
SYSTEM AND SOFTWARE

DESIGN USING THE

UNIFIED MODELING

LANGUAGE (UML)

Michael Weintraub

And

Frank Tip

DEFINING STATIC MODELSUML Part 2

2

THE STRUCTURAL PERSPECTIVE

The internal organization of the system

Entities

and

Relationships between Entities

3

ENTITIES (AKA OBJECTS AKA CLASSES)

 A thing with distinct and independent existence

(Oxford Dictionaries · © Oxford University Press)

 Origin: Late 15th century (denoting a thing's existence): from French entité or medieval Latin entitas, from late Latin

ens, ent- being (from esse be).

4

http://www.oxforddictionaries.com/us/

ENTITIES (AKA OBJECTS AKA CLASSES)

 A thing with distinct and independent existence

(Oxford Dictionaries · © Oxford University Press)

 Origin: Late 15th century (denoting a thing's existence): from French entité or medieval Latin entitas, from late Latin

ens, ent- being (from esse be).

 In UML (and CS in general), an entity/object/class is a combination of:

1. identity (unique name)

2. state (data)

3. behavior (services)

5

http://www.oxforddictionaries.com/us/
https://en.wikipedia.org/wiki/Identity_(object-oriented_programming)
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Behavior

WHAT'S AN OBJECT?

An object offers

a collection of services (methods) that work on a common state.

There is usually a correspondence between

objects and nouns in the task

("Bug", "Field", "Marker")

methods and verbs in the task

("move", "sit down", "delete")

THREE PERSPECTIVES ON CLASSES

1. Conceptual (domain analysis)

 Shows concepts of the domain

 Implementation-independent

2. Specification (design)

 General structure of the system

 Interfaces (types, not classes)

 Used in high-level design

3. Implementation (programming)

 Structure of the implementation

 Most often used

Always try to draw from a single perspective!

CLASSES IN UML

 Classes are drawn as a three-part box containing:

1. class name

2. list of attributes with names and types

3. list of methods with argument list

 Name is required

 Attributes and methods are not

(there is a fourth, optional box, the extra compartment, for capturing responsibilities, signals, or events)

Name

Attribute1 : type1

Attribute2 : type2

method1 (signature) :

type1

method2 (signature) :

type2

8

DESCRIBING CLASSES

Classes must have a name.

 Class names should be chosen carefully. The names should reflect the

abstractions of the problem domain to maximize clarity:

1. use a term accepted in the business domain

2. use a name that is most descriptive (perhaps Customer instead of Shopper)

Names typically formed using a singular noun or an adjective plus a noun (Customer, UsedCar)

Every class must be defined with a description.

 The description can be a single sentence or a short paragraph explaining

why this class is important to the business or system.

 An class should have a relationship with a least one other class.

 The list of classes and descriptions, along with attributes, forms a data dictionary.

9

TIPS FOR IDENTIFYING CLASSES

 During requirements elicitation, listen for

when stakeholders discuss:

1. tangible objects (printer, customer)

2. conceptual entities (time, job)

3. roles (student, instructor, voter)

4. specifications (recipe, plan)

5. incidents (accident, delivery)

6. organizations (department, team)

Best Practice

 When you think you found an class, ask

the stakeholder to:

 name at least two occurrences of the

class

 if they can’t, then it’s not an entity, it

is an instance

 Example: FedEx is not an entity, it is

an instance of the entity Shipper

4-10

ATTRIBUTES

A quality or feature regarded as a

characteristic or inherent part of someone

Oxford Dictionaries · © Oxford University Press

A Person usually has the following

attributes:

 name

 age

 height

 weight

11

http://www.oxforddictionaries.com/us/

CLASS ATTRIBUTES IN UML

Attributes may be:

1. single, non-decomposable value (simple)

2. more than a single value (multivalued)

Think list or array of values

3. value that can be calculated from other
attributes (derived)

E.g. age is derived from birthdate and today’s date

4. value that is itself an entity with attributes
(composite)

These usually end up becoming entities themselves.

