
SYSTEM AND SOFTWARE

DESIGN USING THE

UNIFIED MODELING

LANGUAGE (UML)

Michael Weintraub

And

Frank Tip

UNIT OBJECTIVE

 Gain perspective on how to think about designing a system

 Introduce a graphical way to describe systems

 UML

Thanks go to Martin Schedlbauer and to Andreas Zeller for allowing

incorporation of their materials on UML

2

WHY MODEL A SYSTEM?

Helps clarify the requirements

Identifies gaps

Useful tool for understanding how the details really fit in or fit

together

3

A PICTURE IS WORTH A THOUSAND WORDS

4

UNIFIED MODELING LANGUAGE

UML is a general-purpose visual modeling

language developed by an industry

consortium in 1997.

Presently, UML is in version 2.2 and is

controlled by the Object Management

Group (OMG).

UML is based on multiple prior visual

modeling languages, most notably the

Booch Notation, OMT, and OOSE.

5

UML IS COMPLICATED

• Class

• Component

• Object

• Profile

• Composite Structure

• Deployment

• Package

Static

Structure
Diagrams

• Use Case

• Activity

• State

• Sequence

• Communication

• Interaction Overview

• Timing

Dynamic

Behavior
Diagrams

6

UML IS COMPLICATED

• Class

• Component

• Object

• Profile

• Composite Structure

• Deployment

• Package

Static

Structure
Diagrams

• Use Case

• Activity

• State

• Sequence

• Communication

• Interaction Overview

• Timing

Dynamic

Behavior
Diagrams

Use What You Need. You Probably Don’t Need Everything.
7

WAIT, WHY CAN’T WE JUST START CODING?

 Need to understand what the

system does and how it is

structured

 Especially important for

large/complex systems to get a

handle on the complexity

Challenges

 Useful for visualizing a system

 1 picture = 1000 words

 Specifies the structure and/or behavior of a

system

 Provides guidelines for constructing an

implementation

 Documents the important design decisions

 Facilitates communication between developers

and with clients

 Common language for expressing design elements

that is both technical and non-computer technical

accessible

 Facilitates reverse engineering: reconstruct a

model from an existing implementation

 Often to re-implement in another language

What UML provides

8

1. External
The system context or

environment

2. Interaction
How the system interacts with its

environment, users, or
components

3. Structural
The system’s organization or data

4. Behavioral
The system’s dynamic behavior

and how it responds to events

THERE ARE MANY WAYS TO DESCRIBE A SYSTEM

9

Places the system in

context

Good for identifying

what is part of the system

and

what is not part of the system

The boundaries may not

always be clear

THE EXTERNAL PERSPECTIVE

10

UPC Code

Pricing

Customer

Information

Coupons
Scanner

Subsystem
Cash Drawer

Subsystem

Data Entry

Subsystem

Typical Checkout System

(aka Cash Register)

N
e
tw

o
rk

THE INTERACTION PERSPECTIVE

How the system interacts with its

environment, users, or components

1. Use Case Diagrams

How actors interact with a system

Especially useful for requirements

gathering and initial work with clients

2. Sequence Diagrams

How entities operate with one another

in specific order

Other diagram types are available

11

1. (start) Customer approaches the counter
and tells the cashier what she wants

2. The cashier enters the beverage order
into the point-of-sale system (POS)

3. The cashier asks for the customer’s
name and notes it on the order

4. The customer pays for the order
5. The cashier records the payment
6. The cashier communicates the order

details to the barista
7. The barista prepares the beverage order
8. Upon completion of the order, the barista

places the beverage on the pick-up
counter and calls the customer’s name

9. The customer picks up the beverage and
walks away (end).

LET’S START WITH A SIMPLE EXAMPLE:

