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What	are	We	Doing	Today?	
•  Last	week	we	talked	extensively	about	hard	
drives	and	SSDs	
– How	they	work	
– Performance	characterisEcs	

•  This	week	is	all	about	managing	storage	
– Disks/SSDs	offer	a	blank	slate	of	empty	blocks	
– How	do	we	store	files	on	these	devices,	and	keep	
track	of	them?	

– How	do	we	maintain	high	performance?	
– How	do	we	maintain	consistency	in	the	face	of	
random	crashes?	
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• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	
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Building	the	Root	File	System	
•  One	of	the	first	tasks	of	an	OS	during	bootup	is	to	
build	the	root	file	system	

1.  	Locate	all	bootable	media	
–  Internal	and	external	hard	disks	
–  SSDs	
–  Floppy	disks,	CDs,	DVDs,	USB	sEcks	

2.  	Locate	all	the	parEEons	on	each	media	
–  Read	MBR(s),	extended	parEEon	tables,	etc.	

3.  	Mount	one	or	more	parEEons	
–  Makes	the	file	system(s)	available	for	access	
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MBR	 ParEEon	1	
(ext3)	

ParEEon	2	
(swap)	

ParEEon	3	
(NTFS)	

ParEEon	4	
(FAT32)	

The	Master	Boot	Record	
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Address	
Descrip6on	 Size	

(Bytes)	Hex	 Dec.	

0x000	 0	 Bootstrap	code	area	 446	

0x1BE	 446	 ParEEon	Entry	#1	 16	

0x1CE	 462	 ParEEon	Entry	#2	 16	

0x1DE	 478	 ParEEon	Entry	#3	 16	

0x1EE	 494	 ParEEon	Entry	#4	 16	

0x1FE	 510	 Magic	Number	 2	

Total:	 512	

Includes	the	starEng	
LBA	and	length	of	

the	parEEon	

Di
sk
	1
	

MBR	 ParEEon	1	
(NTFS)	Di

sk
	2
	



Extended	ParEEons	
•  In	some	cases,	you	may	want	>4	parEEons	
•  Modern	OSes	support	extended	parEEons	
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ParEEon	1	
(ext3)	

ParEEon	2	
(swap)	

ParEEon	3	
(Extended	ParEEon)	

ParEEon	4	
(FAT32)	Di

sk
	1
	 Logical	

ParEEon	1	
(NTFS)	

Logical	
ParEEon	2	
(NTFS)	

•  Extended	parEEons	may	use	OS-specific	parEEon	
table	formats	(meta-data)	
– Thus,	other	OSes	may	not	be	able	to	read	the	logical	
parEEons	

MBR	 Ext.	
Part.	



Types	of	Root	File	Systems	
•  Windows	exposes	a	mulE-rooted	
system	
– Each	device	and	parEEon	is	assigned	
a	leder	

–  Internally,	a	single	root	is	maintained	

•  Linux	has	a	single	root	
– One	parEEon	is	mounted	as	/	
– All	other	parEEons	are	mounted	
somewhere	under	/	

•  Typically,	the	parEEon	containing	
the	kernel	is	mounted	as	/	or	C:	 7	

[cbw@aEv9	~]	df	-h	
Filesystem 	Size 	Used 	Avail 	Use% 	Mounted	on	
/dev/sda7 	39G 	14G 	23G 	38% 	/	
/dev/sda2 	296M 	48M 	249M 	16% 	/boot/efi	
/dev/sda5 	127G 	86G 	42G 	68% 	/media/cbw/Data	
/dev/sda4 	61G 	34G 	27G 	57% 	/media/cbw/Windows	
/dev/sdb1 	1.9G 	352K 	1.9G 	1% 	/media/cbw/NDSS-2013	

1	drive,	4	
parEEons	

1drive,	1	
parEEon	



MounEng	a	File	System	
1.  Read	the	super	block	for	the	target	file	system	
–  Contains	meta-data	about	the	file	system	
–  Version,	size,	locaEons	of	key	structures	on	disk,	etc.	

2.  Determine	the	mount	point		
–  On	Windows:	pick	a	drive	leder	
–  On	Linux:	mount	the	new	file	system	under	a	

specific	directory	
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Filesystem 	Size 	Used 	Avail 	Use% 	Mounted	on	
/dev/sda5 	127G 	86G 	42G 	68% 	/media/cbw/Data	
/dev/sda4 	61G 	34G 	27G 	57% 	/media/cbw/Windows	
/dev/sdb1 	1.9G 	352K 	1.9G 	1% 	/media/cbw/NDSS-2013	



•  Problem:	the	OS	may	mount	several	parEEons	
containing	different	underlying	file	systems	
–  It	would	be	bad	if	processes	had	to	use	different	APIs	
for	different	file	systems	

•  Linux	uses	a	Virtual	File	System	interface	(VFS)	
– Exposes	POSIX	APIs	to	processes	
– Forwards	requests	to	lower-level	file	system	specific	
drivers	

•  Windows	uses	a	similar	system	

Virtual	File	System	Interface	
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VFS	Flowchart	
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Ke
rn
el
	

Process	1	 Process	2	 Process	3	

Virtual	File	System	Interface	

ext3	Driver	 NTFS	Driver	 FAT32	Driver	

ext3	ParEEon	 NTFS	ParEEon	 FAT32	ParEEon	

Processes	(usually)	don’t	
need	to	know	about	low-
level	file	system	details	

RelaEvely	simple	to	
add	addiEonal	file	
system	drivers	



Mount	isn’t	Just	for	Bootup	
•  When	you	plug	storage	
devices	into	your	running	
system,	mount	is	executed	
in	the	background	

•  Example:	plugging	in	a	USB	
sEck	

•  What	does	it	mean	to	
“safely	eject”	a	device?	
– Flush	cached	writes	to	that	
device	

– Cleanly	unmount	the	file	
system	on	that	device	 11	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	
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Status	Check	
•  At	this	point,	the	OS	can	locate	and	mount	
parEEons	

•  Next	step:	what	is	the	on-disk	layout	of	the	file	
system?	
– We	expect	certain	features	from	a	file	system	
•  Named	files	
•  Nested	hierarchy	of	directories	
•  Meta-data	like	creaEon	Eme,	file	permissions,	etc.	

