
CS 5600 – Systems and Networks Prof. Peter Desnoyers
Programming Assignment 2

Overview

For this assignment you’ll write a simple shell, which handles simple commands, pipes, and
input/output redirection.

It specifically will NOT support:

• job control - you can’t start commands in the background with &, and if you type ^Z it will stop
your shell, not the command you are running

• wildcard expansion - * is just another character:
$ ls *.c
ls: *.c: No such file or directory

• shell variables, except for $?
• control statements like if, ‘for’, etc.

Your shell doesn’t need to support unlimited numbers of commands, arguments, or pipeline stages,
although it should support at least 32 tokens on a line and 4 pipeline stages.
This lets you use fixed-sized arrays, which make for much simpler C code.

What it WILL support is:

• the cd, pwd, and exit built-in commands
• external programs
• redirection of external program input and output
• pipelines, where the output of one external program is the input of another

At various points in this description you are given instructions to refer to the “man page” for a system
call or library function - please do so in a terminal window at that point. Note that much of the contents
of a man page can be ignored - the most important parts for what we are doing are (1) the list of include
files to use and (2) the arguments and return value. (the “RETURN VALUE” section is often near the
end of a long man page)

Homework 1 – Program Loading and Context Switching Page 2 of 9

Step 1: signals

If your shell is interactive, you’ll want to disable the ^C signal, so that you can quit out of a running
program without terminating the shell:
signal(SIGINT, SIG_IGN); /* ignore SIGINT=^C */

Later when you use fork to create a subprocess you’ll want to set it back to its default in that
subprocess, so you can terminate a running command:
signal(SIGINT, SIG_DFL);

You should be able to run your shell now, and:

• it won’t exit when you type ^C
• it will exit properly on end of file (i.e. when you type ^D, which indicates end-of-file on the

Unix terminal)

Command status

Each command will have a status indicating whether it succeeded or failed.

For an executable run in a separate process, this will be the value passed to the exit system call,
which we’ll get from the wait system call in the parent.

For built-in commands it will be 0 for success, and 1 for failure.

Later in the assignment we’ll make the status of the previous command available to other commands
via the $? variable.

Homework 1 – Program Loading and Context Switching Page 3 of 9

Step 2, Internal commands: cd, pwd, and exit
Note:

• the command line tokenizer is described below, in the section Command Line Tokenizer
• you can compare strings for equality using strcmp (“man 3 strcmp”), which returns zero if

two strings are equal.

(question: why does cd have to be implemented as a built-in command rather than an executable run in
a separate process? exit?)

For the cd command you will use the chdir command (“man 2 chdir”) to change to the indicated
directory. With no arguments you should use the value of the HOME environment variable,
i.e. getenv("HOME").

Note that cd can fail two ways:

• wrong number of arguments: print "cd: wrong number of arguments\n" to standard
error - use fprintf(stderr, ...

• chdir fails: print "cd: %s\n", strerror(errno) to standard error

In both cases set status to 1, and set it to 0 otherwise.

pwd will use the getcwd system call (“man 2 getcwd”) to get the current directory, passing it a buffer
of PATH_MAX bytes, and print the result. You can assume getcwd always succeeds and set status to 0.

exit takes zero or 1 argument; with more than 1 it prints "exit: too many arguments" to
stderr and sets status=1. With 0 arguments it calls exit(0); with a single argument it
calls exit(atoi(arg)), using atoi(“man 3 atoi”) to convert the argument from a string to an
integer.

TEST IT: - run your shell, try:
- pwd - does it print out the right current directory? does it fail if you give it arguments?
- cd-ing to directories that exist, check with pwd
- cd to non-existent directory, check (a) error message, (b) still in same directory
- exit - does it work correctly with 0, 1, >1 argument? Try exiting with an arbitrary non-zero status
and verify using the $? variable in your normal shell:

hw1$./shell56
$ exit 5
hw1$ echo $?
5

HINT: factor cd, pwd, and exit into individual functions that each take argc and argv as
arguments. Maybe return status as the return value, but more on that later.

Now that you’ve implemented your first commands, make sure that it ignores empty command lines
without complaining or crashing.

Homework 1 – Program Loading and Context Switching Page 4 of 9

Step 3, external commands with no I/O redirection

If a command isn’t an internal command, it’s an external one - you’ll fork a sub-process; in the child
process you’ll use exec to run the command, while the parent will use wait to wait until it’s done.

After fork() (“man 2 fork”) you’ll want to do the following:

• re-enable “^C” (see above)
• use the execvp library function (“man 3 execvp”) to exec the indicated command

From the man page:
int execvp(const char *file, char *const argv[]);

The first argument is the executable name, while the second is the argv array to be passed to the
newly loaded program.
Instead of providing an argument count, the argv array is terminated with a NULL pointer.
Thus given the following argument to execvp:

execvp will load the executable /usr/bin/ls and pass it argc=2, argv={“ls”, “/home”}.

(question - how does execvp know where to find the executable ls?)

