
In this section, we will explore the fundamentals of multithreaded pro-
gramming in C using the pthread library. The keyword pthread stands
for “POSIX threads,” and this is now the most common standard for pro-
gramming with threads. Specifically, we will learn how to create and manage
concurrent threads, and most importantly, how to use a mutex lock to protect
shared data from race conditions.

Please consider the following example C code, dotask.c. To compile this C
program with pthread, using gcc, you would type: gcc -pthread dotask.c -o
dotask

dotask.c Source Code

#include <pthread.h>
#define NUM_THREADS 5
int task_num = 0;
pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;

// The "start function" for a new thread is do_task.
void *do_task(void *arg) {

pthread_mutex_lock(&mymutex);
int mytask = task_num++;
pthread_mutex_unlock(&mymutex);
do_work(mytask);
return NULL;

}
int main() {

pthread_t thread_ids[NUM_THREADS];
for (int i = 0; i < NUM_THREADS; i++) {

// Create a new thread with the start function, do_task.
pthread_create(&thread_ids[i], NULL, do_task, NULL);

}
for (int i = 0; i < NUM_THREADS; i++) {

// Let the thread exit when the start function finishes.
pthread_join(thread_ids[i], NULL);

}
return 0;

}

1

Thread-to-Process Analogy

The pthreads model shares key functional similarities with the traditional Unix
process management model (fork and execvp), which helps in understanding
their roles:

pthreads (Threads)
Unix Processes
(Process) Description

pthread_create fork combined with
execvp

Launches a new flow of
control. fork creates a
copy, and execvp
replaces the code with a
new program.
pthread_create
launches a new flow of
control that runs a
start function
(do_task) within the
same program’s
memory space.

do_task (Start
Function)

The program
launched by execvp

It is the entry point
where execution begins
for the new entity
(thread or process).

pthread_t (Thread
Descriptor)

pid (Process ID) A unique identifier used
by the operating system
and the parent to
manage and refer to the
newly created flow of
control.

pthread_join waitpid A synchronous call
where the calling
thread/process pauses
execution until the
start function
returns (analogous
to a child process
exiting).

The full man pages for pthread_create and pthread_join show how to extend
this example by specifying an argument inside pthread_create and passing
the argument to the start function, do_task, and then passing the return value
of the start function back to the calling thread through pthread_join. For
the purpose of this document, we will focus only on the core functionality for

2

creating, joining, and synchronizing threads, assuming the reader can discover
these extensions on their own by consulting the main pages.

What Goes Wrong Without a Mutex? (Race Condition)

If the calls to pthread_mutex_lock(&mymutex); and pthread_mutex_unlock(&mymutex);
were removed, the program would suffer from a race condition, and the final
value of task_num would likely be incorrect (less than 5).

The problem arises because the operation int mytask = task_num++; is not a
single, indivisible step. Instead, the CPU must perform at least three separate
operations to complete it: READ (read the current value), INCREMENT
(add 1), and WRITE (write the new value back to memory).

In a multithreaded environment without a mutex, the operating system can
switch between threads at any point, interleaving these steps. This can result in
two or more threads reading the same old value of task_num before either one
writes its updated value back, causing one or more increments to be lost.

Understanding the Critical Section and Mutual Exclusion

A mutex is short for Mutual Exclusion. It is a synchronization tool that
enforces the rule that at most one thread can access a shared resource
at any given time.

The Critical Section

Any code that accesses shared resources (like the global variable task_num) and
needs protection from concurrent access is called a critical section.

For your program, dotask.c, the lines between the lock and unlock calls define
the critical section for this specific mutex:

pthread_mutex_lock(&mymutex);
int mytask = task_num++;
pthread_mutex_unlock(&mymutex);

• Mutual Exclusion: If Thread A locks mymutex and enters the
critical section, any other thread (like Thread B) attempting to call
pthread_mutex_lock(&mymutex) will be blocked (paused) until Thread
A calls pthread_mutex_unlock(&mymutex).

3

Critical Section Contiguity

It’s important to note that the critical section defined by a mutex need not be
contiguous in the source code. The critical section for a single mutex includes
all instances of the code protected by that same mutex’s lock/unlock
pair, regardless of where they appear in the program. The mutex ensures that
entry into one instance of the critical section prevents entry into any other
instance protected by the same lock.

Minimizing Critical Section Length (Coarse-Grained
vs. Fine-Grained Locking)

A core design principle for using mutexes is to ensure threads spend only a
small amount of time inside the critical section. Any CPU-intensive work
should be done outside of the critical section. This maximizes concurrency by
allowing other threads to run their compute work without being blocked by the
mutex.

