
CS 5600 Fall 2024 Concurrency

Short Assignment - Concurrency

Assume we have a Python-like language which provides mutex and condition variable classes with the
following signatures:

class mutex:
 method lock()
 method unlock()

class condition:
 method wait(mutex m)
 method signal()

We define two additional classes, pmutex and rendezvous, shown here with numbered lines:
 class pmutex:
 mutex m
 method lock():
1 print('locking...')
2 m.lock()
3 print('locked...')

 method unlock():
4 print('unlocking:')
5 m.unlock()

 class rendezvous:
 pmutex P
 condition C
 count = 0

 method meetup():
6 P.lock()
7 count = count+1
8 while count < 2:
9 C.wait(P.m)
10 C.signal()
11 P.unlock()

Note – consider line 8 (“while count < 2”) to execute each time the condition is tested, followed by line
9 (if the condition is true) or 10 (if false).
Finally we have the following code, again with line numbers:

 rendezvous R
 function thread_A():
12 R.meetup()

 function thread_B():
13 sleep(1 second)
14 R.meetup()

 function thread_C():
15 sleep(1 second)
16 R.meetup()

Answer format: Your answer will specify one or more execution sequences, consisting of a sequence
of thread ID / line number pairs – e.g. an execution sequence might start with A/12,A/6, etc. (ignore
output from “print” commands) An execution sequence ends when all threads have either returned from
their thread function, or are waiting forever on a condition.

Deliberable: Assuming all three threads begin execution at the same time, give **two** (2) different
legal execution sequences.

Submission instructions: Please submit your answer via Canvas, either in PDF format or via the text
entry field.

	Short Assignment - Concurrency