Relationships to other objects are not listed
among attributes.

Don’t get confused because languages
implement relationships as attributes.

Entity

attribute1 : domain

attribute2: domain [1..5]

attribute1 is simple.

attribute2 is multivalued (there can be up to five

values stored on attribute2)

domain is UML-speak for TYPE

12

COMMON UML DOMAINS (TYPES)

Logical Data Type Business Meaning

NUMBER Any number: real or integer.

TEXT A string of characters, inclusive of numbers. (aka string)

MEMO Same as TEXT, but of large, indeterminable size. (aka blob)

DATE Any date value in any format.

TIME Any time value in any format.

BOOLEAN A yes/no or true/false value.

VALUE SET
A finite set of categorical values with an associated coding
scheme. (aka enumeration)

IMAGE Any picture of image.

13

EXAMPLE DATA DICTIONARY

Name Description Type Required?
Default

Value
Format Range Unique?

Customer

A person

purchasing

items in the

store.

Entity

.Name Full name TEXT Yes N/A
Last Name,

First Name
1..32 No

.SSN

Social

Security

Number

TEXT Yes N/A
XXX-XX-

XXXX
11 Yes

14

UNIQUE IDENTIFIERS

 A unique identifier is an attribute or set of attributes that uniquely identifies an class

instance.

 Identifier attributes have the stereotype «key»:

 Defining unique identifiers is important for searching.

Student

- «key» studentID: ID

- name: Text

- birthDate: Date

-/ age: Number

15

SECTION II:

BUILDING OBJECT MODELS

16

MODELING THE RELATIONSHIPS BETWEEN THE

ENTITIES

 Two relationship types

1. Association

2. Generalization

 Some analysts also model aggregation, but often associations are sufficient

 aggregation is typically used for whole-part relationships, but those can also be

modeled using association

17

ASSOCIATION RELATIONSHIP

 An association is a simple semantic relationship between two objects that indicates a

link or dependency between them.

 Examples:

1. a portfolio is associated with an investor

2. every sale is associated with the sales representatives that worked on the sale

3. every student is associated with a transcript

 Associations can be directed, meaning there is a relationship from one object to

another, or bi-directional, meaning the relationship works both ways.

 Relationships may be annotated with descriptions.

18

HEURISTICS FOR IDENTIFYING ASSOCIATIONS

DURING REQUIREMENTS GATHERING

 Look through the use cases and identify multiple nouns that appear in the same

sentence.

 Listen for connecting verbs during requirements elicitation.

19

CARDINALITY (AKA MULTIPLICITY)

 Cardinality: the number of elements in a set

 The relationship between two entities has an associated cardinality or multiplicity

 multiplicity is expressed with specific numbers or ranges, e.g. 1:1..2 or 1:1..N

 Examples:

1. A student is associated with a transcript

One student, one transcript.

2. Every course is taught by a professor, but a professor must teach at least one

course

One course, one professor. One professor, one or more courses.

3. An address may have a zip code

One address, zero or one zip code

20

DEFINING CARDINALITY IN UML

Any given instructor teaches 1 course.

Any given course is associated with one instructor.

Instructor Course

1 1

teaches ►

Any given instructor teaches 1 or more courses.

Any given course is associated with one instructor.

Instructor Course

1 1..*

teaches ►

Any given instructor teaches at least 1 and up to 10 courses.

Any given course is associated with one instructor.

Instructor Course

1 1..10

teaches ►

No cardinality defaults to 1.Instructor Course

1..*

teaches ►

21

OPTIONAL RELATIONSHIPS

 Participation in a relationship may be mandatory or optional.

 A lower bound of 0 indicates an optional relationship.

Any given instructor teaches 0 or 1 course.

Any given course is associated with one instructor.

Instructor Course

1 0..1

teaches ►

Any given instructor teaches 0 or 1 course.

Any given course is associated with 0 or one instructor.