We see this principle applied in do_task(). The thread calculates the unique
task identifier, mytask, inside the critical section (where task_num is shared
and needs protection). However, the CPU-intensive work performed by
do_work(mytask) is executed outside the critical section. This keeps the lock
held for the shortest possible duration, improving overall performance.

void *do_task(void *arg) {
// 1. Enter brief critical section to safely read/update shared data
pthread_mutex_lock(&mymutex);
int mytask = task_num++; // CRITICAL SECTION: Only a few CPU cycles
pthread_mutex_unlock(&mymutex);

// 2. Perform long-running, independent work outside of the lock
do_work(mytask); // NOT in critical section
return NULL;

}

How a Mutex is Implemented Conceptually

Conceptually, a mutex can be implemented with just a single bit that tracks
the lock’s state, along with supporting logic to manage waiting threads. This
implementation is designed to enforce the “at most one thread” rule with high
efficiency.

4

1. The Core State

A mutex fundamentally maintains one of two states: UNLOCKED (≈ 0) or
LOCKED (≈ 1).

2. The Atomic Operation

The challenge in implementing a mutex is avoiding a race condition in the mutex
implementation itself. To address this, the mutex_lock() function must perform
two critical steps atomically (as a single, indivisible hardware operation):

• Test: Test if the mutex state is UNLOCKED.
• Set: If it is UNLOCKED, change the state to LOCKED and allow the

thread to proceed.

This combined Test-and-Set operation prevents two threads from simultane-
ously seeing the state as UNLOCKED and both attempting to acquire the lock.
Modern CPUs provide special instructions (like compare_and_swap or exchange)
to guarantee this atomicity.

The keyword “and” in instruction names like Test-and-Set or Compare-and-
Swap signifies that two distinct operations (e.g., a read/test and a write/set) are
executed atomically, meaning they occur without the possibility of interruption
or interleaving by a different thread or processor. This concept of atomicity
is also found in standard assembly instructions, such as the common Jump-
and-Link (JAL) instruction in architectures like MIPS or RISC-V, where
the Program Counter (PC) register is updated for the jump and the Return
Address (RA) register is simultaneously set to the next sequential instruction’s
address, both actions guaranteed to complete without interruption.

3. Spinning vs. Sleeping

When a thread attempts to lock a mutex that is already LOCKED, the
mutex_lock() function follows a combined strategy:

a. Spinlock (Busy Waiting)

The thread initially executes a spinlock, repeatedly testing if the mutex is still
locked. This is fast if the lock is released very quickly (avoiding a context switch),
but wastes CPU cycles (busy waiting) if the lock is held for long.

b. Sleeping (Kernel Intervention)

After some iterations of the spinlock, if the lock is not gained, the thread’s state
transitions to SLEEPING (or BLOCKED) and it is placed into a waiting

5

queue for that mutex. This frees the CPU but incurs the high overhead of a
context switch.

4. Mutex Unlock

When mutex_unlock() is called:

1. The mutex state is reset to UNLOCKED.
2. The function detects if any thread is sleeping on this mutex and, if so,

wakes it up (changes its state to RUNNABLE).

The Danger of Hidden Race Conditions (The Leader Elec-
tion Problem)

Race conditions are not limited to simple arithmetic operations; they can corrupt
any shared logic that relies on the sequence of reading and writing a shared
variable. A classic example is a simple leader election mechanism intended to
ensure only one thread becomes the leader.

Leader election is an important algorithm in thread programming and in dis-
tributed systems. It allows a single thread leader to dynamically assign new
tasks based on past history, instead of using a static, fixed sequence of tasks, as
in the earlier example with the do_task() function.

The problem lies in the fact that the if (condition) { set_variable; }
block is not atomic and can be interrupted, causing two threads to satisfy the
condition simultaneously.

Pseudocode Example

This pseudocode attempts to ensure that if the other thread hasn’t claimed
leadership, the current thread will:

bool A_is_leader = 0;
bool B_is_leader = 0;

Thread A Code Thread B Code
if (! B_is_leader) { if (! A_is_leader) {
A_is_leader = 1; B_is_leader = 1;
}; };

assert(! (A_is_leader && B_is_leader));

6

Outcome without a Mutex:

The race condition allows the assertion to fail because Thread A can read
B_is_leader as 0 and Thread B can read A_is_leader as 0 before either
thread writes its new value. This leads to the final state: A_is_leader = 1
and B_is_leader = 1 (two leaders). This shows that any read-test-write
sequence on shared data must be wrapped in a mutex to form a single, atomic
critical section.

7

	dotask.c Source Code
	Thread-to-Process Analogy
	What Goes Wrong Without a Mutex? (Race Condition)
	Understanding the Critical Section and Mutual Exclusion
	The Critical Section
	Critical Section Contiguity

	Minimizing Critical Section Length (Coarse-Grained vs. Fine-Grained Locking)
	How a Mutex is Implemented Conceptually
	1. The Core State
	2. The Atomic Operation
	3. Spinning vs. Sleeping
	4. Mutex Unlock

	The Danger of Hidden Race Conditions (The Leader Election Problem)
	Pseudocode Example