ORDERING COFFEE AT A COFFEE SHOP

12

THE STORY IS RICH IN INFORMATION

1. (start) Customer approaches the counter and tells the cashier what she wants

2. The cashier enters the beverage order into the point-of-sale system (POS)

3. The cashier asks for the customer’s name and notes it on the order

4. The customer pays for the order

5. The cashier records the payment

6. The cashier communicates the order details to the barista

7. The barista prepares the beverage order

8. Upon completion of the order, the barista places the beverage on the pick-up counter and calls the

customer’s name

9. The customer picks up the beverage and walks away.(end)

13

1. (start) Customer approaches the counter and tells the cashier what she wants

2. The cashier enters the beverage order into the point-of-sale system (POS)

3. The cashier asks for the customer’s name and notes it on the order

4. The customer pays for the order

5. The cashier records the payment

6. The cashier communicates the order details to the barista

7. The barista prepares the beverage order

8. Upon completion of the order, the barista places the beverage on the pick-up counter and calls the

customer’s name

9. The customer picks up the beverage and walks away.(end)

THE STORY IS RICH IN INFORMATION

14

Actors and Objects

1. (start) Customer approaches the counter and tells the cashier what she wants

2. The cashier enters the beverage order into the point-of-sale system (POS)

3. The cashier asks for the customer’s name and notes it on the order

4. The customer pays for the order

5. The cashier records the payment

6. The cashier communicates the order details to the barista

7. The barista prepares the beverage order

8. Upon completion of the order, the barista places the beverage on the pick-up counter and calls the

customer’s name

9. The customer picks up the beverage and walks away.(end)

THE STORY IS RICH IN INFORMATION

15

Systems

Actors and Objects

1. (start) Customer approaches the counter and tells the cashier what she wants

2. The cashier enters the beverage order into the point-of-sale system (POS)

3. The cashier asks for the customer’s name and notes it on the order

4. The customer pays for the order

5. The cashier records the payment

6. The cashier communicates the order details to the barista

7. The barista prepares the beverage order

8. Upon completion of the order, the barista places the beverage on the pick-up counter and calls the

customer’s name

9. The customer picks up the beverage and walks away.(end)

THE STORY IS RICH IN INFORMATION

16

Actions

Actors and Objects Systems

1. (start) Customer approaches the counter and tells the cashier what she wants

2. The cashier enters the beverage order into the point-of-sale system (POS)

3. The cashier asks for the customer’s name and notes it on the order

4. The customer pays for the order

5. The cashier records the payment

6. The cashier communicates the order details to the barista

7. The barista prepares the beverage order

8. Upon completion of the order, the barista places the beverage on the pick-up counter and calls the

customer’s name

9. The customer picks up the beverage and walks away.(end)

THE STORY IS RICH IN INFORMATION

17

Events

Actors and Objects Systems Actions

NEED: REPRESENT SYSTEMS, ACTORS AND OBJECTS, ACTIONS,

AND EVENTS AND HOW THEY COME TOGETHER

18

USE CASE DIAGRAMS

 How actors interact with a system

 An actor is a prospective user

 It can also be external systems

 A scenario is a sequence of steps between an actor and the system

 Lists the steps in each successful and unsuccessful scenario that make up the interaction

 Usually written as prose

 A use case is a set of scenarios with a common user goal

 One can distinguish business use cases from system use cases
Business process design versus system process design

 Design hint: a use case shows what a system does, not how it does it
 keep descriptions short, clear, and precise
 separate main flow of events from alternate and exceptional flows

 Especially useful for requirements gathering and initial work with clients

19

1. (start) Customer approaches the counter,

cashier hears what customer orders

2. The cashier enters the customer order into

the point-of-sale system (POS)

3. The cashier asks customer for a name and

notes name on the customer order

4. The cashier gets the customer’s money to

cover the order

5. The cashier records the payment

6. The cashier communicates the order’s

details to the barista

7. (end)

USE CASE0: ORDERING AT A COFFEE SHOP FROM THE

CASHIER’S PERSPECTIVE

21Guide: actor action objects-of-action

1. (start) Customer approaches the counter,
cashier hears what customer orders

a. If the store is presently out of the materials needed for
the order, cashier tells customer “we are out of X” and
suggests a near alternative

b. cashier hears what customer orders instead

2. The cashier enters the customer order into the
point-of-sale system (POS)

3. The cashier asks customer for a name and
notes name on the customer order

4. The cashier gets the customer’s money to
cover the order

5. The cashier records the payment

6. The cashier communicates the order’s details
to the barista

7. (end)

USE CASE0: NOW AN ALTERNATIVE

22Guide: actor action objects-of-action

1. (start) Customer start app on his phone and logs in.

2. Customer picks preferred store.

3. Customer enters coffee choice.

4. App asks if “he would like anything else.”

5. Customer selects “checkout.”

6. App asks for payment.

7. Customer enters credit card number.

8. App validates the order.

9. Once done, App sends the order to the POS machine at

preferred store and leaves a confirm message in the

customer’s email inbox.

10. The cashier communicates the order’s details to the

barista

11. (end)

USE CASE0: ORDER FROM THE WEB

23Guide: actor action objects-of-action

WRITING USE CASE DIAGRAMS IN UML

 Use cases: oval with text inside

 Actors: stick figure

 Dependencies, generalizations, associations

• Actors are really roles played by people. One person may play

multiple roles.
• However, actors may also be another system.

• Actors and use cases each have names.

take customer

order

actor

Association

between actor

and use case

a use case

cashier

WRITING USE CASE DIAGRAMS IN UML

login

customer

Pick store

Pay for

order

Pick up

order

Place order

backend

Validate

login

Validate

order

deliver order

to store

Use Case0: Ordering coffee from the app

ONE WAY TO REDUCE NOTATIONS

 Use Case Generalization

 Child use case inherits behavior and meaning from parent use case

 Child may add or override parent behavior

 Child may be substituted wherever parent occurs

Validate Client

Check

Password

Check

Thumbprint

Verify

Retinal Scan

Generalization

Symbol and association Child Use Case

Parent Use Case

EXTENDING USE CASES

 Efficient way to model optional system behavior

 The extending use case may add behavior to the base use case, but:

 The base use case must declare certain extension points

 The extending use case may add additional behavior only at those extension

points

 The Extended use case is meaningful on its own as it is independent of the

extending use case.

