
CS 5600 – Systems and Networks Prof. Peter Desnoyers
CPU Description (Homework 1 documentation)

Overview

The 5600 CPU is a single-core 16-bit computer able to address 216 (65536) bytes of memory. It has 10
16-bit registers - R0 through R7, PC (program counter) and SP (stack pointer), plus two boolean flag
registers: Z (zero) and N (negative); its state is represented by a C structure:

struct cpu {
 uint8_t *ram; /* memory */
 uint16_t R[8]; /* registers */
 uint16_t PC; /* program counter */
 uint16_t SP; /* stack pointer */
 int Z; /* zero flag (‘bool’ is C++) */
 int N; /* negative flag */
};

16-bit values are stored in memory in “little-endian” order; you can read and write 16-bit values from
memory with the following code:

uint16_t load2(struct cpu *c, uint16_t addr) {
 uint16_t data = (c->memory[addr] | (c->memory[addr+1] << 8));
 return data;
}
void store2(struct cpu *c, uint16_t data, uint16_t addr) {
 c->memory[addr] = data & 0xFF;
 c->memory[addr+1] = (data >> 8) & 0xFF;
}

You will implement the following function:

int emulate(struct cpu *cpu);

which will (a) implement the instruction, and (b) return 0 if the emulation should continue (i.e. a
normal instruction) or 1 if the emulation should stop because the executed instruction was HALT.

Instruction format

Basic instructions are 16 bits (2 bytes) with a format that looks like this:

where ‘iiii’ is a 4-bit instruction code:

• 0001 (1) SET - load a value into a register
• 0010 (2) LOAD - read from memory into a register
• 0011 (3) STORE - store a register into memory
• 0100 (4) MOVE - copy one register to another
• 0101 (5) ALU - arithmetic and logic operations (add/sub/etc.)
• 0110 (6) JMP_ABS - jump to an address specified by the instruction
• 0101 (7) JMP_IND - jump to an address in a register (“indirect”)
• 1000 (8) CALL (absolute) - function call
• 1001 (9) CALL (register indirect) - function call

i i i i

Homework 1 – Program Loading and Context Switching Page 2 of 7

• 1010 (10/0xA) RET - return
• 1011 (11/0xB) PUSH - push a register onto the stack
• 1100 (12/0xC) POP - pop a register from stack
• 1101 (13/0xD) IN - perform input operation
• 1110 (14/0xE) OUT - perform output operation
• 1111 (15/0xF) HALT - return 1 from the emulate() function – all other instructions return 0

You can read the next instruction and determine the instruction code with this logic:

uint16_t insn = load2(cpu, cpu→PC);
if ((insn & 0xF000) == 0x1000) {
 ; /* SET */
}
else if ((insn & 0xF000) == 0x2000) {
 ; /* LOAD */
}
...

Although a few of the instructions use all 16 bits, some of them don’t need that many; these “don’t-
care” bits will be indicated with dots in the figures below. Read the fields from the instruction that you
need, and ignore the remaining bits. (they’ll probably be zero)

The 5600 CPU is a “load/store” architecture – in most cases you have to read data from memory into a
register (with the LOAD instruction) before you can operate on it, and then write it back to memory
with the STORE instruction.

You will have to extract bitfields to interpret many of the instructions – for example the arithmetic
operation instruction format looks like this:

where ‘ooo’ is a 3-bit operation code (indicating add/subtract/etc.), and aaa, bbb, and ccc are three
register numbers. To extract these you can use the following code:

int op = (insn >> 9) & 7;
int c = (insn >> 6) & 7;
int b = (insn >> 3) & 7;
int a = insn & 7;

SET Instruction (load constant value into register)

Example: SET R1 = 0x1234

This is a 4-byte instruction. It reads a 16-bit integer from addresses PC+2 and PC+3, puts the result
into register Ra, and then increments the PC by 4 and returns 0 from emulate()

0 0 0 1 a a a.

