	minimize	
fragmentaEon	
– Since	it	results	in	many	seeks,	thus	low	performance	

•  	Extents	are	beder	suited	for	conEguous	files	

86	

inode	
block	1	
block	2	
block	3	
block	4	
block	5	
block	6	

inode	
block	1	
length	1	
block	2	
length	2	
block	3	
length	3	

Each	extent	
includes	a	block	
pointer	and	a	

length	



ImplemenEng	Extents	
•  ext4	and	NTFS	use	extents	
•  ext4	inodes	include	4	extents	instead	of	block	
pointers	
– Each	extent	can	address	at	most	128MB	of	
conEguous	space	(assuming	4KB	blocks)	

–  If	more	extents	are	needed,	a	data	block	is	allocated	
– Similar	to	a	block	of	indirect	pointers	

87	



RevisiEng	Directories	
•  In	ext,	ext2,	and	ext3,	each	directory	is	a	file	with	
a	list	of	entries	
– Entries	are	not	stored	in	sorted	order	
– Some	entries	may	be	blank,	if	they	have	been	deleted	

•  Problem:	searching	for	files	in	large	directories	
takes	O(n)	Eme	
– PracEcally,	you	can’t	store	>10K	files	in	a	directory	
–  It	takes	way	too	long	to	locate	and	open	files		

88	



From	Lists	to	B-Trees	
•  ext4	and	NTFS	encode	directories	as	B-Trees	to	
improve	lookup	Eme	to	O(log	N)	

•  A	B-Tree	is	a	type	of	balanced	tree	that	is	
opEmized	for	storage	on	disk	
–  Items	are	stored	in	sorted	order	in	blocks	
– Each	block	stores	between	m	and	2m	items	

•  Suppose	items	i	and	j	are	in	the	root	of	the	tree	
– The	root	must	have	3	children,	since	it	has	2	items	
– The	three	child	groups	contain	items	a	<	i,	i	<	a	<	j,	
and	a	>	j	

89	



Example	B-Tree	
•  ext4	uses	a	B-Tree	variant	known	as	a	H-Tree	
– The	H	stands	for	hash	(someEme	called	B+Tree)	

•  Suppose	you	try	to	open(“my_file”,	“r”)	

90	

hash(“my_file”)	=	0x0000C194	

H-Tree	Node	 H-Tree	Node	

H-Tree	Leaf	

H-Tree	Root	

0x00AD1102	 0xCFF1A412	

H-Tree	Leaf	

H-Tree	Node	

0x0000C195	 0x00018201	

my_file	à	inode		

H-Tree	Leaf	

0x0000A0D1	 0x0000C194	



ext4:	The	Good	and	the	Bad	
•  The	good	–	ext4	(and	NTFS)	supports:	
– All	of	the	basic	file	system	funcEonality	we	require	
–  Improved	performance	from	ext3’s	block	groups	
– AddiEonal	performance	gains	from	extents	and	B-
Tree	directory	files	

•  The	bad:	
– ext4	is	an	incremental	improvement	over	ext3	
– Next-gen	file	systems	have	even	nicer	features	
•  Copy-on-write	semanEcs	(btrfs	and	ZFS)	

91	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	

92	



Status	Check	
•  At	this	point:	
– We	have	arrived	at	a	modern	file	system	like	ext4	

•  What’s	next?	
– Go	back	to	the	drawing	board	and	reevaluate	from	
first-principals	

93	



ReevaluaEng	Disk	Performance	
•  How	has	computer	hardware	been	evolving?	
– RAM	has	become	cheaper	and	grown	larger	:)	
– Random	access	seek	Emes	have	remained	very	slow	:(	

•  This	changing	dynamic	alters	how	disks	are	used	
– More	data	can	be	cached	in	RAM	=	less	disk	reads	
– Thus,	writes	will	dominate	disk	I/O	

•  Can	we	create	a	file	system	that	is	opEmized	for	
sequenEal	writes?	

94	



Log-structured	File	System	
•  Key	idea:	buffer	all	writes	(including	meta-data)	
in	memory	
– Write	these	long	segments	to	disk	sequenEally	
– Treat	the	disk	as	a	circular	buffer,	i.e.	don’t	overwrite	

•  Advantages:	
– All	writes	are	large	and	sequenEal	

•  Big	quesEon:	
– How	do	you	manage	meta-data	and	maintain	
structure	in	this	kind	of	design?	

95	



TreaEng	the	Disk	as	a	Log	
•  Same	concept	as	data	journaling	
– Data	and	meta-data	get	appended	to	a	log	
– Stale	data	isn’t	overwriden,	its	replaced	

96	

Di
sk
	

Data	
Block	1	

Data	
Block	2	

inode	
1	

Data	
Block	5	

inode	
2	

Data	
Block	1	

inode	
1	



Giant	Log	

Buffering	Writes	
•  LFS	buffers	writes	in-memory	into	chunks		

97	

•  Chunks	get	appended	to	the	log	once	they	are	
sufficiently	large	

M
em

or
y	

Di
sk
	

Data	
Block	1	

Data	
Block	2	

Data	
Block	3	

Data	
Block	4	

inode	
1	

Data	
Block	5	

inode	
2	



How	to	Find	inodes	
•  In	a	typical	file	system,	the	inodes	are	stored	at	
fixed	locaEons	(relaEvely	easy	to	find)	

•  How	do	you	find	inodes	in	the	log?	
– Remember,	there	may	be	mulEple	copies	of	a	given	
inode	

•  SoluEon:	add	a	level	of	indirecEon	
– The	tradiEonal	inode	map	can	be	broken	into	pieces	
– When	a	porEon	of	the	inode	map	is	updated,	write	it	
to	the	log!	