– How	do	we	design	on-disk	structures	that	support	
these	features?	
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The	Directory	Tree	

•  Navigated	using	a	path	
– E.g.	/home/amislove/music.mp3	 14	

home	

/	(root)	

bin	

tmp	

python	

cbw	

amislove	

cs5600	



Absolute	and	RelaEve	Paths	
•  Two	types	of	file	system	paths	
– Absolute	
•  Full	path	from	the	root	to	the	object	
•  Example:	/home/cbw/cs5600/hw4.pdf	
•  Example:	C:\Users\cbw\Documents\	

– RelaEve	
•  OS	keeps	track	of	the	working	directory	for	each	process	
•  Path	relaEve	to	the	current	working	directory	
•  Examples	[working	directory	=	/home/cbw]:	

–  syllabus.docx	[	à	/home/cbw/syllabus.docx]	
–  cs5600/hw4.pdf	[	à	/home/cbw/cs5600/hw4.pdf]	
–  ./cs5600/hw4.pdf	[	à	/home/cbw/cs5600/hw4.pdf]	
–  ../amislove/music.mp3	[	à	/home/amislove/music.mp3]	 15	



Files	
•  A	file	is	a	composed	of	two	components	
– The	file	data	itself	
•  One	or	more	blocks	(sectors)	of	binary	data	
•  A	file	can	contain	anything	

– Meta-data	about	the	file	
•  Name,	total	size	
• What	directory	is	it	in?	
•  Created	Eme,	modified	Eme,	access	Eme	
•  Hidden	or	system	file?		
•  Owner	and	owner’s	group	
•  Permissions:	read/write/execute	
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File	Extensions	
•  File	name	are	ouen	wriden	in	doded	notaEon	
– E.g.	program.exe,	image.jpg,	music.mp3	

•  A	file’s	extension	does	not	mean	anything	
– Any	file	(regardless	of	its	contents)	can	be	given	any	
name	or	extension	

17	

Rename	

•  Graphical	shells	(like	Windows	explorer)	use	
extensions	to	try	and	match	files	à	programs	
– This	mapping	may	fail	for	a	variety	of	reasons	

Has	the	data	in	the	
file	changed	from	
music	to	an	image?	



More	File	Meta-Data	
•  Files	have	addiEonal	meta-data	that	is	not	
typically	shown	to	users	
– Unique	idenEfier	(file	names	may	not	be	unique)	
– Structure	that	maps	the	file	to	blocks	on	the	disk	

•  Managing	the	mapping	from	files	to	blocks	is	one	
of	the	key	jobs	of	the	file	system		

18	Disk	



Mapping	Files	to	Blocks	
•  Every	file	is	composed	of	>=1	blocks	
•  Key	quesEon:	how	do	we	map	a	file	to	its	blocks?	

19	

0	 2	 3	 4	 5	 7	 9	1	 8	6	

[1]	 [4,	5,	7,	8]	 [6]	

List	of	blocks	

0	 2	 3	 4	 5	 6	 8	1	 7	 9	

(1,	1)	 (4,	4)	 (9,	1)	

As	(start,	length)	pairs	

•  Problem?	
– Really	large	files	

•  Problem?	
– FragmentaEon	
– E.g.	try	to	add	a	new	
file	with	3	blocks	



Directories	
•  TradiEonally,	file	systems	have	used	a	
hierarchical,	tree-structured	namespace	
– Directories	are	objects	that	contain	other	objects	

•  i.e.	a	directory	may	(or	may	not)	have	children	

– Files	are	leaves	in	the	tree	
•  By	default,	directories	contain	at	least	two	entries	

20	
/	(root)	 bin	

python	

.	

..	

“.”	self	pointer	“..”	points	the	the	
parents	directory	



More	on	Directories	
•  Directories	have	associated	meta-data	
– Name,	number	of	entries	
– Created	Eme,	modified	Eme,	access	Eme	
– Permissions	(read/write),	owner,	and	group	

•  The	file	system	must	encode	directories	and	store	
them	on	the	disk	
– Typically,	directories	are	stored	as	a	special	type	of	file	
– File	contains	a	list	of	entries	inside	the	directory,	plus	
some	meta-data	for	each	entry	
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Example	Directory	File	

22	

2	 3	 4	 5	 6	 7	 8	 9	

Disk	

C:\	

Windows	

Users	

C:\	

Name	 Index	 Dir?	 Perms	

.	 2	 Y	 rwx	

Windows	 3	 Y	 rwx	

Users	 4	 Y	 rwx	

pagefile.sys	 5	 N	 r	

1	0	

pagefile.sys	



Directory	File	ImplementaEon	
•  Each	directory	file	stores	many	entries	
•  Key	QuesEon:	how	do	you	encode	the	entries?	

Name	 Index	 Dir?	 Perms	

.	 2	 Y	 rwx	

Windows	 3	 Y	 rwx	

Users	 4	 Y	 rwx	

pagefile.sys	 5	 N	 r	

Unordered	List	of	Entries	

•  Good:	O(1)	to	add	new	entries	
–  Just	append	to	the	file	

•  Bad:	O(n)	to	search	for	an	
entry	

Name	 Index	 Dir?	 Perms	

.	 2	 Y	 rwx	

pagefile.sys	 5	 N	 r	

Users	 4	 Y	 rwx	

Windows	 3	 Y	 rwx	

Sorted	List	of	Entries	

•  Good:	O(log	n)	to	search	for	
an	entry	

•  Bad:	O(n)	to	add	new	entries	
–  EnEre	file	has	the	be	rewriden		

•  Other	alternaEves:	hash	tables,	B-trees	
•  More	on	B-trees	later…	

•  In	pracEce,	implemenEng	directory	files	is	complicated	
•  Example:	do	filenames	have	a	fixed,	maximum	length	

or	variable	length?	



