
TESTING STRATEGIES

M. Weintraub and

F. Tip

Thanks go to Andreas Zeller for allowing

incorporation of his materials

TESTING

Testing: a procedure intended to establish the quality, performance, or

reliability of something, esp. before it is taken into widespread use

2

RECALL FROM BEFORE – THESE ARE OUR

TECHNIQUES FOR EVALUATING SOFTWARE

33

Testing
(dynamic verification)

Inspections
(static verification)

Program

Analysis
(static or dynamic)

Proofs
(static verification)

THE CURSE OF FUNCTIONAL TESTING

∞ possible runs

a
 t

e
s
t
ru

n

a
 t

e
s
t
ru

n

a
 t

e
s
t
ru

n

a
 t

e
s
t
ru

n

optimistic

inaccuracy

Dijkstra’ Curse: Testing can

show the presence

but not the absence of errors

4

ITS STRUCTURAL TESTING COROLLARY

5

a proof

a
b

s
tr

a
c
ti
o

n

∞ possible runs

non-simplified

properties

Zeller’s Corollary: Static Analysis

can confirm the absence but not

the presence of errors

COMBINING METHODS

∞ possible runs

a
 t

e
s
t
ru

n

a
 t

e
s
t
ru

n

a
 t

e
s
t
ru

n

a
 t

e
s
t
ru

n

a
b

s
tr

a
c
ti
o

n

a proof

a proof

unverified

properties

6

WHY IS SOFTWARE VERIFICATION

HARD?
Many different quality requirements

Evolving (and deteriorating) structure

Inherent non-linearity

Uneven distribution of faults

7

WHY IS SOFTWARE VERIFICATION

HARD?
Many different quality requirements

Evolving (and deteriorating) structure

Inherent non-linearity

Uneven distribution of faults

8

If an elevator can safely carry a load of

1000 kg, it can also safely carry any smaller

load

WHY IS SOFTWARE VERIFICATION

HARD?
Many different quality requirements

Evolving (and deteriorating) structure

Inherent non-linearity

Uneven distribution of faults

9

If a procedure correctly sorts a set of 256

elements, it may fail on a set of 255 or 53

elements, as well as on 257 or 1023

If an elevator can safely carry a load of

1000 kg, it can also safely carry any smaller

load

A TESTING PROGRAM INVOLVES TRADE-

OFFS

We can be inaccurate

(optimistic or pessimistic)

or we can simplify

properties…

but you cannot have it all!

10

Waterfall Model
(1968)

Communicatio

n
project initiation

requirements gatheringPlanning
estimating

scheduling

tracking

Modeling
analysis

design

Construction
code

test

Deployment
delivery

support

feedback

Waterfall Model
(1968)

Communicatio

n
project initiation

requirements gatheringPlanning
estimating

scheduling

tracking

Modeling
analysis

design

Construction
code

test

Deployment
delivery

support

feedback

We built it!

Shall we deploy it?

Waterfall Model
(1968)

Construction
code

test

Waterfall Model
(1968)

Construction
code

test

Deployment
delivery

support

feedback

V & V

Validation

Ensuring that software has been

built according to customer

requirements

Verification

Ensuring that software correctly
implements a specific function

Are we building the

right product or

service?

Are we building the

product or service

right?

17

VALIDATION AND VERIFICATION

Actual

Requirements

SW

Specs
System

Validation Verification

Involves usability testing, user

feedback, & product trials

Includes testing, code

inspections, static analysis, proofs

18

VALIDATION

“if a user presses a request button at floor i, an available

elevator must arrive at floor i soon”

not verifiable, but validatable

19

VERIFICATION

“if a user presses a request button at floor i, an available

elevator must arrive at floor i within 30 seconds”

verifiable

20

CORE QUESTIONS

When does V&V start? When is it done?

Which techniques should be applied?

How do we know a product is ready?

How can we control the quality of successive releases?

How can we improve development?

21

Waterfall Model
(1968)

Code

Test

FIRST CODE, THEN TEST

1. Developers on software should do no testing at all

2. Software should be “tossed over a wall” to strangers who

will test it mercilessly

3. Testers should get involved with the project only when

testing is about to begin

23

V MODEL

Module Test

UNIT TESTS

Aims to uncover errors at module boundaries

Typically written by programmer herself

Should be completely automatic (→ regression testing)

25

TESTING COMPONENTS: STUBS AND DRIVERS

A driver exercises a

module’s functions

A stub simulates not-

yet-ready modules

Frequently realized as

mock objects

Driver

Stub Stub

26

PUTTING THE PIECES TOGETHER:

INTEGRATION TESTS

General idea: Constructing software while conducting tests

Options: Big Bang or Incremental Construction

27

BIG BANG APPROACH

All components are combined

in advance

The entire program is tested

as a whole

28

BIG BANG APPROACH

All components are combined

in advance

The entire program is tested

as a whole

29

Chaos results!