Instructor Course

0..1 0..1

teaches ►

Any given instructor teaches any number of courses.

Any given course is associated with 0 or 1 instructor.

Instructor Course

0..1 0..*

teaches ►

An instructor may not be teaching a course,

but every course has an instructor.

An instructor may not be teaching a course.

A course may not have an instructor.

An instructor may teach any number of courses.

If a course has an instructor, it has only one.

22

FULL ASSOCIATION SPECIFICATION

Multiplicity

(* means unbound)

Role Name

Name Label

Constraint on

relationship

Constraint

on role

Key/Qualifier

23

Student

«key» studentID: text

major: text

matrStatus: Boolean = false

Course

«key» courseNo: text

title: text

register(studentID) : void

studentID

courseNo

Participant

0..*

attends

{prequisites met}

Class

0..6

{ordered}

GENERALIZATION HIERARCHIES

 Generalization is a grouping of entities based on common attributes.

 Is a taxonomy that identifies similarities and differences between entities.

 Defines an is-a relationship between entities.

 Called inheritance in object-oriented programming.

24

GENERALIZATION

 More generic as you move up

 More specific as you move down

 More specific inherits attributes

and operations from the more general

 May specialize attributes and operations

Northeastern

Person

Employee Student

Faculty

Staff

Graduate

Undergraduate

25

name: text

Person

GENERALIZATION IN UML

salary: text

Instructor

major: text

Student

These are the same

26

WHEN TO USE GENERALIZATION

 Generalization is a modeling technique in which attributes common to several entities

are grouped into a separate supertype.

 Any attributes specific to one entity remain in the subtype entity.

 Example:

Student has attributes: NU ID, birthday, first day on campus, and transcript.

Instructor has attributes: NU ID, birthday, first day on campus, and salary.

NUPerson generalizes Student and Instructor

with attributes: NU ID, birthday, and first day on campus.

27

SUBTYPE JUSTIFICATION

 Each subtype entity must have one or more of the following properties:

 at least one non-key attribute

 a relationship with another entity that is logically correct for it and none other

 If this is not true, then you have found a transient role, not a subtype.

 Transient role means the object’s role changes over time. However, the object isn’t

changing.

 For example, a Student may become a Freshman, Sophomore, Junior, or Senior

over one’s career as a student.

28

AGGREGATION

 Aggregation is an association that means a
“whole/part” or “containment” relationship.

 Usually is a hierarchical structure of objects.

 The aggregate contains attributes which are derived
from its parts.

 The aggregate/composite must in some way
depend functionally or structurally on its
components.

 The relationship is anti-symmetric and transitive.

 Aggregation is a somewhat vague concept that has
not been defined well in the object-oriented
paradigm.

 In general, aggregation defines an association
where one class is part of another class.

 If in doubt, make the relationship a simple
association.

Club Member

1..*0..*

Portfolio Inv estment

0..**

29

AGGREGATION EXAMPLE

A car has 3–4 wheels

AGGREGATION EXAMPLE

A car has 3–4 wheels 3-6 wheels

Sometimes models have to be adjusted in the face of new realities…

3..6

VALIDATING DATA MODELS

 The requirements and rules captured in a data model must be validated.

 Validation is generally accomplished through stakeholder reviews.

1. Reviews should be ideally conducted as meetings.

2. During reviews, the diagrams should be “translated into narratives.”

32

TRANSLATING DIAGRAMS TO NARRATIVES

4-33

 Translate each relationship to a fact, i.e., a
statement that can be confirmed or disputed.

Partial Translation:

We have discovered that a
loan can be paid out in
multiple disbursements.
There does not appear to
be any limit to the number
of disbursements. In
addition, each loan is
given to a single student.
Apparently, students
cannot share loans.

MOVING FROM MODELS

TO CODE

USING JAVA

34

FROM MODEL TO PROGRAM

 How does one transform a design into code?

 Classes and hierarchies can be taken directly from the class diagram.