File	AllocaEon	Tables	(FAT)	
•  Simple	file	system	popularized	by	MS-DOS	
– First	introduced	in	1977	
– Most	devices	today	use	the	FAT32	spec	from	1996	
– FAT12,	FAT16,	VFAT,	FAT32,	etc.	

•  SEll	quite	popular	today	
– Default	format	for	USB	sEcks	and	memory	cards	
– Used	for	EFI	boot	parEEons	

•  Name	comes	from	the	index	table	used	to	track	
directories	and	files	
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25	

Super	
Block	Disk	

•  Stores	basic	info	about	the	file	system	
•  FAT	version,	locaEon	of	boot	files	
•  Total	number	of	blocks	
•  Index	of	the	root	directory	in	the	FAT	

•  Store	file	and	directory	data	
•  Each	block	is	a	fixed	size	(4KB	–	64KB)	
•  Files	may	span	mulEple	blocks	

•  File	allocaEon	table	(FAT)	
•  Marks	which	blocks	are	free	or	in-use	
•  Linked-list	structure	to	manage	large	files	



2	 3	 4	 5	 6	 7	 8	 9	
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Super	
Block	Disk	

C:\	

Windows	

Users	

2	 3	 4	 5	 6	 7	 8	 9	

Root	directory	
index	=	2	

C:\	

Name	 Index	 Dir?	 Perms	

.	 2	 Y	 rwx	

Windows	 3	 Y	 rwx	

Users	 4	 Y	 rwx	

pagefile.sys	 5	 N	 r	

•  Directories	are	special	files	
–  File	contains	a	list	of	entries	inside	
the	directory	

•  Possible	values	for	FAT	entries:	
–  0	–	entry	is	empty	
–  1	–	reserved	by	the	OS	
–  1	<	N	<	0xFFFF	–	next	block	in	a	chain	
–  0xFFFF	–	end	of	a	chain	



Fat	Table	Entries	
•  len(FAT)	==	Number	of	clusters	on	the	disk	
– Max	number	of	files/directories	is	bounded	
– Decided	when	you	format	the	parEEon	

•  The	FAT	version	roughly	corresponds	to	the	size	
in	bits	of	each	FAT	entry	
– E.g.	FAT16	à	each	FAT	entry	is	16	bits	
– More	bits	à	larger	disks	are	supported	

27	



FragmentaEon	
•  Blocks	for	a	file	need	not	be	conEguous	
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68	67	65	64	63	62	61	60	59	58	57	56	

0	61	67	0	58	0	0xFF
FF	

0	0	65	0	0	

68	67	65	64	63	62	61	60	59	58	57	56	

FAT	

Blocks	

Possible	values	for	FAT	entries:	
•  0	–	entry	is	empty	
•  1	<	N	<	0xFFFF	–	next	block	in	a	chain	
•  0xFFFF	–	end	of	a	chain	



FAT:	The	Good	and	the	Bad	
•  The	Good	–	FAT	supports:	
– Hierarchical	tree	of	directories	and	files	
– Variable	length	files	
– Basic	file	and	directory	meta-data		

•  The	Bad	
– At	most,	FAT32	supports	2TB	disks	
– LocaEng	free	chunks	requires	scanning	the	enEre	FAT	
– Prone	to	internal	and	external	fragmentaEon	
•  Large	blocks	à	internal	fragmentaEon	

– Reads	require	a	lot	of	random	seeking	
29	



Lots	of	Seeking	
•  Consider	the	following	code:	

int	fd	=	open(“my_file.txt”,	“r”);	
int	r	=	read(fd,	buffer,	1024	*	4	*	4);	//	4	4KB	blocks	

	

30	

68	67	65	64	63	62	61	60	59	58	57	56	

60	59	0	0	57	56	0	63	0xFF
FF	

0	0xFF
FF	

67	

68	67	65	64	63	62	61	60	59	58	57	56	

FAT	

Blocks	

FAT	may	have	very	low	
spaEal	locality,	thus	a	
lot	of	random	seeking	



• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)		
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	

31	



Status	Check	
•  At	this	point,	we	have	on-disk	structures	for:	
– Building	a	directory	tree	
– Storing	variable	length	files	

•  But,	the	efficiency	of	FAT	is	very	low	
– Lots	of	seeking	over	file	chains	in	FAT	
– Only	way	to	idenEfy	free	space	is	to	scan	over	the	
enEre	FAT	

•  Linux	file	system	uses	more	efficient	structures	
– Extended	File	System	(ext)	uses	index	nodes	(inodes)	
to	track	files	and	directories	

32	



Size	DistribuEon	of	Files	
•  FAT	uses	a	linked	list	for	all	files	
– Simple	and	uniform	mechanism	
– …	but,	it	is	not	opEmized	for	short	or	long	files	

•  QuesEon:	are	short	or	long	files	more	common?	
– Studies	over	the	last	30	years	show	that	short	files	
are	much	more	common	

– 2KB	is	the	most	common	file	size	
– Average	file	size	is	200KB	(biased	upward	by	a	few	
very	large	files)	

•  Key	idea:	opEmize	the	file	system	for	many	small	
files	 33	
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•  Super	block,	storing:	
•  Size	and	locaEon	of	bitmaps	
•  Number	and	locaEon	of	inodes	
•  Number	and	locaEon	of	data	blocks	
•  Index	of	root	inodes	

Data	blocks	(4KB	each)	

Bitmap	of	free	&	
used	data	blocks	

•  Table	of	inodes	
•  Each	inode	is	a	file/directory	
•  Includes	meta-data	and	lists	

of	associated	data	blocks	

Bitmap	of	free	&	
used	inodes	
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SB	

