M. Weintraub and
F. Tip

TESTING STRATEGIES

Thanks go to Andreas Zeller for allowing
Incorporation of his materials

Northeastern University
College of Computer and Information Science 440 Huntington Avenue « 202 West Village H « Boston, MA 02115 « T617.373.2462 « ccis.northeastern.edu

TESTING

+ Testing: a procedure intended to establish the quality, performance, or
reliability of something, esp. before it is taken into widespread use

RECALL FROM BEFORE - THESE ARE OUR
TECHNIQUES FOR EVALUATING SOFTWARE

Requirements Requirements Architectural Detailed Unit

Integration

ign Design Mapicnance
: Hetx NalysIS
(dynamic verification) e
(static or dynamic)

T O Inspect architectural design Sy G
>0

;)" [Inspect detailed design |

Generate system test |

é [Generate integration test |

[}
% 2 [Generate regression test |
(O]

[Update regression test |

Design scaffoldipg

' Design oracle

Inspections

Proofs

(static verification)

(static verification)

Execute regression test

| Collect data on faults |

Improve
Process

[Analyze faults and improve the process |

THE CURSE OF FUNCTIONAL TESTING

Dijkstra’ Curse: Testing can
show the presence ristic
but not the absence of errors racy

 possible runs

ITS STRUCTURAL TESTING COROLLARY

a proof

Zeller’s Corollary: Static Analysis
can confirm the absence but not
the presence of errors
non-simplified
properties

abstraction

~ possible runs

COMBINING METHODS

unverified
properties

abstraction

 possible runs

WHY IS SOFTWARE VERIFICATION
HARD?

+Many different quality requirements
+Evolving (and deteriorating) structure

+Inherent non-linearity
4+Uneven distribution of faults

= Top
At (L (Tpm o

fprintt (stid=exrT.
exwit(2) 7§

NG SU 0 - o

Y
#endift
-M“TJ
D °\° axov

/% allocate T uaed ©O BT,

F——ﬁ

-
-
-
-
- _
.
. b
- * - — . o e i i S ————
MYy meYw .- - :
LR Y e L G
- Rrvery meve P o A ;::-
7 7 omangetat segegee w Segtoem S e .
FIT AT TR L SRR LR)
OUT AU BT AV
= OUT AT BT G > BT LS 4
OUTPUT BT G 3
&= orderl = ordecr>>Aj
orderz = ordex & \5i
e & @
#ifdef TRACE e e - Ao, e

WHY IS SOFTWARE VERIFICATION
HARD?

+Many different quality requirements
+Evolving (and deteriorating) structure

+Inherent non-linearity
4+Uneven distribution of faults

oy T
v T _ WL §

B L o e L

UT PUT R TR Lw>>B T _SLTR §
OUT RUTT BT O 3

orderl = ordexr>>Aaj
ordex?2 = ordexr & V5
PRI
*1fd§_§ L (%Eém — fopenitppmenc Qo™ «
=
; fprintct (std=xXX. NG N
exit i)’

cax

3}
#endif
- s
T orde Ty ‘::n:‘cn

/+ allocatre T csed BtodT]

O 0 0 00y,

WHY IS SOFTWARE VERIFICATION
HARD?

+Many different quality requirements
+Evolving (and deteriorating) structure
+Inherent non-linearity

+Uneven distribution of faults

A TESTING PROGRAM INVOLVES TRADE-

OFFS

Theorem proving:
Unbounded effort to
verify general
properties.

Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but possibly
intractable checking of

simple temporal

properties.
| Data flow
, analysis

techniques

Precise analysis of
simple syntactic
properties.

Simplified
properties

Optimistic
inaccuracy

Pessimistic
inaccuracy

+We can be inaccurate
(optimistic or pessimistic)

+or we can simplify
properties...

+but you cannot have it all!

10

Waterfall Model

(1968)

Communicatio
n

project init

requirements Plan N | ng

estimating
scheduling
tracking

Modeling

analysis
design

Construction

code
test

Deployment

delivery
support
feedback

Waterfall Model

(1968)

Construction

code
test

Deployment

delivery
support
feedback

We built 1t!

Waterfall Model

(1968)

Construction

code

Waterfall Model

(1968)

Construction

code
test

Deployment

delivery
support
feedback

V&V

Validation

Ensuring that software has been

built according to customer
requirements

@&)
Are we building the

right product or

service?
& LY

Verification

Ensuring that software correctly
Implements a specific function

(&)

Are we building the
product or service
right?

