Introducing Semaphores

A semaphore, like a mutex, is a synchronization primitive used to control
access to a common resource by multiple processes or threads. However, a
semaphore offers a more generalized way to manage access than a simple mutex.

1. Semaphores: Communicating Between Threads

Semaphores are a fundamental synchronization primitive in operating sys-
tems and concurrent programming. They provide a mechanism for two or more
independent threads or processes to communicate with each other. This com-
munication serves two main purposes: mutual exclusion (protecting a critical
section of code) and synchronization (enforcing a specific order of execution).
Unlike simple flags or shared variables, a semaphore’s operations are guaranteed
to be atomic (uninterruptible), making them safe to use in multi-threaded
environments.

1.1. The Core Concept: The Count

The fundamental difference between a semaphore and a mutex lies in its state.

e A mutex is like a binary lock: it’s either locked or unlocked. It protects
one critical section.

e A semaphore is conceptually represented by an integer value, which we
call the count.

This count determines how many threads can access a resource simultaneously.

o When the count is positive (> 0), it represents the number of threads
that can still acquire the semaphore without blocking.

e When the count is zero (= 0), no more threads can acquire the semaphore;
the resource is fully in use.

o When the count is negative (< 0), its absolute value (Jcount|) represents
the number of threads currently blocked (sleeping) on this semaphore.

2. The sem_wait() Operation (The “Acquire” or “Down” Operation)

When a thread wants to use the protected resource, it calls sem_wait ().

1. The sem_wait () function decrements the count of the semaphore.
2. Crucially, this is done atomically (as a single, uninterruptible operation).
3. The thread then checks the new value of the count:
o If the new count > 0, the thread continues executing (it success-
fully acquired a “permit”).

o If the new count < 0, the thread atomically transitions to the
SLEEPING state (it has to wait because all available permits are
taken).

3. The sem_post() Operation (The “Release” or “Up” Operation)

When a thread is finished using the protected resource (or signaling an event), it
calls sem_post ().

1. The sem_post () function increments the count of the semaphore (also
atomically).
2. The thread then checks the new value of the count:
e If the new count > 0, the thread simply exits the function.
o If the new count < 0, it means there are threads waiting (sleeping).
The system will then wake up (unblock) one of the threads sleeping
on this semaphore, which can now proceed.

Semaphore vs. Mutex: The Key Difference

Mutex (Mutual Semaphore

Feature Exclusion) (Counting/General)

Concept A binary lock (0 or An integer counter
1). (>0).

Purpose Ensures that only one Controls access to a
thread can be in the resource that has a
critical section at a limited number of
time. identical units available,

or signals events.

Initial Value Unlocked (0) Any non-negative

integer N (the max
number of users).

Use Case Protecting shared Limiting concurrent
variables or a critical threads, managing a
code segment. fixed-size buffer (like a

producer-consumer
problem), or simply as
a mutex (if initialized
to 1).

Takeaway: A mutex is a special case of a semaphore where the initial
count is set to 1 (a binary semaphore). The power of a general semaphore

is that it allows you to control multiple permits for a resource and to signal
events between unrelated threads.

2. The Two Usage Scenarios: Ownership

Semaphores are incredibly versatile because they do not require the thread
that calls sem_wait () to be the same thread that calls sem_post (). This
flexibility leads to two primary scenarios for semaphore usage:

Scenario A: Self-Releasing (Resource Limiting or Mutex)

In this scenario, a single thread executes both operations:

o Thread 1 calls — sem_wait () (Acquires a permit/lock)
e Thread 1 calls — sem_post () (Releases the permit/lock)

This is the standard pattern when using a semaphore for:

1. Mutual Exclusion: When the initial count is 1 (a binary semaphore), it
acts exactly like a mutex.

2. Resource Limiting (Thread Pool): The semaphore’s count limits the
number of threads that are active or working simultaneously.

Example (Dynamic Thread Limiting): A system might use
a semaphore initialized to 10 to limit a thread pool to 10 active
threads. If the computer is running slowly, a supervisor thread may
deliberately call sem_wait () an extra time outside of the worker
threads’ loop, permanently decrementing the count to 9. This allows
fewer threads to be active. Conversely, if the computer has more
idle capacity, the supervisor thread can call sem_post() an extra
time to increment the count back to 10, allowing more threads
to become active.

Scenario B: Cross-Thread Signaling (Synchronization)
In this scenario, one thread waits for an event, and a second, unrelated thread
signals that the event has occurred:

e Thread 1 calls — sem_wait () (Sleeps, waiting for an event)
o Thread 2 calls — sem_post () (Signals the event and wakes Thread 1)

This pattern is used exclusively for synchronization—coordinating the execu-
tion order between different threads.

3. Scenario A Example: Thread Pool

The following C code (dosem. c) initializes a thread pool and uses a semaphore to
explicitly limit the number of threads that can execute the do_work () function
concurrently.