/	

bin	

home	 cbw	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

Root	inode	=	0	

•  Directories	are	files	
•  Contains	the	list	of	

entries	in	the	directory	
Name	 inode	

.	 0	

bin	 1	

home	 2	

initrd.img	 3	

•  Each	inode	can	directly	point	to	12	
blocks	

•  Can	also	indirectly	point	to	blocks	
at	1,	2,	and	3	levels	of	depth	



ext2	inodes	
Size	(bytes)	 Name	 What	is	this	field	for?	
2	 mode	 Read/write/execute?	
2	 uid	 User	ID	of	the	file	owner	
4	 size	 Size	of	the	file	in	bytes	
4	 Eme	 Last	access	Eme	
4	 cEme	 CreaEon	Eme	
4	 mEme	 Last	modificaEon	Eme	
4	 dEme	 DeleEon	Eme	
2	 gid	 Group	ID	of	the	file	
2	 links_count	 How	many	hard	links	point	to	this	file?	
4	 blocks	 How	many	data	blocks	are	allocated	to	this	file?	
4	 flags	 File	or	directory?	Plus,	other	simple	flags	
60	 block	 15	direct	and	indirect	pointers	to	data	blocks	
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inode	Block	Pointers	

37	

•  Each	inode	is	the	root	of	an	unbalanced	tree	of	
data	blocks	 15	total	pointers	

12	blocks	*	
4KB	=	48KB	

230	blocks	*	4KB	=	4TB	1024	blocks	*	
4KB	=	4MB	 1024	*	1024	blocks	*	4KB	=	4GB	

inode	

Single	
Indirect	

Double	
Indirect	

Triple	
Indirect	



Advantages	of	inodes	
•  OpEmized	for	file	systems	with	many	small	files	
– Each	inode	can	directly	point	to	48KB	of	data	
– Only	one	layer	of	indirecEon	needed	for	4MB	files	

•  Faster	file	access	
– Greater	meta-data	locality	à	less	random	seeking	
– No	need	to	traverse	long,	chained	FAT	entries	

•  Easier	free	space	management	
– Bitmaps	can	be	cached	in	memory	for	fast	access	
–  inode	and	data	space	handled	independently	

38	



File	Reading	Example	
data	 inode	 root	 tmp	 file	 root	 tmp	 file[0]	 file[1]	 file[3]	

op
en

(“
/t
m
p/
fil
e”
)	 read	

read	

read	

read	

read	

read()	

read	

read	

write	

read()	

read	

read	

write	

read()	

read	

read	

write	

Bitmaps	 inodes	 Data	Blocks	

Update	the	last	
accessed	Eme	
of	the	file	Ti

m
e	



File	
Create	
and	
Write	

Example	

data	 inode	 root	 tmp	 file	 root	 tmp	 file[0]	

op
en

(“
/t
m
p/
fil
e”
)	

read	

read	

read	

read	

read	

write	

write	

write	

write	

write()	
	

read	

read	

write	

write	

write	

Bitmaps	 inodes	 Data	Blocks	

Update	the	
modified	Eme	
of	the	directory	

Ti
m
e	



ext2	inodes,	Again	
Size	(bytes)	 Name	 What	is	this	field	for?	
2	 mode	 Read/write/execute?	
2	 uid	 User	ID	of	the	file	owner	
4	 size	 Size	of	the	file	in	bytes	
4	 Eme	 Last	access	Eme	
4	 cEme	 CreaEon	Eme	
4	 mEme	 Last	modificaEon	Eme	
4	 dEme	 DeleEon	Eme	
2	 gid	 Group	ID	of	the	file	
2	 links_count	 How	many	hard	links	point	to	this	file?	
4	 blocks	 How	many	data	blocks	are	allocated	to	this	file?	
4	 flags	 File	or	directory?	Plus,	other	simple	flags	
60	 block	 15	direct	and	indirect	pointers	to	data	blocks	
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Hard	Link	Example	
•  MulEple	directory	entries	may	point	to	the	same	
inode	

42	

home	

cbw	

amislove	

my_file	

cbw_file	

[amislove@aEv9	~]	ln	–T	../cbw/my_file	cbw_file	

SB	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

1.  Add	an	entry	to	the	“amislove”	
directory	

2.  Increase	the	link_count	of	the	
“my_file”	inode	



Hard	Link	Details	
•  Hard	links	give	you	the	ability	to	create	many	
aliases	of	the	same	underlying	file	
– Can	be	in	different	directories	

•  Target	file	will	not	be	marked	invalid	(deleted)	
unEl	link_count	==	0	
– This	is	why	POSIX	“delete”	is	called	unlink()		

•  Disadvantage	of	hard	links	
–  Inodes	are	only	unique	within	a	single	file	system	
– Thus,	can	only	point	to	files	in	the	same	parEEon	
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Sou	Links	
•  	Sou	links	are	special	files	that	include	the	path	
to	another	file	
– Also	known	as	symbolic	links	
– On	Windows,	known	as	shortcuts	
– File	may	be	on	another	parEEon	or	device	
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Sou	Link	Example	

45	

home	

cbw	

amislove	

my_file	

cbw_file	

[amislove@aEv9	~]	ln	–s	../cbw/my_file	cbw_file	

SB	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

1.  Create	a	sou	link	file	
2.  Add	it	to	the	current	

directory	



ext:	The	Good	and	the	Bad	
•  The	Good	–	ext	file	system	(inodes)	support:	
– All	the	typical	file/directory	features	
– Hard	and	sou	links	
– More	performant	(less	seeking)	than	FAT	

•  The	Bad:	poor	locality	
– ext	is	opEmized	for	a	parEcular	file	size	distribuEon	
– However,	it	is	not	opEmized	for	spinning	disks	
–  inodes	and	associated	data	are	far	apart	on	the	disk!	
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• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	
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Status	Check	
•  At	this	point,	we’ve	moved	from	FAT	to	ext	
–  inodes	are	imbalanced	trees	of	data	blocks	
– OpEmized	for	the	common	case:	small	files	

•  Problem:	ext	has	poor	locality	
–  inodes	are	far	from	their	corresponding	data	
– This	is	going	to	result	in	long	seeks	across	the	disk	