_ 4

17

VALIDATION AND VERIFICATION

W > System
Requirements

N ~_

Validation Verification

Involves usabillity testing, user Includes testing, code
feedback, & product trials Inspections, static analysis, proofs

Actual

VALIDATION

{7 — T

“if a user presses a request button at floor i, an available
elevator must arrive at floor i soon”

not verifiable, but validatable

19

VERIFICATION

F— —*

“if a user presses a request button at floor i, an available
elevator must arrive at floor 1 within 30 seconds”

verifiable

20

CORE QUESTIONS

+When does V&V start? When is it done?

+Which techniques should be applied?

+How do we know a product is ready?

+How can we control the quality of successive releases?

+How can we improve development?

Waterfall Model

(1968)

FIRST CODE, THEN TESI

1. Developers on software should &1 ’
0S Vv @o strangers who

lved with the project only when

2. Software should b
will test it mergy

V MODEL

Actual Needs and

Constraints

User Acceptance (alpha, beta test)

<

Symﬂm System Test
Specifications
Analysis /
Review
17 Subsystem Integration Test
Design/Specs
Analysis /
Heview
Unit/
1 Component <Module Test
Specs
¢

User review of external behaviorasitis
determined or becomes visible

UNIT TESTS

+Aims to uncover errors at module boundaries
+Typically written by programmer herself

+Should be completely automatic (— regression testing)

Unitf
EE PN < Module Test
Specs

TESTING COMPONENTS: STUBS AND DRIVERS

Unit/
Component
Specs

Stub

Stub

+A driver exercises a
module’s functions

+ A stub simulates not-
yet-ready modules

+Frequently realized as
mock objects

PUTTING THE PIECES TOGETHER:
INTEGRATION TESTS

+General idea: Constructing software while conducting tests

+Options: Big Bang or Incremental Construction

Subsystem Integration Test
Design/Specs

BIG BANG APPROACH

All components are combined
In advance

The entire program Iis tested
as a whole

BIG BANG APPROACH

All components are combined
In advance

The entire program is tested
as a whole e

/
/

CHAQS RESUL

For every failure, the entire program must be taken into
account

29

TOP-DOWN INTEGRATION

=xl

Stub

+Top module is tested

with stubs (and then used
as driver)

+Stubs are replaced
one at a time (“depth
first”)

+As new modules are
Integrated, tests are
re-run

Allows for early demonstration of capability

30

BOTTOM-UP INTEGRATION

+Bottom modules implemented
first and combined into
clusters

+Drivers are replaced one at a
time

ol

Allows for early demonstration of capabillity

+Removes the need for
complex stubs

SANDWICH INTEGRATION

k +Combines bottom-up and

[B] [stub]| [sStub top-down integration

+Top modules tested with
stubs, bottom modules
with drivers

Combines the best of the two approaches

ONE DIFFERENCE FROM UNIT TESTING:
EMERGENT BEHAVIOR

Some behaviors are only
clear when components are
put together

Usually this is identified
after the fact,
and causes test
suites/cases to be
refactored.

WHO TESTS THE SOFTWARE?

Developer Independent Tester
understands the system must learn about system
but will test gently will attempt to break it

driven by delivery driven by quality

WEINBERG’S LAW

A developer Is unsuited

to test his or her code.

EVERYONE IS A TESTER!

+Experienced Outsiders and Clients
+Good for finding gaps missed by developers, especially domain specific items

+Inexperienced Users
+Good for illuminating other, perhaps unintended uses/errors

+Mother Nature
+Crashes tend to happen during an important client/customer demo...

36

SYSTEM TESTING

Aactual Needs and

Constraints R

eview
—V

System
Specifications

Subsysiam

lgsignispecs

LInit
“‘?. Component

e
L by iy i
fran] 1 1= 80

System Test

Analysis |
Heview

1 fo =l e = ~.
| = oy
et ll il 23 i 2
R -
LAY g 5llES
A i
Lt
- = mo -
F - i
AL E T] | T L5
_I-\.I [: i o -, Ll
] Ex e T L= L=~ 2

tem

37

SPECIAL KINDS OF SYSTEM TESTING

+ Recovery testing
forces the software to fail in a variety of ways and verifies that recovery is properly

performed

+ Security testing
verifies that protection mechanisms built into a system will, in fact, protect it from
improper penetration

+ Stress testing
executes a system in a manner that demands resources in abnormal quantity,
frequency, or volume

+ Performance testing
test the run-time performance of software within the context of an integrated system

38

PERFORMANCE TESTING

Measures a system’s capacity to
process a specific load over a
specific time-span, usually:

1. number of concurrent users

2. specific number of
concurrent transactions

Involves defining and running
operational profiles that
reflect expected use

HealthCare) wg
&F 1 ;
All Topics ~
SEARCH

39

TYPES OF PERFORMANCE TESTING

OUR PRODUCT PLACED
LAST IN OUR OUWN
BENCHMARK TESTS.

