
SOFTWARE

DEVELOPMENT LIFE

CYCLE (SDLC)

UNIT OBJECTIVE

• Understand the influences on a project

• Understand what a software process is

• Understand two common models

WHAT EACH PARTY CONTROLS

Client Side

Every software project has three client
controls

Tech Side

The tech team has three controls

Cost

Functionality

Time

Process

People Technology

Software Engineering is about managing the client side and defining the tech side

while managing risk.

MOST EVERYTHING INVOLVES TEAMS

• The effectiveness of the team relates directly to success

• Working with and within teams requires extra effort for

• Communication

• Ever play the operator game?

• Documentation

• Tooling

• Hand-offs (process exchanges or role turn-over)

• Remember, you cannot read other people’s minds

1. Teams come, operate, evolve or disband

2. People come, grow, and eventually

move on

3. Projects come, grow, enter stasis or

evolve

Your project has to accommodate these

facts of project life

CIRCLE OF LIFE

PROJECT INFLUENCES

• Scale

• Affects the ability to know “everything”

• Complexity becomes a critical factor, if it wasn’t already

• Legacy

• Rarely is everything from scratch

• Being able to extend others’ work is essential

PROFESSIONALISM

Personal Ethics

• Confidentiality
• Respecting confidences of employers or clients

regardless if there is a formal agreement

• Competence
• Accurately reflect what you can do and accept only

work that is within your competence

• Intellectual Property
• Protecting the IP of employers and clients

• Misuse
• Do not use skills or resources inappropriately

Effects

• Developers and administrators may have access to
highly confidential information

• Systems that do not work can destroy a company

• IPR violations can be result in fines or cease and
desist orders

• System abuse can paralyze a company

http://www.ieee.org/about/corporate/governance/p7-8.html

https://www.acm.org/about/code-of-ethics

• noun pro·cess

a series of actions that produce

something or that lead to a particular result
http://www.merriam-webster.com/dictionary/process

PROCESS

Typical “Good” Qualities

Effective Actually Used

Efficient Reusable

Relevant Managed

Valid Measurable

Usable

Beware: it is easy to become over-zealous or lost in process

SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

• Purpose

• Lead to good software

• Reduce risk

• Enable visibility and measurement

• Enable teaming

• Key attributes

• Outcomes/results of processes are key deliverables or products

• Roles are clear

• Pre and post conditions are understood and held true

KEY ELEMENTS IN ANY SDLC

1. Feasibility

2. Specification

3. Architecture and Design

4. Development

5. Validation

6. Evolution/Maintenance

The devil is in the details of how the steps are organized and executed

The Promise The Reality

Nothing is ever as simple as it seems

PROCESS MODELS

• Sequential process phases
• One step completes before next one starts

• Rational process
• Enables careful planning

• This is how construction is done.

• Good for
• some piece of the system cannot be easily changed (e.g.

hardware)

• where explicit and exhaustive testing is required before
launch

• Challenges
• Heavyweight process

• Meaning the process is followed systematically and
completely (slow)

• Specification is a negotiation process

• Specifications precede the system

• World rarely is known upfront and even
more rarely stays fixed
• Hard to adapt to upstream changes once the step

completes

Feasibility

Specification

Architecture

& Design

Development

Validation

Evolution &

Maintenance

WATERFALL MODEL (CIRCA 1968)

Feasibility

Analysis

Requirement

Documents

Design

Documents

Code

Test plans

and results

Updates

WATERFALL MODEL

• Real projects rarely follow a sequential flow

• Hard to state all requirements explicitly

• No maintenance or evolution involved

• Customer must have patience

• Any blunder can be disastrous

BOEHM’S FIRST LAW

Errors are most frequent during

requirements and design activities

and are more expensive the later they

are removed.

WHAT THIS MEANS IN PRACTICE

0

50

100

150

200

250

300

Requirements Design Code Unit Test System Test Field

C
o

s
t

Project Phase

Relative cost of an error depending on when it is discovered

• System is created by successive
versions.
• Go through each process step, then

iterate
• Similar to how you are taught to write a paper

• Includes feedback between steps

• Lowers the cost of implementing
requirement changes

• Allows some client/user feedback to be
considered

• Smaller sized steps means delivery of
something comes sooner
• Value is created earlier

• It may not be clear where in the
program the project is

• Changes can lead to messy designs
and implementations

Feasibility

• Feasibility

Analysis

Specification

• Requirem

ent

Document

Architecture

& Design

• Design

Document

s
Developmen

t

• Code

Validation

• Test plan

and

results

Evolution &

Maintenance

ITERATIVE MODELS

AGILE MANIFESTO

Individuals and interactions over
processes and tools

Working software over comprehensive
documentation

Customer collaboration over contract
negotiation

Responding to change over following a
plan

That is, while there is value in the items
on

the right, we value the items on the left
more.

http://agilemanifesto.org/

• This is a response to over-zealous and

rigid process mongering

• Emphasizes getting to the right result

versus creating a lot of useless

documents, over-planning, or blindly

following process

• However, this is NOT a repudiation of

documentation or plans.