The command line parser I’ve given you makes sure that the argv[] array is terminated with a NULL
pointer, so you can just pass it to execvp:
execvp(argv[0], argv);

If execvp fails, you should print a message to standard error - "%s: %s\n", argv[0],
strerror(errno) - and then exit with EXIT_FAILURE. (question: why do you have to exit here,
rather than returning?)

In the parent process you’ll need to wait for the child pracess to finish, using waitpid, and get its exit
status (i.e. the argument passed to exit())
It’s ok to copy and paste the following code without fully understanding it:

 int status;
 do {
 waitpid(pids[i], &status, WUNTRACED);
 } while (!WIFEXITED(status) && !WIFSIGNALED(status));
 int exit_status = WEXITSTATUS(status);

Test this:

•successful commands, e.g. ls, ls /tmp, etc.
•unsuccessful ones, e.g. this-is-not-a-command
•^C handling - run sleep 5 and verify you can kill it with ^C and return to your shell.

FACTORING: - I suggest that you factor out the code which forks and execs, and put it in a separate
function from where you call waitpid.

Debugging:

NULL

argv "ls"
"/home"

Homework 1 – Program Loading and Context Switching Page 5 of 9

You may find the GDB command set follow-fork-mode child useful. documentation

Also the strace -f command can be very useful, although verbose - e.g. here’s a selection of the
140 lines it prints out for my shell. (note that fork in Linux is actually implemented using a system
call named clone)

hw1$ echo ls | strace -f ./shell56
execve("./shell56", ["./shell56"], 0xffffed0a7ba8 /* 24 vars */) = 0
brk(NULL) = 0xaaaadecaa000
 ...
clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|
SIGCHLDstrace: Process 119667 attached
, child_tidptr=0xffff9934bf50) = 119667
[pid 119667] set_robust_list(0xffff9934bf60, 24 <unfinished ...>
 ...
[pid 119667] execve("/usr/local/sbin/ls", ["ls"], 0xffffe3f4c0a8 /* 24
vars */ <unfinished ...>

 ...

Step 4: the $? special shell variable
The basic shell has a number of built-in variables, listed under “Special Parameters” in the man page
(man sh); we implement only one of these:

? - Expands to the exit status of the most recent pipeline.

To implement this you can just use sprintf to print the exit status into a buffer (e.g. char
qbuf[16]), and then go through your array of tokens, find any which compare equal to $?, and
replace them with a pointer to that buffer.

Test it:

hw1$./shell56
$ false
$ echo $?
1
$./shell56
$ exit 5
$ echo $?
5
$ exit
hw1$

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_25.html

Homework 1 – Program Loading and Context Switching Page 6 of 9

Step 5: Pipes
Limitations: it’s OK if you don’t handle more than 4 pipeline stages.

To implement pipes you’ll need to use the pipe and dup2 system calls. (you might find dup useful as
well)

Read the “description” section of the man page: “man 2 dup”. (“man 2 dup2” gives you the same page)

dup2(int oldfd, int newfd) closes newfd if it is already open, and makes
a copy of oldfdnumbered newfd.
In particular you can do something like this:

 int fd = open("file", O_RDONLY);
 dup2(fd, 0);
 close(fd);

Now standard input will read from “file” instead of whatever it used to be, typically the terminal.
Note that by closing fd after dup2, we have the same number of open file descriptors when these lines
finish as when we started.

The pipe call creates two file descriptors, one for reading and one for writing.
Given a pipeline ls | grep .c you’ll want to use the write fd as standard output (fd 1) for the first
command, and the read fd as standard input (fd 0) for the second one.

There are going to be a lot of file descriptors that need closing, as fork duplicates everything in the
parent process, including open file descriptors, you want (everything closed (across parent and
children) except standard input and/or output in the appropriate child processes.
Thus for the ls | grep pipeline we’ll have:

• parent: pipe -> read_fd, write_fd
• child1: dup2(write_fd, 1), close(write_fd), close(read_fd)
• child2: dup2(read_fd, 0), close(read_fd), close(write_fd)
• parent: close(read_fd), close(write_fd)

You’ll need to scan your array of tokens looking for “|”, and split the line into separate commands that
will be piped into each other. Note that you can split the array into parts by replacing “|” with NULL:

This is where it helps to have factored out the code which forks and execs a command.
Make sure you close all the file descriptors that need to be closed - in particular, if you leave an extra
copy of the “write” side of a pipe open, the reader will never see end-of-file.
Make sure you don’t close the original copies of standard input and standard output - depending on
how you factor things, you might find it helpful to make copies of stdin/stdout with dup so that your
function can always close file descriptors after fork.

Finally, keep an array of all the child process IDs, and wait for each of them, one at time, using the
logic from above.

argv "ls"
"|"

NULL

"fgrep"
".c"

NULL
argv "ls"

NULL

"fgrep"
".c"

Homework 1 – Program Loading and Context Switching Page 7 of 9

Step 6: File redirection
For each pipeline stage, scan for ’>“ and ”<", and replace standard input and output appropriately.