98	



Giant	Log	

inode	
map	
N	

inode	Maps	

99	

M
em

or
y	

Di
sk
	

Data	
Block	1	

Data	
Block	2	

Data	
Block	3	

Data	
Block	4	

inode	
1	

Data	
Block	5	

inode	
2	

•  New	problem:	the	inode	map	is	scadered	
throughout	the	log	
– How	do	we	find	the	most	up-to-date	pieces?	



The	Checkpoint	Region	
•  The	superblock	in	LFS	contains	pointers	to	all	of	
the	up-to-date	inode	maps	
– The	checkpoint	region	is	always	cached	in	memory	
– Wriden	periodically	to	disk,	say	~30	seconds	
– Only	part	of	LFS	that	isn’t	maintained	in	the	log	

100	

inode	
map	
N	Di

sk
	 Data	

Block	
1	

Data	
Block	
2	

Data	
Block	
3	

Data	
Block	
4	

inode	
1	

Data	
Block	
5	

inode	
2	CR	



How	to	Read	a	File	in	LFS	
•  Suppose	you	want	to	read	inode	1	

1.  Look	up	inode	1	in	the	checkpoint	region	
•  inode	map	containing	inode	1	is	in	sector	X	

2.  Read	the	inode	map	at	sector	X	
•  inode	1	is	in	sector	Y	

3.  Read	inode	1	
•  File	data	is	in	sectors	A,	B,	C,	etc.	

101	

inode	
map	
N	Di

sk
	 Data	

Block	
1	

Data	
Block	
2	

Data	
Block	
3	

Data	
Block	
4	

inode	
1	

Data	
Block	
5	

inode	
2	CR	



Directories	in	LFS	

•  Directories	are	stored	just	like	in	typical	file	
systems	
– Directory	data	stored	in	a	file	
–  inode	points	to	the	directory	file	
– Directory	file	contains	name	à	inode	mappings	

102	

inode	
map	
N	Di

sk
	 Data	

Block	
1	

Data	
Block	
2	

Data	
Block	
3	

Data	
Block	
4	

inode	
1	

Dir	
Data	
1	

inode	
2	CR	



Garbage	
•  Over	Eme,	the	log	is	going	to	fill	up	with	stale	
data	
– Highly	fragmented:	live	data	mixed	with	stale	data	

•  Periodically,	the	log	must	be	garbage	collected	

103	

Di
sk
	

Data	
Block	1	

Data	
Block	2	

inode	
1	

Data	
Block	5	

inode	
2	

Data	
Block	1	

inode	
1	



Garbage	CollecEon	in	LFS	

104	

Di
sk
	

D1	 D1	 i1	 D2	 i2	 D1	 i1	 D3	 D3	 D3	

Cluster	1	 Cluster	2	

M
em

or
y	

D1	 D1	 i1	 D2	 i2	

D1	 D2	 i2	 i1	

S	

S	 S	 S	

Summary	block	

•  Each	cluster	has	a	summary	block	
–  Contains	the	block	à	inode	mapping	for	each	block	in	the	cluster	

•  To	check	liveness,	the	GC	reads	each	file	with	blocks	in	the	
cluster	
–  If	the	current	info	doesn’t	match	the	summary,	blocks	are	stale	

•  Which	blocks	are	stale?	
•  Pointers	from	other	

clusters	are	invisible	

C
R	



An	Idea	Whose	Time	Has	Come	
•  LFS	seems	like	a	very	strange	design	
– Totally	unlike	tradiEonal	file	system	structures	
– Doesn’t	map	well	to	our	ideas	about	directory	
heirarchies	

•  IniEally,	people	did	not	like	LFS	
•  However,	today	it’s	features	are	widely	used	

105	



File	Systems	for	SSDs	
•  SSD	hardware	constraints	
– To	implement	wear	leveling,	writes	must	be	spread	
across	the	blocks	of	flash	

– Periodically,	old	blocks	need	to	be	garbage	collected	
to	prevent	write-amplificaEon	

•  Does	this	sounds	familiar?	
•  LFS	is	the	ideal	file	system	for	SSDs!	
•  Internally,	SSDs	manage	all	files	in	a	LFS	
– This	is	transparent	to	the	OS	and	end-users	
–  Ideal	for	wear-leveling	and	avoiding	write-
amplificaEon		

106	



Copy-on-write	
•  Modern	file	systems	incorporate	ideas	from	LFS	
•  Copy-on-write	semaEcs	
– Updated	data	is	wriden	to	empty	space	on	disk,	
rather	than	overwriEng	the	original	data	

– Helps	prevent	data	corrupEon,	improves	sequenEal	
write	performance	

•  Pioneered	by	LFS,	now	used	in	ZFS	and	btrfs	
– btrfs	will	probably	be	the	next	default	file	system	in	
Linux	

107	



Versioning	File	Systems	
•  LFS	keeps	old	copies	of	data	by	default	
•  Old	versions	of	files	may	be	useful!	
– Example:	accidental	file	deleEon	
– Example:	accidentally	doing	open(file,	‘w’)	on	a	file	
full	of	data	

•  Turn	LFS	flaw	into	a	virtue	
•  Many	modern	file	systems	are	versioned	
– Old	copies	of	data	are	exposed	to	the	user	
– The	user	may	roll-back	a	file	to	recover	old	versions	

108	


