
REQUIREMENTSF. Tip and

M. Weintraub

UNIT OBJECTIVE

2

 Understand what requirements are

 Understand how to acquire, express, validate and manage requirements

Thanks go to Martin Schedlbauer and to Andreas Zeller for allowing

incorporation of their materials

WATERFALL MODEL (1968)

Communication
project initiation

requirements gathering

Planning
estimating

scheduling

tracking

Modeling
analysis

design

Construction
code

test

Deployment
delivery

support

feedback

COMMUNICATION

Communication
project initiation

requirements gathering

COMMUNICATION

How do we get there?

REQUIREMENT (ANSI/IEEE STANDARD 610.12-1990)

1. A condition or capability needed by a user to solve a problem or

achieve an objective.

2. A condition or capability that must be met or possessed by a

system or system component to satisfy a contract, standard,

specification, or other formally imposed documents.

3. A documented representation of a condition or capability as in

(1) or (2).

A requirement is a description of a system feature, capability, or constraint

and should focus on what a system should do rather than how it should

or could be done

EXPRESSING REQUIREMENTS (ENGLISH) – RFC 2119

In many standards track documents several words are used to signify the requirements in the specification.

These words are often capitalized. This document defines these words as they should be interpreted in IETF

documents. Authors who follow these guidelines should incorporate this phrase near the beginning of their

document:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD

NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described

in RFC 2119.

Note that the force of these words is modified by the requirement level of the document in

which they are used.

1. MUST This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute requirement of the

specification.

2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the specification.

3. SHOULD This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons in particular circumstances to

ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different

course.

4. SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid reasons in particular

circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and

the case carefully weighed before implementing any behavior described with this label.

5. MAY This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the

item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor

may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with

another implementation which does include the option, though perhaps with reduced functionality. In the same vein an

implementation which does include a particular option MUST be prepared to interoperate with another implementation which does

not include the option (except, of course, for the feature the option provides.)

THE CHALLENGE WITH NATURAL LANGUAGES

 It’s expressive, intuitive, and universal  It may be vague and ambiguous, and
statements are open to reader
interpretation

The assignment SHALL be due on the date assigned.

At day/mon/year hh:mm is reasonably clear

At day/mon/year is not
So, when is it due?

ANOTHER AMBIGUOUS EXAMPLE

I saw a man on the hill with a telescope.

1. There’s a man on a hill, and I’m watching him with my telescope.

2. There’s a man on a hill, who I’m seeing, and he has a telescope.

3. There’s a man, and he’s on a hill that also has a telescope on it.

4. I’m on a hill, and I saw a man using a telescope.

5. There’s a man on a hill, and I’m sawing him with a telescope

SOFTWARE DISASTERS

 Mariner 1 (1962)

Rocket crash due to missing dash

 Eole 1 (1971)

72 weather balloons get wrong cmd

 Nimbus 7 (1978)

Satellite misses ozone hole for 6 yrs

 HMS Sheffield (1982)

Exocet rocket id’ed as “friend”

 Stanislaw Petrow (1983)

Russia detects global nuclear attack

 Therac 25 (1985)

Radiation overdose kills six

DENVER AIRPORT OBAMACARE

 Nest Thermostat users left in the cold (2016)

 HSBC major outage (2016)

 Delta Airlines: power outage causes system-wide failure

worldwide (2016)

 …

 Stock crash (1987)

Dow Jones loses 22% in one day

 Vincennes (1988)

Passenger jet mistaken to be F-14

 Patriot (1991)

Misses to shoot down Iraqi Scud

 Climate Orbiter (1999)

Confuses metrics and imperial

 US Blackout (2003)

50 mln affected for 5 days

 Apple SSL bug (2012)

18 months w/o SSL authentication

 3200 prisoners released early (2015)

GLASS’ LAW

Requirement deficiencies

are the prime source

of project failures.

 ~45% of project failures involve

requirements phase issues (Chaos

Study)

 Incomplete requirements (13%)

 Lack of user involvement (12%)

 Changing specifications (9%)

 Unrealistic expectations (10%)

This and other laws are found in Endres/Rombach: Handbook of Software and Systems Engineering.

REQUIREMENTS SET THE STAGE FOR SUCCESS

 A requirement defines a commitment between the clients and the tech
team for what the system needs to accomplish

 Risks

1. Each individual understands the same statement differently

2. Understanding what is actually needed is not clear

1. Real versus perceived needs

2. Technology not appreciating difficulty, explicit or implied

At the end of the day, it’s about what gets delivered. But if you don’t
know where you are going, it’s hard to aim right. And then, the project is

called research.

REQUIREMENTS ANALYSIS
ANSI/IEEE STANDARD 610.12-1990

 The process of studying user needs to arrive at a definition of

system, hardware, or software requirements.

 The process of studying and refining system, hardware, or

software requirements.

ANALYSIS VS DESIGN

 Analysis = what the software should do

 Software functionality

 Software properties

 Design = how it should do it

CLASSICAL ENGINEERING VIEWPOINT

 “We must know [exactly] what to build before we can build it”

 Leads logically to waterfall process

 … but is this realistic for today’s systems?