•  Problem:	ext	is	prone	to	fragmentaEon	
– ext	chooses	the	first	available	blocks	for	new	data	
– No	adempt	is	made	to	keep	the	blocks	of	a	file	
conEguous	
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Fast	File	System	(FFS)	
•  FFS	developed	at	Berkeley	in	1984	
– First	adempt	at	a	disk	aware	file	system	
–  i.e.	opEmized	for	performance	on	spinning	disks	

•  ObservaEon:	processes	tend	to	access	files	that	
are	in	the	same	(or	close)	directories	
– SpaEal	locality	

•  Key	idea:	place	groups	of	directories	and	their	
files	into	cylinder	groups	
–  Introduced	into	ext2,	called	block	groups	
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SB	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

Block	
Group	1	

Block	
Group	2	

Block	
Group	3	

Block	
Group	4	

Block	
Group	5	

Block	
Group	6	

Block	Groups	
•  In	ext,	there	is	a	single	set	of	key	data	structures	
– One	data	bitmap,	one	inode	bitmap	
– One	inode	table,	one	array	of	data	blocks	

•  In	ext2,	each	block	group	contains	its	own	key	
data	structures	



AllocaEon	Policy	
•  ext2	adempts	to	keep	related	files	and	
directories	within	the	same	block	group	

home	 cbw	amislove	

SB	 Block	
Group	1	

Block	
Group	2	

Block	
Group	3	

Block	
Group	4	

Block	
Group	5	

Block	
Group	6	



ext2:	The	Good	and	the	Bad	
•  The	good	–	ext2	supports:	
– All	the	features	of	ext…	
– …	with	even	beder	performance	(because	of	
increased	spaEal	locality)	

•  The	bad	
– Large	files	must	cross	block	groups	
– As	the	file	system	becomes	more	complex,	the	
chance	of	file	system	corrupEon	grows	
•  E.g.	invalid	inodes,	incorrect	directory	entries,	etc.	
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• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	
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Status	Check	

•  At	this	point,	we	have	a	full	featured	file	system	
– Directories	
– Fine-grained	data	allocaEon	
– Hard/sou	links	

•  File	system	is	opEmized	for	spinning	disks	
–  inodes	are	opEmized	for	small	files	
– Block	groups	improve	locality	

•  What’s	next?	
– Consistency	and	reliability	
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Maintaining	Consistency	

•  Many	operaEons	results	in	mulEple,	
independent	writes	to	the	file	system	
– Example:	append	a	block	to	an	exisEng	file	
1.  Update	the	free	data	bitmap	
2.  Update	the	inode	
3.  Write	the	user	data	

•  What	happens	if	the	computer	crashes	in	the	
middle	of	this	process?	
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File	Append	Example	
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v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

owner: 	christo	
permissions: 	rw	
size: 	1	
pointer: 	4	
pointer: 	null	
pointer: 	null		
pointer: 	null	

Update	
the	inode	

v2	 D2	

Write	the	
data	

owner: 	christo	
permissions: 	rw	
size: 	2	
pointer: 	4	
pointer: 	5	
pointer: 	null		
pointer: 	null	

Update	
the	data	
bitmap	

•  These	three	operaEons	can	
potenEally	be	done	in	any	order	

•  …	but	the	system	can	crash	at	
any	Eme	



v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

D2	

Write	the	data	Result:	file	system	is	consistent,	but	the	data	is	lost	

v1	 D1	

Result:	inode	points	to	garbage	data,	and	file	
system	is	inconsistent	(data	bitmap	vs.	inode)	

v2	

v1	 D1	

Result:	space	leakage,	and	file	system	is	
inconsistent	(data	bitmap	vs.	inode)	

Update	the	
data	bitmap	

Update	the	inode	



v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

D2	

Result:	inode	points	to	data,	but	file	system	is	inconsistent	

v1	 D1	

Result:	file	system	is	inconsistent,	and	the	data	is	
useless	since	it’s	not	associated	with	an	inode	

v1	 D1	

Result:	file	system	is	consistent,	but	the	inode	
points	to	garbage	data	

v2	

D2	

v2	



The	Crash	Consistency	Problem	
•  The	disk	guarantees	that	sector	writes	are	atomic	
– No	way	to	make	mulE-sector	writes	atomic	

•  How	to	ensure	consistency	auer	a	crash?	
1.  Don’t	bother	to	ensure	consistency	
•  Accept	that	the	file	system	may	be	inconsistent	auer	a	crash	
•  Run	a	program	that	fixes	the	file	system	during	bootup	
•  	File	system	checker	(fsck)	

2.  Use	a	transacEon	log	to	make	mulE-writes	atomic	
•  Log	stores	a	history	of	all	writes	to	the	disk	
•  Auer	a	crash	the	log	can	be	“replayed”	to	finish	updates	
•  	Journaling	file	system	
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Approach	1:	File	System	Checker	
•  Key	idea:	fix	inconsistent	file	systems	during	
bootup	
– Unix	uElity	called	fsck	(chkdsk	on	Windows)	
– Scans	the	enEre	file	system	mulEple	Emes,	idenEfying	
and	correcEng	inconsistencies	

•  Why	during	bootup?	
– No	other	file	system	acEvity	can	be	going	on	
– Auer	fsck	runs,	bootup/mounEng	can	conEnue	
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fsck	Tasks	
•  Superblock:	validate	the	superblock,	replace	it	
with	a	backup	if	it	is	corrupted	

•  Free	blocks	and	inodes:	rebuild	the	bitmaps	by	
scanning	all	inodes	

•  Reachability:	make	sure	all	inodes	are	reachable	
from	the	root	of	the	file	system	

•  inodes:	delete	all	corrupted	inodes,	and	rebuild	
their	link	counts	by	walking	the	directory	tree	

•  directories:	verify	the	integrity	of	all	directories	
•  …	and	many	other	minor	consistency	checks	
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fsck:	the	Good	and	the	Bad	
•  Advantages	of	fsck	
– Doesn’t	require	the	file	system	to	do	any	work	to	
ensure	consistency	

– Makes	the	file	system	implementaEon	simpler	

•  Disadvantages	of	fsck	
– Very	complicated	to	implement	the	fsck	program	
•  Many	possible	inconsistencies	that	must	be	idenEfied	
•  Many	difficult	corner	cases	to	consider	and	handle	

–  fsck	is	super	slow	
•  Scans	the	enEre	file	system	mulEple	Emes	
•  Imagine	how	long	it	would	take	to	fsck	a	40	TB	RAID	array	
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Approach	2:	Journaling	
•  Problem:	fsck	is	slow	because	it	checks	the	enEre	
file	system	auer	a	crash	
– What	if	we	knew	where	the	last	writes	were	before	
the	crash,	and	just	checked	those?	

