CS 5600 Fall 2024 Devices and disks

Short Assignment — Devices and disks
Question 1: disk performance
For this question, MB = 10° bytes

a) A disk rotates at 7200 RPM (120 rotations/sec) and can transfer 200MB/s of data from its outer
track. How many bytes” of data does a single outer track hold?

b) Given an average seek time of 4ms, a rotational speed of 10000 RPM (166.66 rotations/sec), and an
average transfer rate of 150 MB/s™, how long does a 65536-byte random read request take, in
milliseconds, on average? What if transfer rate remains 150MB/s, but the average seek time is 8ms and
rotational speed is 7200 RPM?

Question 2: simple disk driver

A slightly modified version of the really simple disk controller from HOSWis gg20 [status | cmd

shown at the left; it supports reading and writing single 512-byte sectors froma rg22 sector #

very small disk (64K 512B sectors = 32MB), and has an associated interrupt. 824
(see next page for details of operation)

Provide pseudo-code for a simple interrupt-driven driver for this disk. You'll need to show logic for the
following functions:

* read(sector_num, bufptr, num_bytes) - num_bytes is a multiple of 512
* write(sector_num, bufptr, num_bytes) - multiple of 512 again
e disk_interrupt() - function called for disk interrupt

Assume you have a mutex named m and a condition variable named C, - the read and write
functions should call C.wait(m),and disk_interrupt shouldcall C.signal ()

hardware register: descriptor (in memory) :
. . . Fg40 | descriptor ptr cmd status
Question 3: complicated disk controller | P P |
length
Our imaginary machine has a DMA-based disk, sector #

controller, as well. You allocate a block of memory

for a DMA descriptor, fill it out, and write its address to the descriptor pointer alternately:
register. That signals the controller to perform its read or write operation, and struct desc {
your interrupt handler gets called when the 1/O is done. Again, full details are intg cmd;

int8 status;
on the next page. int16 len;
Provide pseudo-code for the read, write, and disk_interrupt functions. void* sector;

Again, you are given a mutex and condition variable for your read and write bi

functions to use to wait for I/O to complete.

* Approximately. Assume the drive can skip from track to track with zero delay, which is not quite true.

** These numbers are about right for high-performance disks 15 years ago, and capacity drives were about 8ms/7200
RPM/150MB/s back then. Today’s capacity drives are still 7200RPM and about 8ms seek time, but the max transfer rate
is more like 200 to 300 MB/s because the bits are smaller.

CS 5600 Fall 2024 Devices and disks

The simple disk controller reads or writes exactly one 512-byte sector in response to a read or a write
command.

Read:
1. write sector number to appropriate register
2. write CMD_READ (0x80) to the cmd register; in response the controller will:
a) read and buffer the sector
b) raise an interrupt, causing your handler to be called
3. [check that status=1, “no error”] - you can skip this
4. To get the buffered sector, software reads 512 bytes from the 8-bit data register

1. Write 512 8-bit bytes of data to the data register

2. Write sector number to sector# register

3. Write CMD_ WRITE (0xCO0) to the cmd register

4. When the transfer is completed, your interrupt handler will be called. [optional: check status=1]

The DMA disk controller can read or write multiple sectors:

1. Prepare a DMA descriptor in memory, with command (CMD READ=0x80 or
CMD_WRITE=0xCO0), transfer length in bytes, 0 in the status field, and a pointer to the
memory containing the data (WRITE) or where the data should be stored (READ)

2. Write the address of the DMA descriptor to the descriptor_addr register

3. When the transfer is done, your interrupt handler will be called. [optional: check status==1]

	Short Assignment – Devices and disks