For every failure, the entire program must be taken into

account

TOP-DOWN INTEGRATION

Top module is tested

with stubs (and then used

as driver)

Stubs are replaced

one at a time (“depth

first”)

As new modules are

integrated, tests are

re-run

Allows for early demonstration of capability
30

Stub Stub Stub

A

Stub

StubD

Stub

Stub

C

B

BOTTOM-UP INTEGRATION

Bottom modules implemented
first and combined into
clusters

Drivers are replaced one at a
time

Removes the need for
complex stubs

CDriver

D E

Driver

F

Allows for early demonstration of capability

31

SANDWICH INTEGRATION

Combines bottom-up and

top-down integration

Top modules tested with

stubs, bottom modules

with driversC

D E

Drive

r

F

A

Stub StubStubB

Combines the best of the two approaches

32

ONE DIFFERENCE FROM UNIT TESTING:

EMERGENT BEHAVIOR

Some behaviors are only

clear when components are

put together

Usually this is identified

after the fact,

and causes test

suites/cases to be

refactored.

WHO TESTS THE SOFTWARE?

Independent Tester

must learn about system

will attempt to break it

driven by quality

Developer

understands the system

but will test gently

driven by delivery
34

WEINBERG’S LAW

A developer is unsuited

to test his or her code.

35

EVERYONE IS A TESTER!

Experienced Outsiders and Clients

Good for finding gaps missed by developers, especially domain specific items

Inexperienced Users

Good for illuminating other, perhaps unintended uses/errors

Mother Nature

Crashes tend to happen during an important client/customer demo…

36

SYSTEM TESTING

37

SPECIAL KINDS OF SYSTEM TESTING

 Recovery testing

forces the software to fail in a variety of ways and verifies that recovery is properly

performed

 Security testing

verifies that protection mechanisms built into a system will, in fact, protect it from

improper penetration

 Stress testing

executes a system in a manner that demands resources in abnormal quantity,

frequency, or volume

 Performance testing

test the run-time performance of software within the context of an integrated system

38

PERFORMANCE TESTING

Measures a system’s capacity to

process a specific load over a

specific time-span, usually:

1. number of concurrent users

2. specific number of

concurrent transactions

Involves defining and running

operational profiles that

reflect expected use

39

TYPES OF PERFORMANCE TESTING

1. Load

Aims to assess compliance with non-functional requirements

2. Stress

Identifies system capacity limits

3. Spike

Testing involving rapid swings in load

4. Endurance (or Soak)

Continuous operation at a given load

40

MANY OPTIMIZATIONS ARE POSSIBLE

 For Throughput or Concurrency?

Getting the most data processed

Greatest number of simultaneous transactions

 For Server response time?

 For Service request round-trip time?

 For Server utilization?

 For End-User Experience?

 For Cost?

SECURITY TESTING

Confidentiality

Information protection from unauthorized access or disclosure

Integrity

Information protection from unauthorized modification or

destruction

Availability

System protection from unauthorized disruption
42

ACCEPTANCE TESTING

43

ACCEPTANCE TESTING

Acceptance testing checks whether contractual requirements are met

May be incremental

Alpha / Beta

Work is over when acceptance testing is done

44

HOW DO WE KNOW WHEN A PRODUCT IS READY?

Let the customer test it :-)

We’re out of time…

Relative to a theoretically sound and experimentally validated statistical

model, we have done sufficient testing to say with 95% confidence that

the probability of 1,000 CPU hours of failure-free operation is ≥ 0.995.

45

REGRESSION TESTS

set up automated tests

using, e.g., JUnit

ideally, run regression tests after

each change

if running the tests takes too long:

prioritize and run a subset

apply regression test

selection to determine tests

that are impacted by a set of

changes

46

COLLECTING DATA

47

REMEMBER PARETO’S LAW

48

Approximately 80% of defects

come from 20% of modules

CORE QUESTIONS

When does V&V start? When is it done?

Which techniques should be applied?

How do we know a product is ready?

How can we control the quality of successive releases?

How can we improve development?

49

BEST PRACTICES

Specify requirements in a quantifiable manner

State testing objectives explicitly

Understand the users of the software and develop a profile

for each user category

Develop a testing plan that emphasizes “rapid cycle testing”

50

BEST PRACTICES

Build “robust” software that is designed to test itself

Use effective formal technical reviews as a filter prior to

testing

Conduct formal technical reviews to assess the test strategy

and test cases themselves

Develop a continuous improvement approach for the testing

process

51

DESIGN FOR TESTING

OO design principles also improve testing

Encapsulation leads to good unit tests

Provide diagnostic methods

Primarily used for debugging, but may also be useful as

regular methods

Assertions are great helpers for testing

Test cases may be derived automatically

52