•  Key	idea:	make	writes	transacEonal	by	using	a	
write-ahead	log	
– Commonly	referred	to	as	a	journal	

•  Ext3	and	NTFS	use	journaling	
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Superblock	 Block	
Group	0	

Block	
Group	1	 …	 Block	

Group	N	
Journal	



Write-Ahead	Log	
•  Key	idea:	writes	to	disk	are	first	wriden	into	a	log	
– Auer	the	log	is	wriden,	the	writes	execute	normally	
–  In	essence,	the	log	records	transacEons	

•  What	happens	auer	a	crash…	
–  If	the	writes	to	the	log	are	interrupted?	
•  The	transacEon	is	incomplete	
•  The	user’s	data	is	lost,	but	the	file	system	is	consistent	

–  If	the	writes	to	the	log	succeed,	but	the	normal	
writes	are	interrupted?	
•  The	file	system	may	be	inconsistent,	but…	
•  The	log	has	exactly	the	right	informaEon	to	fix	the	problem	
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Data	Journaling	Example	
•  Assume	we	are	appending	to	a	file	
– Three	writes:	inode	v2,	data	bitmap	v2,	data	D2	

•  Before	execuEng	these	writes,	first	log	them	
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Jo
ur
na

l	

D2	B	v2	I	v2	TxB	
ID=1	

TxE	
ID=1	

1.  Begin	a	new	transacEon	with	a	unique	ID=k	
2.  Write	the	updated	meta-data	block(s)	
3.  Write	the	file	data	block(s)	
4.  Write	an	end-of-transacEon	with	ID=k	



Commits	and	Checkpoints	
•  We	say	a	transacEon	is	commided	auer	all	writes	
to	the	log	are	complete	

•  Auer	a	transacEon	is	commided,	the	OS	
checkpoints	the	update	
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Journal	 D2	B	v2	I	v2	TxB	 TxE	

v1	 D1	

Inode	
Bitmap	

Data	
Bitmap	 Inodes	 Data	Blocks	

v2	 D2	

•  Final	step:	free	the	checkpointed	transacEon	

Commided!	

Checkpointed!	



Journal	ImplementaEon	
•  Journals	are	typically	implemented	as	a	circular	
buffer	
–  Journal	is	append-only	

•  OS	maintains	pointers	to	the	front	and	back	of	
the	transacEons	in	the	buffer	
– As	transacEons	are	freed,	the	back	is	moved	up	

•  Thus,	the	contents	of	the	journal	are	never	
deleted,	they	are	just	overwriden	over	Eme	
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Data	Journaling	Timeline	

TxB	 Meta-data	 Data	 TxE	 Meta-data	 Data	

Issue	 Issue	 Issue	 Issue	

Complete	

Complete	

Complete	

Complete	

Issue	 Issue	

Complete	

Complete	
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Crash	Recovery	(1)	
•  What	if	the	system	crashes	during	logging?	
–  If	the	transacEon	is	not	commided,	data	is	lost	
– But,	the	file	system	remains	consistent	
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Crash	Recovery	(2)	
•  What	if	the	system	crashes	during	the	checkpoint?	
– File	system	may	be	inconsistent	
– During	reboot,	transacEons	that	are	commided	but	not	
free	are	replayed	in	order	

– Thus,	no	data	is	lost	and	consistency	is	restored	
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Corrupted	TransacEons	
•  Problem:	the	disk	scheduler	may	not	execute	
writes	in-order	
– TransacEons	in	the	log	may	appear	commided,	when	
in	fact	they	are	invalid	
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Journal	 D2	B	v2	I	v2	TxB	 TxE	

•  TransacEon	looks	
valid,	but	the	data	is	
missing!	

•  During	replay,	garbage	
data	is	wriden	to	the	
file	system	

•  SoluEon:	add	a	checksum	to	TxB	
•  During	recovery,	reject	transacEons	

with	invalid	checksums	
•  Implemented	on	Linux	in	ext4	



Journaling:	The	Good	and	the	Bad	
•  Advantages	of	journaling	
– Robust,	fast	file	system	recovery	
•  No	need	to	scan	the	enEre	journal	or	file	system	

– RelaEvely	straight	forward	to	implement	

•  Disadvantages	of	journaling	
– Write	traffic	to	the	disk	is	doubled	
•  Especially	the	file	data,	which	is	probably	large	

– Deletes	are	very	hard	to	correctly	log	
•  Example	in	a	few	slides…	
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Making	Journaling	Faster	
•  Journaling	adds	a	lot	of	write	overhead	
•  OSes	typically	batch	updates	to	the	journal	
– Buffer	sequenEal	writes	in	memory,	then	issue	one	
large	write	to	the	log	

– Example:	ext3	batches	updates	for	5	seconds	

•  Tradeoff	between	performance	and	persistence	
– Long	batch	interval	=	fewer,	larger	writes	to	the	log	
•  Improved	performance	due	to	large	sequenEal	writes	

– But,	if	there	is	a	crash,	everything	in	the	buffer	will	be	
lost	
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Meta-Data	Journaling	
•  The	most	expensive	part	of	data	journaling	is	
wriEng	the	file	data	twice	
– Meta-data	is	small	(~1	sector),	file	data	is	large	