#include <pthread.h>

#include <sem.h>

#define NUM_THREADS 5

int task_num = O;

pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;
sem_t mysem;

// The "start function” for a new thread ts do_task.
void *do_task(void *arg) {

pthread_mutex_lock (&mymutex) ;

int mytask = task_num++;

pthread_mutex_unlock (&mymutex) ;

sem_wait (&mysem); // Decrement count; wait i1f negative
do_work (mytask) ;

sem_post (&mysem) ; // Increment count

return NULL;

int main() {

pthread_t thread_ids[NUM_THREADS] ;

// Initialize count to 3; At most 3 threads may call do_work.

sem_init(&mysem, 0, 3);

for (int i = 0; i < NUM_THREADS; i++) {
// Create a new thread with the start function, do_task.
pthread_create(&thread_ids[i], NULL, do_task, NULL);

}

for (int i = 0; i < NUM_THREADS; i++) {
// Let the thread exit when the start function finishes.
pthread_join(thread_ids[i], NULL);

}

return 0O;
}
Explanation

This code is an example of Scenario A (Self-Releasing) because each thread
that calls sem_wait() on mysem is responsible for calling sem_post() on
mysem later.

1. Initialization: The semaphore mysenm is initialized with a count of 3

in main(): sem_init(&mysem, O, 3);. This sets the limit: at most
three threads can pass the sem_wait () call and enter the critical section
(do_work (D) simultaneously.

2. Acquisition: Five threads are created (NUM_THREADS = 5). The first
three threads will call sem_wait (&mysem), decrement the count to 2, 1,
and 0 respectively, and proceed to do_work().

3. Blocking: The fourth and fifth threads will call sem_wait (&mysem), decre-
ment the count to -1 and -2, and then block (sleep), waiting for a permit.

4. Release: When one of the three active threads finishes do_work (), it calls
sem_post (&mysem), incrementing the count. If the count becomes < 0
(e.g., from 0 to 1, or from -1 to 0), a waiting thread (the 4th or 5th) is
woken up and granted the permit.

The semaphore thus acts as a gatekeeper to limit the resource consumption of
the pool of threads.

4. Scenario B Example: Cross-Thread Signaling (Synchro-
nization)

This scenario, where one thread waits on a semaphore and a different thread
posts to it, is the true power of general semaphores. It is used exclusively
to signal events and enforce execution order between threads. We will
examine several classic synchronization problems that utilize this scenario.

4.1. Example: Enforcing Order Execution

This is the simplest application of Scenario B, often used to guarantee that a
parent thread does not proceed until a setup task initiated in a child thread is
complete.

e Goal: The parent thread must wait for the child thread to finish initializing
a shared resource (a table) before the parent can access it.

o Semaphore: init_done_sen (initialized to 0). The parent must block
immediately, so the initial count must be less than 1.

Parent Thread (Main Execution) Child Thread (Initialization Task)
sem_init(&init_done_sem, 0, 0); ChildStartFnc(...) {
pthread_create(..., childStartFnc, ...); initialize_child();
// Parent blocks until child posts add_child_entry_in_shared_table();
sem_wait(&init_done_sem) ; // Post that child added to table
// The table is now safe to use sem_post(&init_done_sem);
access_shared_table(); return;

}

Why init_done_sem is needed:

The init_done_sem semaphore 1is critical here because it enforces
ordering between the parent and child threads. Since the parent
thread initializes the semaphore’s count to 0 and immediately calls
sem_wait(&init_done_sem);, it is guaranteed to block (sleep). It will
remain blocked until the child thread has completed its necessary setup steps
(initialize_child() and add_child_entry_in_shared_table()) and then
calls sem_post(&init_done_sem);. This ensures that the parent thread’s
access_shared_table() call only executes after the child has successfully
finished the shared resource preparation, preventing a race condition where
the parent might access incomplete or uninitialized data.

4.2. Simplified Producer-Consumer: One-to-One Signaling

The Producer-Consumer Problem is a classic example in which there are two
types of threads: producer and consumer threads. The producer generates
data, and the consumer processes it. To start simply, we assume just one
producer and one consumer, and they communicate via a single global
integer variable, task.

We need two semaphores to coordinate their execution:

o producer_sem: Initialized to 1 (The producer can run first to create the
initial task).

e consumer_sem: Initialized to 0 (The consumer must wait until a task is
ready).