Dilbert. com DilbertCartoonist@gmail.com

63010 ©2010 Scott Adams, Inc./Dist. by UFS, Inc.

1. Load
Aims to assess compliance with non-functional requirements

2. Stress

|dentifies system capacity limits
3. Spike

Testing involving rapid swings in load
4. Endurance (or Soak)

Continuous operation at a given load

I WISH
ALL OF MY
PROBLEMS
WERE THIS

40

MANY OPTIMIZATIONS ARE POSSIBLE

+ For Throughput or Concurrency?
Getting the most data processed
Greatest number of simultaneous:dsansactions

2000 =~

+ For Server response time? T o
1000 ~
+ For Service request round-trip time? -

+ For Server utilization? 3.0

+ For End-User Experience?

4+ For Cost?

SECURITY TESTING

+Confidentiality

OUR FIREWALL IS
DOWN. SOME BAD
STUFF IS GETTING

THROUGH

HOW
BAD?

3

Dilbert. com DilbertCartoonist@gmail.com

S0 FAR WE'VE SEEN
VIRUSES, SPYWARE,
TUBERCULOSIS,
ZOMBIES, A DEPOSED
DICTATOR, AND AN
IPHONE 3GS.

)

roversal Uchok

524 o201 Scotn Adams, Inc./Des bty |

UPDATE: AN ARMY OF
MOLE PEOPLE FROM
ANOTHER DIMENSION
HAS TUNNELED
THROUGH.

i

KEEP ME

INFORP&D.
A 4

+Information protection from unauthorized access or disclosure

+Integrity

+Information protection from unauthorized modification or

destruction

+Availability

+ System protection from unauthorized disruption

42

ACCEPTANCE TESTING

Actual Needs and L
Constraints User Acceptance (alpha, beta test)

Delivered
Package

ACCEPTANCE TESTING

DIRECTOR OF A MISLEADING 15 IT OUR MATURITY
MARKETECTURE BENCHMARK TEST CAN THAT MAKES THAT
ACCOMPLISH IN MINUTES CONCEPT SOUND OKAY?
ITISBETTER TO LJHAT YEARS OF GOOD { T |
SEEM GOOD THAN ENGINEERING CAN NEVER 1 HOPE
TO BE GOOD. Do. L h

BEING
GOOD

woww dilbert.oom scottsdamas ®acloom

¥ (OVERRATED)

30% o0vScol Adams, o/ Dést. by UPRS, inc

+ Acceptance testing checks whether contractual requirements are met

+ May be incremental
+ Alpha / Beta

+ Work is over when acceptance testing is done

a4

HOW DO WE KNOW WHEN A PRODUCT IS READY?

Cook fish, shelfish, lamb and
beefto at least 145°F; Hat

Holding Temperature for all

hat food 140° F or above.

1 vllll'_¥._-__. e, ™
: “ Park (145° F)

A Ground beef (155° F)

o/l foralfoads

cccccccc N
417 F and hotter el
than 140° F

+Let the customer testit :-)

+We’'re out of time...
tot-

: : : e .
+Relative to a theoretically sound and exppv (\\“‘f validated statistical
model, we have done sufficient tec": a‘g -, with 95% confidence that

the probability of 1,000 CP!'"" pe .1allure-free operation is =2 0.995.
- e
1S \® -

REGRESSION TESTS

+set up automated tests T— EEE

Test class name: ‘

+using, e.g., JUnit ﬂlms EIEEY|

Runs: 4 |URLTest_ |'|| || Run I

+ideally, run regression tests after Resuts | 4 Reload lasses evey un

5 URLT J‘U
e aC h C h an g e [e Runs: 4/4 X Errors: 0 % Failures: 1
1

::z] URLTast B | Run
[X Fan i’ testProtocol :

+if running the tests takes too long: || / engur, -
. .. " Failures | # Test Hierarchy |
*pI’IOI’ItIZG and run a Subset ...