 For each method a complete signature has to be provided.

FROM MODEL TO PROGRAM

 Associations between classes are implemented using attributes (fields)

 n:1 and 1:1 associations from P to Q are implemented as

an attribute q of type Q in P.

 1:n and n:m associations from P to Q are implemented as

a set qs of type set(Q). (e.g. array, list...)

FROM MODEL TO PROGRAM

 Methods belonging to associations have to be implemented in extra (helper) classes.

 For each class an invariant has to be formulated and documented; for each method a

pre- and postcondition.

 The method bodies have to be implemented using techniques from traditional

programming.

FROM MODEL TO PROGRAM

 Verification of the state chart:

are the only legal call sequences exactly those documented in the dynamic model?

 Illegal calls have to be intercepted using exceptions/errors!

 For that it is often useful to dynamically check the precondition.

 Testing is done using conventional methods.

MODEL-DRIVEN ENGINEERING

 Modern programming environments automatically create code templates from a

model:

1. You design a system with all its classes and attributes.

2. The programming environment creates the corresponding code templates.

3. Now you "only" have to add implementations in the method bodies.

PACKAGES

 packages are a general-purpose mechanism for organizing elements into groups.

 not necessarily restricted to classes

 hierarchical model: subpackages

 anonymous “root” package contains all top-level packages

 a package provides a namespace

 names of package elements are qualified using “::” (C++ style)

PACKAGES (2)

 When to use packages?

 use packages for high-level design or architecture documents to describe a

system’s overall structure

 use packages when class diagrams become too large or cluttered

 also convenient units for testing

 Notation: tabbed folder

PACKAGE DIAGRAMS

 dependencies between packages:

 if changes to one package may cause changes to the other

 reflect dependencies between classes in the packages

 class in package A calls method in package B

 class in package A has field of type in package B

 method in package A has parameter/return type of package B

 import relationships (also: access relationships)

 use dashed arrows for dependencies, optionally annotated with <<import>>

stereotype

 design consideration: minimize dependencies between packages, especially cycles

 note: dependency between packages is not transitive

PACKAGE DIAGRAM: EXAMPLE

Example taken from “UML Distilled” by Fowler& Scott

PACKAGES: VISIBILITY CONTROLS

 visibility controls at the package level

 + public, - private

 the public parts of a package are called its exports

FIRST EXAMPLE:

A LIBRARY BOOK AS THE OBJECT WITH ATTRIBUTES

CORRESPONDING JAVA CODE

public class LibraryBook {

// implement attributes

public Person author = null;

public String title;

private Person _borrower;

private Date _publicationDate;

private Date _borrowDate;

private Date _returnDate;

// note: daysBorrowed not implemented as a field,

// because it is derived information, namely

// computed from (returnDate – borrowDate)

private static double initialFine = 0.0;

private static double dailyFine = 0.50;

private static int _maxDays = 14;

private double totalFine = initialFine;

IMPLIED GET/SET METHODS

// get/set methods for private fields

public Person getBorrower(){ return _borrower; }

public void setBorrower(Person p){ _borrower = p; }

public Date getPublicationDate(){

return _publicationDate;

}

public void setPublicationDate(Date d){

_publicationDate = d;

}

public Date getBorrowDate(){ return _borrowDate; }

public void setBorrowDate(Date d){ _borrowDate = d; }

public Date getReturnDate(){ return _returnDate; }

public void setReturnDate(Date d){ _returnDate = d; }

NOW LOOKING AT LIBRARY BOOK METHODS

JAVA CODE FOR OPERATIONS

// constructor method

LibraryBook(Person author,

String title,

Date publicationDate){

this.author = author;

this.title = title;

setPublicationDate(publicationDate);

}

public void borrow(Person borrower,

Date borrowDate){

setBorrower(borrower);

setBorrowDate(borrowDate);

}

public static void setMaxDays(int days){

_maxDays = days;