AGILE IS A SET OF SDLC APPROACHES

Glossary:

• RUP – Rational Unified Process

• https://en.wikipedia.org/wiki/Rational_Unified_Pro

cess

• XP – Extreme Programming

• https://en.wikipedia.org/wiki/Extreme_programmin

g

• DSDM - Dynamic systems

development method

• https://en.wikipedia.org/wiki/Dynamic_systems_dev

elopment_method

• FDD - Feature-driven development

• https://en.wikipedia.org/wiki/Feature-

driven_development

Borrowed from Haresh Karkar

http://www.slideshare.net/hareshkarkar/overview-of-agile-methodology

https://en.wikipedia.org/wiki/Rational_Unified_Process
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Dynamic_systems_development_method

AGILE

• Emphasis

• producing small increments of software in a reasonably short time frame

• Entire process is run during a sprint

• Sprint results are deployed

• Antithesis of Waterfall

• Plans develop incrementally and evolve
• Client collaboration versus client negotiation

• Specification follows from working system, not the reverse

• Immediate feedback from deployment
• Responding to change rather than following a plan

• Enhancements, new features, and bug fix are all prioritized as candidates for focus

during next sprint

• Emphasis on keeping scope small
• Although the impact of changes will grow over time

“[…] is like driving at night in the fog. You can only see as far as your headlights, but

you can make the whole trip that way.”

― E.L. Doctorow, Writers At Work: The Paris Review Interviews

http://www.goodreads.com/author/show/12584.E_L_Doctorow
http://www.goodreads.com/work/quotes/622615

SCRUM

Emphasis on small, semi-independent teams ideally delivering discrete pieces of a system

Team ideally has total responsibility for the components it produces

Leads to devOps models

1. Team

• Small, cross-functional, self-organizing units

2. Scope

• Small deliverable scope delivered in consensus priority order

• Priorities can be adjusted (typically at sprint start)

3. Timeline

• Small iterations (2-3 weeks is typical) emphasizing delivery at the end

HOW SCRUM TYPICALLY OPERATES

A sprint is one iteration through the process

The backlog contains all the work needing doing

• Includes features and other tasks

User stories describe the function from the consumer’s perspective

 The User may be another software component/system.

• You estimate how much work/time each User Story will take

• The client provides her view of the priorities in the backlog.

• The tech team reassesses priorities to allow for dependencies or difficulties

• The backlog is now a roadmap for the sprint or day within the sprint

Daily stand-ups to discuss progress and plans for what is next

• A scrum-master choreographs the sprint and keeps the team focused and distractions at bay.

SCRUM

In rugby, a scrum is the way you restart the game after a minor infraction.

http://en.wikipedia.org/wiki/Scrum_(rugby)

• Puts test specification as the critical

design activity

• Understands that deployment comes

when the system passes testing

• Clearly defines what success means

• No more guesswork as to what

“complete” means

• The act of defining tests requires one

to understand how the solution works

TEST-FIRST DESIGN

Tests

Design

Specification
Defines

(non)function

objectives

Defines

acceptance

objectives

System

under test
Development

Informs designs

Defines

system

Deployment

Verified

system

• What is the net tolerance for finding

errors in deployment?

• How fast is the market moving?

• Are the teams experienced with a

particular process?

• Is the contract fixed and firm?

• When do the clients expect to see

something?

KEY CONCERNS DRIVING IN SELECTING A PROCESS

Adapted from

http://www.agilemodeling.com/essays/costOfChange.htm

Copyright © 2003 Scott W. Ambler

Typical view of

waterfall

Typical view of

iterative

http://www.agilemodeling.com/essays/costOfChange.htm

EVEN WITH ADVANCES IN PROCESS, PROJECT SUCCESS

REMAINS RISKY

Pessimist View

0 23 45 68 90 113

All projects

Success Challenged Failed

Optimist View

0% 25% 50% 75% 100%

Lean

Iterative

Agile

Ad-Hoc

Traditional

Successful Challenged Failed

Dr. Dobb’s Journal 2013 IT Project Success Survey posted at

www.ambysoft.com/surveys/
Standish Group (UK), Chaos Study, 1995

http://www.ambysoft.com/surveys/

WALKING THE SDLC

STEPS

FEASIBILITY

• Determines if a project should be attempted

• Usually done once at the beginning by senior (trusted) team members

Feasibility study is a proposal
• Does not require prototyping, but often includes it

The decision maker is the audience

• This person may not be sufficiently technical

• In large organizations, this can be a walk-up multiple hierarchies

• Budget processes and staffing usually follow from a positive response

• Two outcomes

1. Yea

2. Nay

1. Recommendation

2. Technology

3. Economic

4. Legal

5. Operational

6. Schedule

WHAT GOES INTO A FEASIBILITY STUDY

UNCERTAINTY MAKES THIS VERY HARD

Challenges

• Clients are unsure what they need at a
useful level of detail

• Benefits are hard to quantify

• Impacts and recognizing unintended
consequences is even harder to quantify

• Approach is often based on very rough
guesses

• Organizational structures may need change

• Assumptions may be faulty

Mitigations

• Experience can guide process

• But the most experienced people may

not be the most technically current

• Solicit support and build interest for the

project

• Beware of irrational enthusiasm

• Leads to unreasonable expectations

• Senior executives rarely forget your

promises

THE BOSS’ VIEW

(ADAPTED FROM BILL ARMS)

The Main Line

• Senior member(s) of the client’s organization
decide whether to begin a major software project.

• Client: who is this project for?

• Scope: is it well defined? Where are there
dependencies and on whom?

• Benefits: are the benefits real and quantifiable? Do I
trust these numbers?

• Technical: Is the project possible?
• Is there at least one technical way to carry out the project?

• Resources: what are the estimates of staff, time,
equipment, etc.?

• What are the options if the project is not done?

Additional Considerations

• Do I trust this team?

• Have we tried this before?

• Market maker? Fast follower?

• Is this really worth investing in?

• Are there IPR issues?

• License dependencies?

• Can this organization pull this off?

• Management capabilities

• Development capabilities

• Operational capabilities

• Sales capabilities