•  ext3	implements	meta-data	journaling	
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Meta-Journaling	Timeline	
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TxB	 Meta-data	 TxE	 Meta-data	 Data	

Issue	 Issue	 Issue	

Complete	

Complete	

Complete	

Issue	

Complete	

Issue	

Complete	
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Journal	 File	System	

TransacEon	
can	only	be	
commided	

auer	the	meta-
data	and	data	
are	wriden	



Crash	Recovery	Redux	(1)	
•  What	if	the	system	crashes	during	logging?	
–  If	the	transacEon	is	not	commided,	data	is	lost	
– D2	will	eventually	be	overwriden	
– The	file	system	remains	consistent	
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Crash	Recovery	Redux	(2)	
•  What	if	the	system	crashes	during	the	checkpoint?	
– File	system	may	be	inconsistent	
– During	reboot,	transacEons	that	are	commided	but	not	
free	are	replayed	in	order	

– Thus,	no	data	is	lost	and	consistency	is	restored	
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Delete	and	Block	Reuse	

1.  Create	a	directory:	inode	and	data	are	wriden	
2.  Delete	the	directory:	inode	is	removed	
3.  Create	a	file:	inode	and	data	are	wriden	
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f1	
dir	

TxE	 dir	dir	TxB	 TxE	

dir	f1	

f1	f1	TxB	 TxE	

The	block	that	previously	held	directory	
info	is	reused	to	hold	file	data	



The	Trouble	With	Delete	
•  What	happens	when	the	log	is	replayed?	
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Journal	 dir	dir	TxB	

Data	Blocks	

TxE	 dir	dir	TxB	 TxE	

f1	

f1	f1	TxB	 TxE	

file	data	is	overwriden	
by	directory	meta-data	

dir	

file	data	is	not	in	the	
log,	thus	it	is	lost!	:(	



Handling	Delete	
•  Strategy	1:	don’t	reuse	blocks	unEl	the	delete	is	
checkpointed	and	freed	

•  Strategy	2:	add	a	revoke	record	to	the	log	
– ext3	used	revoke	records	
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Journaling	Wrap-Up	
•  Today,	most	OSes	use	journaling	file	systems	
– ext3/ext4	on	Linux	
– NTFS	on	Windows	

•  Provides	excellent	crash	recovery	with	relaEvely	
low	space	and	performance	overhead	

•  Next-gen	OSes	will	likely	move	to	file	systems	
with	copy-on-write	semanEcs	
– btrfs	and	zfs	on	Linux	
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• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	
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Status	Check	
•  At	this	point:	
– We	not	only	have	a	fast	file	system	
– But	it	is	also	resilient	against	corrupEon	

•  What’s	next?	
– More	efficiency	improvements!	
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RevisiEng	inodes	
•  Recall:	inodes	use	indirecEon	to	acquire	
addiEonal	blocks	of	pointers	

•  Problem:	inodes	are	not	efficient	for	large	files	
– Example:	for	a	100MB	file,	you	need	25600	block	
pointers	(assuming	4KB	blocks)	

•  This	is	unavoidable	if	the	file	is	100%	fragmented	
– However,	what	if	large	groups	of	blocks	are	
conEguous?	
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From	Pointers	to	Extents	
•  Modern	file	systems	try	hard	to	minimize	
fragmentaEon	
– Since	it	results	in	many	seeks,	thus	low	performance	

•  	Extents	are	beder	suited	for	conEguous	files	
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block	1	
block	2	
block	3	
block	4	
block	5	
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inode	
block	1	
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length	3	

Each	extent	
includes	a	block	
pointer	and	a	

length	



ImplemenEng	Extents	
•  ext4	and	NTFS	use	extents	
•  ext4	inodes	include	4	extents	instead	of	block	
pointers	
– Each	extent	can	address	at	most	128MB	of	
conEguous	space	(assuming	4KB	blocks)	

–  If	more	extents	are	needed,	a	data	block	is	allocated	
– Similar	to	a	block	of	indirect	pointers	
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RevisiEng	Directories	
•  In	ext,	ext2,	and	ext3,	each	directory	is	a	file	with	
a	list	of	entries	
– Entries	are	not	stored	in	sorted	order	
– Some	entries	may	be	blank,	if	they	have	been	deleted	

•  Problem:	searching	for	files	in	large	directories	
takes	O(n)	Eme	
– PracEcally,	you	can’t	store	>10K	files	in	a	directory	
–  It	takes	way	too	long	to	locate	and	open	files		
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From	Lists	to	B-Trees	
•  ext4	and	NTFS	encode	directories	as	B-Trees	to	
improve	lookup	Eme	to	O(log	N)	

•  A	B-Tree	is	a	type	of	balanced	tree	that	is	
opEmized	for	storage	on	disk	
–  Items	are	stored	in	sorted	order	in	blocks	
– Each	block	stores	between	m	and	2m	items	

•  Suppose	items	i	and	j	are	in	the	root	of	the	tree	
– The	root	must	have	3	children,	since	it	has	2	items	
– The	three	child	groups	contain	items	a	<	i,	i	<	a	<	j,	
and	a	>	j	
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Example	B-Tree	
•  ext4	uses	a	B-Tree	variant	known	as	a	H-Tree	
– The	H	stands	for	hash	(someEme	called	B+Tree)	

•  Suppose	you	try	to	open(“my_file”,	“r”)	
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hash(“my_file”)	=	0x0000C194	

H-Tree	Node	 H-Tree	Node	

H-Tree	Leaf	

H-Tree	Root	

0x00AD1102	 0xCFF1A412	

H-Tree	Leaf	

H-Tree	Node	

0x0000C195	 0x00018201	

my_file	à	inode		

H-Tree	Leaf	

0x0000A0D1	 0x0000C194	



ext4:	The	Good	and	the	Bad	
•  The	good	–	ext4	(and	NTFS)	supports:	
– All	of	the	basic	file	system	funcEonality	we	require	
–  Improved	performance	from	ext3’s	block	groups	
– AddiEonal	performance	gains	from	extents	and	B-
Tree	directory	files	