0 1 0 1 a a ao o o c c c b b b

Homework 1 – Program Loading and Context Switching Page 3 of 7

LOAD instruction (read from memory address into register)

This has multiple variants – it can load a 16-bit word or an 8-bit byte, and can read from an address
specified in the instruction, or take its address from a register.

Examples: LOAD R1 <- *0x5678
LOAD.B R2 <- *0x5678
LOAD R3 <- *R5
LOAD.B R4 <- *R5

Load from constant address:

Read 16 bits (if B=0) or 8 bits (if B=1) from the specified address and put the result in register Ra, then
increment PC by 4 and returns 0 from emulate()

Load from address in register:

Read 16 bits (B=0) or 8 bits (B=1) from the address specified in register Rb, put the result in register
Ra, and increment PC by 2 and return 0 from emulate()

Useful code fragment:

int is_indirect = ((insn & 0x0800) != 0);
int is_byte = ((insn & 0x0400) != 0);

STORE instruction (read from memory address into register)

Again, this instruction has variants which store a 16-bit word or a single byte, and which include a
constant address or which take their address from a register.

Examples: STORE R1 -> *0x5678
STORE.B R2 -> *0x5678
STORE R3 -> *R5
STORE.B R4 -> *R5

It’s basically the same as LOAD, but in the opposite direction, incrementing the PC by 4 or 2 when
done, and again returning 0 from emulate().

0 0 1 0 a a a0 B - - - - - - -

0 0 1 0 a a a1 B - - - - b b b

Homework 1 – Program Loading and Context Switching Page 4 of 7

Store to constant address:

Store to address from register:

MOVE – copy one register to another

This has a different layout than the other instructions, because it allows you to specify any of the 8
general-purpose registers (R0 through R7) using values 0-7, or use 8 to specify the stack pointer. (if
either register field is in the range 9-15, it’s an error)

Copy the value in Rs (or SP, if ssss==8) into Rd (or SP, if dddd==8), then increment PC by 2. You can
assume 0 <= S, D <= 8. Again, return 0 from emulate().

Arithmetic / logical operations

Most of these take 2 source registers and put their result in a third register.

Where the operation code (ooo) is one of:
• 000: ADD Ra + Rb -> Rc
• 001: SUB Ra - Rb -> Rc
• 010: AND Ra & Rb -> Rc
• 011: OR Ra | Rb -> Rb
• 100: XOR Ra ^ Rb -> Rc
• 101: SHIFTR Ra >> Rb -> Rb (“shift right”)
• 110: CMP Ra – Rb (“compare”: compute Ra - Rb, discard the result but set N and Z)
• 111: TEST Ra (set Z, N according to value in Ra)

All operations are done on 16-bit values in registers R0 through R7. When the operation is done, set the
N and Z flags appropriately, put the result in the output register (except for TEST and CMP), and
increment the PC by 2. Again, return 0 from emulate().

NOTE – since we’re using 2s-complement arithmetic, a value is negative if its high-order bit is one.
Thus:

0 0 1 1 a a a0 B - - - - - - -

0 1 0 0 - - - - d d d d s s s s

0 0 1 1 a a a1 B - - - - b b b

0 1 0 1 a a ao o o c c c b b b

Homework 1 – Program Loading and Context Switching Page 5 of 7

uint16_t val = cpu->R[a] - cpu->R[b];
int is_negative = (val & 0x8000) != 0;

More useful code fragments:

if ((insn & 0x0E00) == 0x0000) /* ADD */
if ((insn & 0x0E00) == 0x0200) /* SUB */
if ((insn & 0x0E00) == 0x0400) /* AND */
if ((insn & 0x0E00) == 0x0600) /* OR */
if ((insn & 0x0E00) == 0x0800) /* XOR */
if ((insn & 0x0E00) == 0x0A00) /* SHIFT right */
if ((insn & 0x0E00) == 0x0C00) /* CMP */
if ((insn & 0x0E00) == 0x0E00) /* TEST */

JMP - jump to address

Examples: JMP 0x1234
JMP_NZ R3

There are two forms of this instruction, taking an explicit address (4 bytes) or taking an address from a
register. In addition the jump can be conditional, jumping to the given address only if the specified
condition is true.