Note that “<” (or “>”) may be followed by zero, one, or multiple words before “>” (“<”) or end of line:

• zero words: don’t redirect
• more than one: redirect to the first one

If you’ve factored out a “launch” function which takes an argv pointer and file descriptors for stdin and
stdout, you can make a “wrapper” for it which checks for file redirection and replaces the appropriate
file descriptors if necessary. (make sure you close any file descriptors that aren’t needed)

Hint: you can use the lsof command to list open file descriptors, to make sure you’re not leaking.
E.g. from another terminal:

hw1$ ps aux |grep shell56
pjd 118403 0.0 0.0 2196 780 pts/4 S+ 01:29 0:00
./shell56
hw1$ lsof -a -d 0-999 -p 118403
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
shell56 118403 pjd 0u CHR 136,4 0t0 7 /dev/pts/4
shell56 118403 pjd 1u CHR 136,4 0t0 7 /dev/pts/4
shell56 118403 pjd 2u CHR 136,4 0t0 7 /dev/pts/4
hw1$

(the man page for lsof is horrible. The specific options used here will list all open files that are
“normal”, i.e. with file descriptors 0–999 (-d 0-999), AND (-a) are open in a specific process (-p
118403).

Just like before, the strace -f command can be quite useful.

hw1$ echo 'ls | cat' | strace -f ./shell56
execve("./shell56", ["./shell56"], 0xffffeccb9e08 /* 24 vars */) = 0
 ... 240 more lines...

Homework 1 – Program Loading and Context Switching Page 8 of 9

Background Information

Command Line Tokenizer
The simplest way of tokenizing a line in C is to use the strtok library function, or the slightly less
horrible strsep, which overwrite whitespace characters to split a line into multiple strings.
An example:

start with the line "ls | cat", zero out the whitespace characters:

['l']['s'][' ']['|'][' ']['c']['a']['t'][0]
 -> ['l']['s'][0]['|'][0]['c']['a']['t'][0]

and keep pointers to the beginning of each region of non-whitespace characters:

 argv[] ['l']['s'][0]['|'][0]['c']['a']['t'][0]
 +-----+ ^ ^ ^
 | *--|----------+ | |
 +-----+ | |
 | *--|-------------------------+ |
 +-----+ |
 | *--|-----------------------------------+
 +-----+
 | ... |

Problem: this breaks when you don’t have any whitespace, like "ls|cat"
The parser you’re given handles this by copying the input string into a second buffer, rather than
modifying it in place:

 input string: buffer:
['l']['s']['|']['c']['a']['t'][0] [0][0][0][0][0][0][0][0][0]

 output:
 argv[] -> ['l']['s'][0]['|'][0]['c']['a']['t'][0]
 +-----+ ^ ^ ^
 | *--|------------------------------+ | |
 +-----+ | |
 | *--|---+ |
 +-----+ |
 | *--|---+
 +-----+
 | 0 | <- terminated with NULL pointer (see arg formats in "man 3 execvp")
 +-----+
 | ... |

The skeleton code you’re given shows an example of how to use it.

For a “real” shell you’d probably use a tokenizer and parser based on the standard compiler
tools lexand yacc, creating an abstract syntax tree of linked “token” objects. That’s far too
complicated for this assignment, so we have a simple tokenizer that does a pretty good job of splitting
simple lines with redirection symbols and single and double quotes, and returns pointers to strings
rather than more complex structures.

The parser is not guaranteed to be bug-free, but your code will only be tested against cases where the

ASCII characters
By default C uses the basic 8-bit ASCII character set, rather than the much larger Unicode character set
used in today’s user interfaces. To see the actual character set, we can print out a string containing the

Homework 1 – Program Loading and Context Switching Page 9 of 9

bytes 1 through 255, with a 256th byte as the null terminator:

cat > test.c <<EOF
#include <stdio.h>
int main(void) {
 char c, buf[256];
 for (int i = 0, c = 1; i < 256; i++)
 buf[i] = c++;
 printf("%s", buf);
}
EOF
gcc test.c
./a.out | od -A d -t c

You should see the following - note that offsets (left column) are in decimal, while non-printing
characters are printed in octal, which no one uses anymore. (“od” = “octal dump”)

The “missing” character at the end of the second line is actually a space, ' ', and there are several
backslash-style escaped characters, of which the only ones we care about are \n (newline) and
sometimes \t (tab).

0000000 001 002 003 004 005 006 \a \b \t \n \v \f \r 016 017 020
0000016 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037
0000032 ! " # $ % & ' () * + , - . / 0
0000048 1 2 3 4 5 6 7 8 9 : ; < = > ? @
0000064 A B C D E F G H I J K L M N O P
0000080 Q R S T U V W X Y Z [\] ^ _ `
0000096 a b c d e f g h i j k l m n o p
0000112 q r s t u v w x y z { | } ~ 177 200
0000128 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217 220
0000144 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237 240
0000160 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257 260
0000176 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277 300
0000192 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317 320
0000208 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337 340
0000224 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357 360
0000240 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

	Overview
	Step 1: signals
	Command status
	Step 2, Internal commands: cd, pwd, and exit
	Step 3, external commands with no I/O redirection
	Step 4: the $? special shell variable
	Step 5: Pipes
	Step 6: File redirection
	Background Information
	Command Line Tokenizer
	ASCII characters