•  The	bad:	
– ext4	is	an	incremental	improvement	over	ext3	
– Next-gen	file	systems	have	even	nicer	features	
•  Copy-on-write	semanEcs	(btrfs	and	ZFS)	
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• ParEEons	and	MounEng	
• Basics	(FAT)	
•  inodes	and	Blocks	(ext)	
• Block	Groups	(ext2)	
•  Journaling	(ext3)	
• Extents	and	B-Trees	(ext4)	
• Log-based	File	Systems	
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Status	Check	
•  At	this	point:	
– We	have	arrived	at	a	modern	file	system	like	ext4	

•  What’s	next?	
– Go	back	to	the	drawing	board	and	reevaluate	from	
first-principals	
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ReevaluaEng	Disk	Performance	
•  How	has	computer	hardware	been	evolving?	
– RAM	has	become	cheaper	and	grown	larger	:)	
– Random	access	seek	Emes	have	remained	very	slow	:(	

•  This	changing	dynamic	alters	how	disks	are	used	
– More	data	can	be	cached	in	RAM	=	less	disk	reads	
– Thus,	writes	will	dominate	disk	I/O	

•  Can	we	create	a	file	system	that	is	opEmized	for	
sequenEal	writes?	
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Log-structured	File	System	
•  Key	idea:	buffer	all	writes	(including	meta-data)	
in	memory	
– Write	these	long	segments	to	disk	sequenEally	
– Treat	the	disk	as	a	circular	buffer,	i.e.	don’t	overwrite	

•  Advantages:	
– All	writes	are	large	and	sequenEal	

•  Big	quesEon:	
– How	do	you	manage	meta-data	and	maintain	
structure	in	this	kind	of	design?	
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TreaEng	the	Disk	as	a	Log	
•  Same	concept	as	data	journaling	
– Data	and	meta-data	get	appended	to	a	log	
– Stale	data	isn’t	overwriden,	its	replaced	
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Giant	Log	

Buffering	Writes	
•  LFS	buffers	writes	in-memory	into	chunks		
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How	to	Find	inodes	
•  In	a	typical	file	system,	the	inodes	are	stored	at	
fixed	locaEons	(relaEvely	easy	to	find)	

•  How	do	you	find	inodes	in	the	log?	
– Remember,	there	may	be	mulEple	copies	of	a	given	
inode	

•  SoluEon:	add	a	level	of	indirecEon	
– The	tradiEonal	inode	map	can	be	broken	into	pieces	
– When	a	porEon	of	the	inode	map	is	updated,	write	it	
to	the	log!	
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Giant	Log	
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The	Checkpoint	Region	
•  The	superblock	in	LFS	contains	pointers	to	all	of	
the	up-to-date	inode	maps	
– The	checkpoint	region	is	always	cached	in	memory	
– Wriden	periodically	to	disk,	say	~30	seconds	
– Only	part	of	LFS	that	isn’t	maintained	in	the	log	
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How	to	Read	a	File	in	LFS	
•  Suppose	you	want	to	read	inode	1	

1.  Look	up	inode	1	in	the	checkpoint	region	
•  inode	map	containing	inode	1	is	in	sector	X	

2.  Read	the	inode	map	at	sector	X	
•  inode	1	is	in	sector	Y	

3.  Read	inode	1	
•  File	data	is	in	sectors	A,	B,	C,	etc.	
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Directories	in	LFS	

•  Directories	are	stored	just	like	in	typical	file	
systems	
– Directory	data	stored	in	a	file	
–  inode	points	to	the	directory	file	
– Directory	file	contains	name	à	inode	mappings	
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Garbage	
•  Over	Eme,	the	log	is	going	to	fill	up	with	stale	
data	
– Highly	fragmented:	live	data	mixed	with	stale	data	

•  Periodically,	the	log	must	be	garbage	collected	
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Garbage	CollecEon	in	LFS	
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An	Idea	Whose	Time	Has	Come	
•  LFS	seems	like	a	very	strange	design	
– Totally	unlike	tradiEonal	file	system	structures	
– Doesn’t	map	well	to	our	ideas	about	directory	
heirarchies	

•  IniEally,	people	did	not	like	LFS	
•  However,	today	it’s	features	are	widely	used	
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File	Systems	for	SSDs	
•  SSD	hardware	constraints	
– To	implement	wear	leveling,	writes	must	be	spread	
across	the	blocks	of	flash	

– Periodically,	old	blocks	need	to	be	garbage	collected	
to	prevent	write-amplificaEon	

•  Does	this	sounds	familiar?	
•  LFS	is	the	ideal	file	system	for	SSDs!	
•  Internally,	SSDs	manage	all	files	in	a	LFS	
– This	is	transparent	to	the	OS	and	end-users	
–  Ideal	for	wear-leveling	and	avoiding	write-
amplificaEon		
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Copy-on-write	
•  Modern	file	systems	incorporate	ideas	from	LFS	
•  Copy-on-write	semaEcs	
– Updated	data	is	wriden	to	empty	space	on	disk,	
rather	than	overwriEng	the	original	data	

– Helps	prevent	data	corrupEon,	improves	sequenEal	
write	performance	

•  Pioneered	by	LFS,	now	used	in	ZFS	and	btrfs	
– btrfs	will	probably	be	the	next	default	file	system	in	
Linux	
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Versioning	File	Systems	
•  LFS	keeps	old	copies	of	data	by	default	
•  Old	versions	of	files	may	be	useful!	
– Example:	accidental	file	deleEon	
– Example:	accidentally	doing	open(file,	‘w’)	on	a	file	
full	of	data	

•  Turn	LFS	flaw	into	a	virtue	
•  Many	modern	file	systems	are	versioned	
– Old	copies	of	data	are	exposed	to	the	user	
– The	user	may	roll-back	a	file	to	recover	old	versions	
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