Consumer Thread (Processes data) Producer Thread (Produces data)

while (true) { while (true) {

sem_wait (consumer_sem) ; sem_wait (producer_sem) ;
do_work(task) ; task = produce_new_data();
sem_post (producer_sem) ; sem_post (consumer_sem) ;

} }

Why Two Semaphores? Ideally, we might think that we only
need consumer_sem, and the producer could simply signal to the
consumer after adding a new task:

Producer (Simple Attempt) Consumer

while (true) { while (true) {

task = produce_new_data(); sem_wait(consumer_sem);
sem_post (consumer_sem) ; do_work(task) ;

Producer (Simple Attempt) Consumer

} }

The problem with this simpler idea is that the Producer might
quickly produce a second task and overwrite the global task vari-
able before the Consumer thread has even begun to execute the
first instance of do_work(task). The producer_sem semaphore is
necessary to force the Producer to wait until the Consumer signals
that the previous task has been processed.

4.3. Semaphore Example: The General Producer-Consumer Problem

The full Producer-Consumer Problem involves multiple threads and a fixed-size
buffer. This problem expands on the simple example above by using a third
semaphore (a mutex) and coordinating access to a finite resource.

¢ A Producer thread generates data and puts it into the buffer.
¢ A Consumer thread takes data out of the buffer and consumes it.
o The Buffer has a fixed, finite size (e.g., N slots).

Semaphores are used here for two distinct purposes: mutual exclusion and
synchronization.

The Three Semaphores

We need three semaphores to correctly manage this problem:

Semaphore Initial Value Purpose Scenario
mutex 1 Mutual A
Exclusion: (Self-Releasing)

Ensures only one
thread accesses
the buffer at a
time.
producer_sem N (Buffer Size) Synchronization: B (Cross-Thread
Counts the Signaling)
number of
empty slots in
the buffer.

Semaphore Initial Value Purpose Scenario

consumer_sem 0 Synchronization: B (Cross-Thread
Counts the Signaling)
number of full
slots (items) in
the buffer.

A Buffer, Protected by the Mutex

The pseudo-code below now requires a mutex because a shared buffer data
structure (the ‘task’ variable in the previous subsection (Section 4.2) is passed
between producers and consumers. We must not allow two producers or two
consumer to update the shared buffer simultaneously. This is true reglardless of
whether the shared buffer is a simple int (the ‘task of Section 4.2) or a circular
buffer with’ N’ slots.

1. The Producer’s Logic

The Producer’s goal is to insert an item into the buffer. It must wait until there
is an empty slot.

Producer () {
while (true) {

// 1. Produce an item
// **Wait for an empty slotx*
sem_wait (producer_sem) ;
// **¥Acquire exclusive access to the buffer *
sem_wait (mutex) ;
// 2. Insert item into buffer
// **Release exclusive access**
sem_post (mutex) ;
// *%Signal that a slot is now full**
sem_post (consumer_sem) ;

2. The Consumer’s Logic
The Consumer’s goal is to remove an item from the buffer. It must wait until
there is a full slot.

Consumer () {
while (true) {

// **Wait for a full slot (an ttem to consume)**
sem_wait (consumer_sem) ;

// **¥Acquire exclusive access to the buffer *
sem_wait (mutex) ;

// 1. Remove item from buffer

// **Release exclusive access**

sem_post (mutex) ;

// **%Signal that a slot is nmow empty**

sem_post (producer_sem) ;

// 2. Consume the item

Why This Works

The consumer_sem and producer_sem semaphores manage synchronization
(making sure they wait for each other), while the mutex semaphore manages
mutual exclusion (making sure they don’t corrupt the data structure).

It is important to note that the above Producer’s Logic and Consumer’s
Logic provide only the synchronization blueprint using semaphores, and do not
include the actual implementation of the buffer data structure. The
buffer, denoted abstractly as N slots, must be implemented separately. If the
buffer were merely a single integer (like the task in the one-to-one signaling
example in Section 4.2), the synchronization structure would implicitly prevent
a second producer from generating input and returning to production until a
consumer had processed the first task. For the general problem with N > 1
(multiple slots), the buffer is typically implemented as a circular buffer or ring
buffer with IV slots, which requires pointers or indices to track where the next
item should be inserted and removed.

	Introducing Semaphores
	1. Semaphores: Communicating Between Threads
	1.1. The Core Concept: The Count
	2. The sem_wait() Operation (The ``Acquire'' or ``Down'' Operation)
	3. The sem_post() Operation (The ``Release'' or ``Up'' Operation)

	Semaphore vs. Mutex: The Key Difference
	2. The Two Usage Scenarios: Ownership
	Scenario A: Self-Releasing (Resource Limiting or Mutex)
	Scenario B: Cross-Thread Signaling (Synchronization)

	3. Scenario A Example: Thread Pool
	Explanation

	4. Scenario B Example: Cross-Thread Signaling (Synchronization)
	4.1. Example: Enforcing Order Execution
	4.2. Simplified Producer-Consumer: One-to-One Signaling
	4.3. Semaphore Example: The General Producer-Consumer Problem
	The Three Semaphores
	A Buffer, Protected by the Mutex
	1. The Producer's Logic
	2. The Consumer's Logic
	Why This Works