REQUIREMENTS ANALYSIS

 Identify Stakeholders

 Elicit Requirements

 Identify Requirements

 Prototypes Feasibility

Study
User

Requirements

ElicitationSystem

Requirements

Elicitation

User Requirements

Specification

System Requirements

Specification and Modeling

Business

Requirements

Specification

Source: Sommerville, Software Engineering, 10th Ed, Fig 4.6

Start

STAKEHOLDERS

 Persons or organizations who…

1. Have a valid interest in the

system

2. Are affected by the system

THERE ARE OFTEN MANY STAKEHOLDERS

1. Anyone who operates the system

 Normal and maintenance operators

2. Anyone who benefits from the system

 Functional, political, financial and social beneficiaries

3. Anyone involved in purchasing or procuring the system

4. Organizations that regulate some or all of the system

 Financial, safety, or other regulators

5. Organizations responsible for systems that interface with the system
under design

6. People or organizations opposed to the system

ELICIT REQUIREMENTS

 Interviews are the best way to elicit requirements

 Explore requirements systematically

 Sounds simple – but is the hardest part!

WHY IS ELICITATION HARD?

1. Problems of scope

What is the boundary of the system? • What details are actually required?

2. Problems of understanding

Users do not know what they want • don’t know what is needed • have a

poor understanding of their computing environment • don’t have a full

understanding of their domain • omit “obvious” stuff • are ambiguous

3. Problems of volatility

Requirements change over time

4. Problems of availability

People who know what is needed are usually in demand doing their job.

IDENTIFY REQUIREMENTS

1. Functional requirements

2. Nonfunctional requirements

3. Constraints

4. Contract-style requirements

5. Use cases (user stories)

TYPES OF REQUIREMENTS

FUNCTIONAL REQUIREMENTS

An action the product must take [to be useful].

It describes what the system should do.

1. The product SHALL track individual payments of

coffee servings.

2. The product MUST heat water to 150F.

NON-FUNCTIONAL REQUIREMENTS

A property or quality the product must have.

1. The product shall be accessible in English and

Spanish.

2. The product must be capable of serving 45 cups

of coffee per hour.

Requirements about performance, reliability, scaling, environmental,

regulatory, safety, and security usually fall into this category.

CONSTRAINTS

Global requirements – on the project or the product

1. The product must be available by March 1.

CONTRACT STYLE

CONTRACT STYLE

Classify product features as

1. Must-have features

“The product must conform to ADA accessibility guidelines”

2. May-have features

“The product may be voice-controlled”

3. Must-not-have features

“The product supports only one language”

Be explicit about must-not-have features!

USE CASE

 A set of actors and actions they take to achieve a goal (or fail in

some way)

 Two elements

1. An actor is something that can act – a person, a system, or

an organization

2. A scenario is a specific sequence of actions and

interactions between actors (where at least one actor is a

system)

Useful for clients as well as for developers

ACTORS AND GOALS

 What are the boundaries of the system? Is it the software,

hardware and software, also the user, or a whole organization?

 Who are the primary actors – i.e., the stakeholders?

 What are the goals of these actors?

 Describe how the system fulfills these goals (including all

exceptions)

EXAMPLE: SAFEHOME

INITIAL SCENARIO

Use case: display camera views

Actor: homeowner

If I’m at a remote location, I can use any PC with appropriate

browser software to log on to the SafeHome Web site. I enter my

user ID and two levels of passwords and, once I’m validated, I have

access to all the functionality. To access a specific camera view, I

select “surveillance” and then “select a camera”. Alternatively, I can

look at thumbnail snapshots from all cameras by selecting “all

cameras”. Once I choose a camera, I select “view”…

REFINED SCENARIO

Use case: display camera views

Actor: homeowner

1. The homeowner logs on to the Web Site

2. The homeowner enters his/her user ID

3. The homeowner enters two passwords

4. The system displays all major function buttons

5. The homeowner selects “surveillance” button

6. The homeowner selects “Pick a camera”…

ALTERNATIVE INTERACTIONS

 Can the actor take some other action at this point?

 Is it possible that the actor encounters some error condition? If so,

which one?

 Is it possible that some other behavior is encountered? If so,

which one?

Exploring alternatives is key to successful requirements analysis!

FULL USE CASE

FULL USE CASE

BE SKEPTICAL

 Do the requirements meet the
real needs?

 Do any requirements conflict?

 Is the requirements set complete?

 Are the requirements realistic /
feasible?

 Technically realistic

 Budget realistic

 Are the requirements verifiable?

 Can tests be defined so one can
demonstrate the system satisfies the
requirement?

FINAL NOTE ABOUT REQUIREMENTS

The job may never be done.

If the problem is complex enough, it will likely never be described

completely.

Change happens.

• The environment changes.

• Once used, new priorities or requirements come to light.

• Compromises get exposed; priorities change.