Conditions:
• 000 : JMP (unconditional)
• 001 : JMP_Z (jump if zero, i.e. Z true)
• 010 : JMP_NZ (jump if non-zero, i.e. Z false)
• 011 : JMP_LT (jump less than, i.e. N true)
• 100 : JMP_GT (jump greater than, i.e. N false and Z false)
• 101 : JMP_LE (jump less or equal, i.e. N true or Z true)
• 110 : JMP_GE (jump greater or equal, i.e. N false)
• 111 : illegal instruction

Jump to explicit address:

If condition is true, set PC to address specified in bytes 3 and 4 of instruction; otherwise increment PC
by 4. Again, return 0 from emulate().

0 1 1 0 c c c - - - - - - - - -

Homework 1 – Program Loading and Context Switching Page 6 of 7

Jump to register address:

If condition is true, set PC to value of Ra; otherwise increment PC by 2. Again, return 0 from
emulate().

CALL – jump and push return address

Like JMP, this comes in 2-byte and 4-byte variants, taking the address from a register or specifying it
explicitly. Unlike JMP, there is no conditional version. It pushes the address of the next instruction
(“return address”) onto the stack and then jumps to the indicated address.

Specified address:

• Decrement the SP register by 2
• Store the 16-bit value (PC+4) to the address in SP
• Read a 16-bit value from bytes 3 and 4 of the instruction and set the PC register to that value.
• Return 0 from emulate()

Address in register:

• Decrement the SP register by 2
• Store the 16-bit value (PC+2) to the address in SP
• Set the PC register to the16-bit value in register Ra.
• Return 0 from emulate()

RET – pop return address and jump to it

• Load a 16-bit value from the address in register SP and set PC to that value.
• Increment SP by 2.
• return 0 from emulate()

PUSH, POP – push a register to stack or pop from it

0 1 1 1 a a ac c c - - - - - -

1 0 0 0 - - - - - - - - - - -
 -

1 0 0 1 - - - - - - - - - a a a

1 0 1 0 - - - - - - - - - - -
 -

Homework 1 – Program Loading and Context Switching Page 7 of 7

PUSH Ra:

• Decrement SP by 2
• Store 16-bit value in register Ra to address in SP
• Return 0 from emulate()

POP Ra:

• Read 16-bit value from address in SP, store in register Ra
• Increment SP by 2
• Return 0 from emulate()

Input/Output instructions

IN Ra:

Read an 8-bit character from the terminal and put it in register Ra, using the following code:

cpu->R[a] = fgetc(stdin);

Increment PC by 2, return 0 from emulate().

OUT Ra:

Take the 8-bit value in the lower 8 bits of Ra and output it to the terminal, using the following code:

fputc(cpu->R[a], stdout)

Increment PC by 2, return 0 from emulate().

HALT

Returns 1 from the emulate() function, indicating that the emulation should halt.

1 0 1 1 - - - - - - - - - a a a

1 1 0 0 - - - - - - - - - a a a

1 1 0 1 - - - - - - - - - a a a

1 1 1 0 - - - - - - - - - a a a

1 1 1 1 - - - - - - - - - - -
 -

	Overview
	Instruction format
	SET Instruction (load constant value into register)
	LOAD instruction (read from memory address into register)
	STORE instruction (read from memory address into register)
	MOVE – copy one register to another
	Arithmetic / logical operations
	JMP - jump to address
	CALL – jump and push return address
	RET – pop return address and jump to it
	PUSH, POP – push a register to stack or pop from it
	Input/Output instructions
	HALT