< Jjunit.framework. ComparisonFailure: expected: </ . > butwas: <. > |[=
at URLTest.testPathiURLTest. jawva:41)
|Finished:

+ ap p Iy reg reSS i 0 n test :: zﬂ::reﬂect.Nat?\reM ethodAccessorimplimmoked{MNative Method)

imvoke(MativeMethodAccess =

-

Results:

selection to determine tests et -
that are impacted by a set of
changes

46

COLLECTING DATA

Mozilla Vulnerabilities |
security i mailnews | content | | nsprpub
nss base | imap | base | xslt xul | canvas3d |webservice [python [spelich pr i
lib src util src src p src temp |doc | src soap |pro | xpco src src tests t
libpkix | freebl softoken | L LTTE xslt [xpath]| [src |(src Wl md
pkix_pl_nss mpi Jecl |1 L . } — sch walle u;::v = wi |uni/ma . irases,
modu| pi sy i CEEHsearch | java oA blEgoT
= Ll el - xpcom | met|pre Jins typ | | =2 :
pkix lincl | ssl util [certd [smim | comp 2 e misc jpthre Tude
top uti |r I src src Lt xmiterm autiwis |p thricp 3 i
= Ho seline ’:' coo|S io "= =
crmf | pki |pkcs de L H [xm
ckfw m 1 Tocal 1| db ef xpinstall
uiltins [ca pkllwr pkes12 mime == sqlite3 Compiler |Utilitie wizard
Pv3 pkil jar_jcry src src Code [Front |[Gener ||| windows [libxpne
certhig Bas lasn - md szl aa setup |uni | /GUSI
s mapl b reflect |string [typelib x 3
cmd t old |ma xpteal [x |[pu [sr] [xpi[x 052 mac
zlib_[lib[m [pksi [fips pk [ce]c mEe modules [) trlllRuntim | gc _[Pack setup unix
)&= criu]bit (ST o T plugin R se | tests ST |[Syste fsrli —
manager | Iss s tests |sr|| tools [sam md ||/C N [C| Tools e
org STC test |s |s |/def build |compo Ex D Em
ayout NI smrne b 8 3 T editor toolkit xpfe
generic style [xul C [ArrlA [C ik < MoreFi |- libeditor __|txm |(comp [‘airbag |/compone |be
] I base Ac DU | e = e html |base | place |his|s || airbag | |[sear|boo |[app
[w—] (S—
l o libimg | libfont libpron | zlib = I Sl Bl i
T T png mcge ||dec 53 src mac gtk2 text | tXtsv i1 = apps!
—-—:E ; == - e o - ctl calendar parser tools accessible
. tables mba; orms = libre [libplibb e o8 [src |lsrc ibical htmiparser |expa |[trace~|codes re src
= L rd! e T srelisre chardet|| s src src |pl[lib 1= = fatk [bas|ht [xu
l L src src libjar xml |s i e reld If [p EE =
e ro [[{ L I-rxow ot Joh e i ms
i) base |re|prin |in ht ok gtk msgs cl gc
e xlib |colg |g base Src & expat |muc | boehm
B 1
is Xiib | mac [theb [iib js2 Sse protocol Hlfamver 110 JI<HH
src H src .
xpconnect |liveco qt |phot embel d:eirr'g Streamco | test |co re plugin |uriloader | camino | ipc
src test 0s2 |(TEHS oji extha |b]| src ipcd
indo be |xp [sh||| activex | gtk |phot o L1 llother-license
| 1ok src src [I_1)|i|_cache 1dns g W= 7zst Jlibart. MIRI MRl S
diib XpE o |co | web | ; == src bl Jfo 1] lib_ |mston |view | mail
B cairo thebe || plu |pI - | POWerP o 3273 It 7zi rdf mac_|[src_|fsrc | |[com
cairo glitz |[src =] webdlient Ipluggab | _browser atk-1. jjbase ichro buil [dbm|sun |web
compon| qa | tests ||src_moz wi components profile | 1!
Ll src src Jpeg sre lid in s [i |Istu [iw
shell |plle uns = printin |[teste c w IEEHER 0 places [mig man Bl o w =il
- H src = she 0
; mmas: libpixma publ | [|win [fi xpeom | 500 |5 || e g1 conig <2ps sst:) gcon [mini
HHHHE b Qo.M = S5 gazsiit: I wmee) o
—|

REMEMBER PARETO’S LAW

Approximately 80% of defects

come from 20% of modules

CORE QUESTIONS

+When does V&V start? When is it done?

+Which techniques should be applied?

+How do we know a product is ready?

+How can we control the quality of successive releases?

+How can we improve development?

BEST PRACTICES

+Specify requirements in a quantifiable manner
+ State testing objectives explicitly

+Understand the users of the software and develop a profile
for each user category

+Develop a testing plan that emphasizes “rapid cycle testing”

BEST PRACTICES

+Build “robust” software that is designed to test itself

+Use effective formal technical reviews as a filter prior to
testing

+Conduct formal technical reviews to assess the test strategy
and test cases themselves

+Develop a continuous improvement approach for the testing
process

DESIGN FOR TESTING

+ OO0 design principles also improve testing
+Encapsulation leads to good unit tests

+Provide diagnostic methods

+Primarily used for debugging, but may also be useful as
regular methods

+Assertions are great helpers for testing
+Test cases may be derived automatically