}

JAVA CODE FOR OPERATIONS (2)

// implementation of derived attribute

public int daysBorrowed(){

long borrowTimeInMillis =

getBorrowDate().getTime();

long returnTimeInMillis =

getReturnDate().getTime();

long difference =

returnTimeInMillis - borrowTimeInMillis;

return (int) (difference/(1000*60*60*24));

}

// use two methods to model pair return type

public boolean fineApplicable(){

return (daysBorrowed() > _maxDays);

}

public double computeFine(){

return (_maxDays-daysBorrowed())*dailyFine;

}

JAVA CODE FOR OPERATIONS (3)

// a simple test driver to test the daysBorrowed()

// method

public static void main(String[] args){

GregorianCalendar gc1 =

new GregorianCalendar(1999, 5, 1, 0, 0, 0);

Person fowler = new Person("Martin Fowler");

LibraryBook book =

new LibraryBook(fowler, "UML Distilled",

gc1.getTime());

GregorianCalendar borrowDate =

new GregorianCalendar(2002, 5, 18, 0, 0, 0);

book.setBorrowDate(borrowDate.getTime());

GregorianCalendar returnDate =

new GregorianCalendar(2002, 6, 1, 0, 0, 0);

book.setReturnDate(returnDate.getTime());

System.out.println("days = " +

book.daysBorrowed());

}

}

INTERFACES, REALIZATION, ROLES

 An interface is a collection of operations that are used to specify a service of a class

or component

 Visualize, specify, construct document “seams” of the system

 Provides separation between outside view and inside view

 Allows for distribution of impl. Responsibilities

 Replace implementation without affecting clients

 Similar to abstract classes

 In UML, we say that a class realizes an interface, and that a class may play the role of

an interface

INTERFACES: NOTATION

REALIZATION: NOTATION

 two ways to depict how a class realizes an interface

 lollipop notation (solid line with circle)

 realization arrow (dashed edge with open head)

 when a class uses an interface (e.g., calls methods declared in the interface)

 dependency edge (as discussed before)

EXAMPLE: HASHSET CLIENT

class University {

University(){

students = new HashSet();

}

private HashSet students;

private HashSet professors;

private HashSet courses;

public void enroll(Person p){

if (!students.contains(p)){

students.add(p);

} else {

System.out.println(p.toString() +

" is already enrolled");

}

}

}

EXAMPLE: HASHSET

C:\>javap java.util.HashSet

This utility can be used to reverse assemble code. Many program

license agreements do not permit reverse assembly. If you are not

the copyright owner of the code which you want to reverse assemble,

please check the license agreement under which you acquired such

code to confirm whether you are permitted to perform such reverse

assembly.

Compiled from HashSet.java

public class java.util.HashSet extends java.util.AbstractSet

implements java.util.Set, java.lang.Cloneable, java.io.Serializable {

public java.util.HashSet();

public java.util.HashSet(int);

public java.util.HashSet(int,float);

public java.util.HashSet(java.util.Collection);

public boolean add(java.lang.Object);

public void clear();

public boolean contains(java.lang.Object);

public boolean isEmpty();

public java.util.Iterator iterator();

public boolean remove(java.lang.Object);

public int size();

...

PART OF THE JAVA COLLECTIONS

INTERFACE JAVA.UTIL.SET

public interface java.util.Set extends java.util.Collection {

public abstract boolean add(java.lang.Object);

public abstract void clear();

public abstract boolean contains(java.lang.Object);

public abstract boolean isEmpty();

public abstract java.util.Iterator iterator();

public abstract boolean remove(java.lang.Object);

public abstract int size();

...

}

EXAMPLE: REVISED CLIENT

class University {

University(){

students = createSet();

}

private Set students;

private Set professors;

private Set courses;

public void enroll(Person p){

if (!students.contains(p)){

students.add(p);

} else {

System.out.println(p.toString() +

" is already enrolled");

}

}

private static Set createSet(){

return new HashSet();

}

}