Place Order

Extension points

set priority

Place Rush

Order
<<extend>>

(set priority)

Use Case0: Adding “priority” to Ordering coffee from the app

AVOIDING REPETITIVE DESCRIPTIONS

 Put common event flows into a use case of its own and then include it into the

behavior of the (base) use case.

 The include relationship is used to:

 simplify large use case by splitting it into several use cases

 represent common parts of the behaviors of other use cases

Place

Order

Track

Order

Validate

User

<<include>>

<<include>>

Validate User

Place

Order

Track

Order

~~~



GUIDELINES FOR CHOOSING RELATIONSHIPS

1. Use <<include>> to avoid repetition when you are repeating yourself in two or 

more separate use cases 

2. Use generalization when you are describing a variation on normal behavior, 

and you wish to describe it casually

3. Use <<extend>> when you are describing a variation on normal behavior and 

you wish to use the more controlled form, declaring your extension points in the 

base use case

(taken from Martin Fowler’s UML Distilled)



SEQUENCE DIAGRAMS

 Shows the flow between elements of a 

system (the messaging sequence)

 Classes (instances of classes)

 Components

 Subsystems

 Actors

 Time is explicitly shown and flows from 

top to bottom

Use Case0

t

30



CONTROL FLOWS

Conditional Flow Loops

Use Case0

t

31



ADDITIONAL (USEFUL) NOTATIONS

t

Activate Entity

32



ADDITIONAL (USEFUL) NOTATIONS

t

Activate Entity

Destroy Entity

Deactivate 

Entity

33



ADDITIONAL (USEFUL) NOTATIONS

t

Some time goes by

Specific 

amount of 

time goes by

34



ADDITIONAL (USEFUL) NOTATIONS

t

noteworthy internal 

messaging

35



SHIFTING GEARS: STATE

 state 

 a condition or situation in the life on an object during which it satisfies some 

condition, performs some activity, or waits for some event

 typically described by a set of attribute values

 examples:

 a coffee pot: state depends on current amount of coffee, temperature, …

 an order: state can be pending, in processing, fulfilled, cancelled, delivered, ...

Empty



SHIFTING GEARS: STATE

 state 

 a condition or situation in the life on an object during which it satisfies some 

condition, performs some activity, or waits for some event

 typically described by a set of attribute values

 examples:

 a coffee pot: state depends on current amount of coffee, temperature, …

 an order: state can be pending, in processing, fulfilled, cancelled, delivered, ...

Empty

State Object

(coffee pot)

State Value



WHERE THERE ARE STATES, 

THERE ARE TRANSITIONS

 Events cause states to change

 state transitions are considered to be atomic (cannot be interrupted)

 state transitions may be labeled

 Event [ Guard ] / Action

 an event is a significant happening (a message or signal that is received)

 an action is associated with a transition

 a process that occurs quickly and is not interruptible

 a guard is a logical condition

 returns true or false
Empty Filling

BrewStarts



WHERE THERE ARE STATES, 

THERE ARE TRANSITIONS

 Events cause states to change

 state transitions are considered to be atomic (cannot be interrupted)

 state transitions may be labeled

 Event [ Guard ] / Action

 an event is a significant happening (a message or signal that is received)

 an action is associated with a transition

 a process that occurs quickly and is not interruptible

 a guard is a logical condition

 returns true or false
Empty Filling

BrewStarts

Action/Event

State Transition

Statei

Statej



MORE ON STATES & STATE TRANSITIONS

 Examples:

1. Credit card payment received 

2. Payment received for order

3. Smart phone receives a call

 Some events do not cause state change

 self-transition

 A state may have an activity associated with it

 May take longer, and may be interrupted by event

 Fowler’s notation: do /activity inside the state



STATE DIAGRAMS: CELL PHONE EXAMPLE

Idle

InCall

Hangup

CallArrives

Ringing

Answer/

startMedia



STATE DIAGRAMS: CELL PHONE EXAMPLE

Triggerless

Transition

initial state

Idle

InCall

Hangup
transition

CallArrives

Ringing

Answer/

startMedia

event

event

action



CONCURRENCY



STATE DIAGRAM GUIDELINES

 Keep it simple

 if diagrams get too big:

 consider using composite states

 or...multiple objects

 trace through the states manually, compare against expected results

 Confirm that all states are reachable under some combination of events

 Confirm that no non-final state is a dead end



TO BE CONTINUED: MORE UML TO COME…

45

 Class Diagrams

 Moving from Diagrams to Code..


