User Request (Virtual Memory)

Please read 1-review-fully-associative-cache.md and then 1-review-direct-mapped-
cache.md . Please assume that someone has read those two files in that order. I
now want to write a third file that describes the page table in virtual memory. I
want to leverage the knowledge in the first two files. Please describe the page
table as a direct-mapped cache in which the data block is actually a pointer to
the page frame in RAM (or an indication of non-resident). Please also explain
that during a page fault, the page fault handler will read the page into RAM
from the swapfile. Please explain the language of a “virtual page” (e.g., VPN:
virtual page number) and “physical page (e.g.: PFN: page frame number).. After
that, please explain that the page table and the swapfile both include not only
the”page number" (the tag of the address for that page), but also the process id.
(to Google Gemini, Oct. 27, 2025)

FROM GOOGLE GEMINI: That’s a fantastic way to connect the
concepts! By leveraging the structure of a direct-mapped cache, we
can easily understand the Page Table’s function in virtual memory.

The Page Table: A Direct-Mapped Cache for
Memory Translation

You have already learned about the fully associative cache and the direct-
mapped cache. We can use the structure of a direct-mapped cache to easily
understand how a computer system translates a virtual address into a physical
address using a Page Table.

The Page Table as a Direct-Mapped Structure

In a direct-mapped cache, a memory block is mapped to a specific cache line
using an Index. The Page Table operates similarly, serving as a lookup structure
to map large blocks of virtual memory to physical memory frames.

Virtual Memory

Cache Concept Concept Description
Direct-Mapped Page Table The primary structure
Cache used to store the
mappings.
Cache Line Page Table Entry A single entry in the
(PTE) table that holds the

mapping information.



Cache Concept

Virtual Memory
Concept

Description

Index

Tag

Block Offset

Data Block

Virtual Page
Number (VPN)

Virtual Page
Number (VPN)

Page Offset

Physical Page
Frame Number
(PPN or PFN)

The lower bits of the
virtual address, used to
directly select the one
specific PTE in the
Page Table.

The remaining higher
bits of the virtual
address, which must be
stored in the PTE for
verification.

The remaining lowest
bits of the address,
which do not change
during translation and
select the specific byte
within the page.

The data returned on a
“hit,” which is the
pointer (address) to
where the data actually
resides in RAM.

The Translation “Hit”

When the CPU issues a Virtual Address, it is split into two main parts: the
Virtual Page Number (VPN) and the Page Offset.

1. Index/Lookup: The VPN acts as the Index to select the single, specific
Page Table Entry (PTE) that might hold the translation.
2. Tag Check (Implicit): In a traditional Page Table implementation, the
VPN is the index, making the tag match trivial if the entry is valid. The
check is simplified: Does the PTE exist, and is it valid?
3. Data Retrieval: If the PTE is Valid (VV = 1), the PTE returns the

Physical Page Frame Number (PFN).

4. Physical Address Construction: The PFN is concatenated with the
original Page Offset to form the final, actual Physical Address (PA)

in RAM.

Status Bits and Page Faults

Just like a cache line has a Valid Bit (V) and a Modified/Dirty Bit (M), a

Page Table Entry (PTE) has similar status fields:



e Valid Bit: This bit indicates if the virtual page is currently resident in
Physical RAM.
— V =1: Page Hit. The PFN is valid, and the data is in memory.
— V = 0: Page Miss (or Page Fault). The page is not in RAM,
and the memory management unit (MMU) must raise a trap to the
operating system’s kernel.

Handling a Page Fault

When a Page Fault occurs (a miss, V' = 0), the operating system’s Page Fault
Handler takes over:

1. Tt locates the requested virtual page on the secondary storage, which is
usually a dedicated space called the swapfile or pagefile.

2. Tt finds an available Physical Page Frame in RAM (or evicts an existing
page using an algorithm like LRU, similar to what you read about in the
fully associative cache description).

3. It reads the entire page of data from the swapfile into the chosen Physical
Page Frame in RAM.

4. Tt updates the PTE: it writes the new PFN into the entry and sets the
Valid Bit (V) to 1.

5. It returns control to the CPU, which then re-issues the instruction, allowing
the memory access to successfully complete on the second try.

The Role of the Process ID

In a modern multitasking operating system, the same Virtual Page Number
(VPN) may be used by different applications (processes).

To maintain isolation and ensure the correct translation, the operating system
effectively gives each Process its own complete Page Table.

Therefore, when the system performs a memory lookup, it uses:

o Process ID (PID): Identifies the active program and selects its specific
Page Table.

o Virtual Page Number (VPN): Used to index into the selected Page
Table.

This same principle extends to the swapfile. The operating system must track
which pages belong to which process, ensuring that during a page fault, the
handler reads the correct virtual page belonging to the correct (Process ID +
VPN) pair from the swapfile and loads it into the correct physical page frame.



	User Request (Virtual Memory)
	The Page Table: A Direct-Mapped Cache for Memory Translation
	The Page Table as a Direct-Mapped Structure
	The Translation ``Hit''

	Status Bits and Page Faults
	Handling a Page Fault

	The Role of the Process ID


