

CS5500 MANAGING

SOFTWARE DEVELOPMENT

INTRODUCTION

CS5500 “MANAGING SOFTWARE DEVELOPMENT”

Section 1 meets Tuesdays and Fridays from 9:50am - 11:30am in Behrakis 325.

Section 2 meets Tuesdays and Fridays from 1:35 pm - 3:15 pm in Behrakis 320.

Instructor for Section 1: Michael Weintraub

Email: m.weintraub@northeastern.edu

Office Hours: 2-4pm Mondays and Thursdays and by appointment

Office: 302-d WVH 617.373.2301

Instructor for Section 2: Frank Tip

Email: f.tip@northeastern.edu

Office Hours: 3:30-4:30pm Tuesdays and Fridays and by appointment

Office: 322 WVH 617.373.2642

Teaching Assistants

Aravind Chinta chinta.a@husky.neu.edu

Harsha Jakkappanavar jakkappanavar.h@husky.neu.edu

Joyesh Kakkar joyeshk@ccs.neu.edu

Ashish Kumar kumar.as@husky.neu.edu

mailto:kumar.as@husky.neu.edu

COURSE OBJECTIVE

Understand what it takes and develop your knowledge and

skills to deliver successful software systems.

Writing good code is a necessary condition

But it’s not enough to guarantee success

Success or failure in software development depends on more than just

writing good code and this is what the course covers.

When you co-op or graduate, you are going to work on projects valued at a

few dollars up into the millions (or more). You may be a staff member or a

leader. We want you to be successful.

SOFTWARE DISASTERS: DENVER AIRPORT

• ambitious new automated system for baggage

handling

• one of the most notorious examples of project

failure

• resulted in the newly complete airport sitting idle

for 16 months while engineers worked on getting

the system to work

• added approximately $560M to cost of the airport

• feature article in Scientific American titled the

“Software’s Chronic Crisis”

• http://calleam.com/WTPF/?page_id=2086

• http://users.csc.calpoly.edu/~jdalbey/SWE/Papers

/SciAmGibbs/SciAmGibbs.html

http://calleam.com/WTPF/?page_id=2086
http://users.csc.calpoly.edu/~jdalbey/SWE/Papers/SciAmGibbs/SciAmGibbs.html

SOFTWARE DISASTERS: OBAMACARE

• A more recent example of software-

related problems…

• CNN: “Federal official says time frame

didn't allow for enough testing of

HealthCare.gov”

• Wall Street Journal: “Software, Design

Defects Cripple Health-Care Website”

http://healthcare.gov

OTHER SOFTWARE DISASTERS

 Mariner 1 (1962)

Rocket crash due to missing dash

 Eole 1 (1971)

72 weather balloons get wrong cmd

 Nimbus 7 (1978)

Satellite misses ozone hole for 6 yrs

 HMS Sheffield (1982)

Exocet rocket id’ed as “friend”

 Stanislaw Petrow (1983)

Russia detects global nuclear attack

 Therac 25 (1985)

Radiation overdose kills six

 Stock crash (1987)

Dow Jones loses 22% in one day

 Vincennes (1988)

Passenger jet mistaken to be F-14

 Patriot (1991)

Misses to shoot down Iraqi Scud

 Climate Orbiter (1999)

Confuses metrics and imperial

 US Blackout (2003)

50 mln affected for 5 days

 Apple SSL bug (2012)

18 months w/o SSL authentication

 3200 prisoners released early (2015)

 Nest Thermostat users left in the cold

(2016)

 HSBC major outage (2016)

 Delta Airlines: power outage causes

system-wide failure worldwide (2016)

 …

QUESTIONS

 Why does it take so long to get software finished?

 Why are the development costs so high?

 Why can’t we find all errors?

 Why do we spend so much time and effort maintaining existing programs?

 Why is it difficult to measure progress?

ONE SIZE DOES NOT FIT ALL

Domains Vary widely

Each area has its own lingo, history, drivers, funding, regulations,…

TECHNOLOGY is constantly in motion.

New stuff appears. Some of it is truly new. Some is old stuff with new wrappers. Some is

an adaptation of old stuff.

There is a belief that new is always better.

Old stuff evolves or stagnates.

There is a belief that old is always not as good as new.

What you call new/old or good/bad often depends on where you sit, what you know, and

whom you know.

WHAT’S THE LIFETIME OF YOUR WORK?

Look at engineering and the lifetime of many objects

How many bridges, roads, and buildings are 10’s, 100’s or possibly 1000 years old?

Can they be renovated, updated, or changed?

Think about software.

How much software lasts more than five years? 10 years? 20?

What is the common opinion of these systems?

Are these systems usually easily extended, updated, or renovated – directly and

predictably?

YOUR OBJECTIVE

Given

 Client requirements vary

 There is no standard process for software development/ engineering

 There is no “best” language, operating system, file store, database,

environment, …

Your job is to learn what is needed to deliver software successfully.

1. techniques,

2. technologies,

3. processes

The art of software development is to choose the right tools, methods,

and procedures for a project and to deliver effective solutions.

LET’S LEVEL SET: WHAT DOES SUCCESSFULLY

REALLY MEAN?

Most common answer: Delivering a quality solution

This is defined typically as:

1. Functionality

 The system has to do what it needs to do.

2. Usability

 The users of the system need to be able to use it effectively and efficiently.

3. Maintainability

 Changes or repairs must be able to be made directly and implemented without untoward impacts

4. Efficiency

 The system should make effective use of resources

5. Dependability/ Reliability/Resiliency

 The system should be available and remain working for a given period of time. When faced with
failures or bad data, performance should not be impacted, or at least degrade gracefully.

So successfully is some achievement or measurement against these five factors…

WHAT DOES DELIVER SOLUTIONS SUCCESSFULLY

REALLY MEAN?

Programmer View

1. Functionality
Build what you asked for

2. Usability

3. Maintainability

4. Efficiency

5. Dependability/ Reliability/ Resiliency

Management View
1, 2,

3,5

1,5

1,2,?

Actually work

If it’s a billed service/product, can we collect the

data so we can collect?

Adapt to changes in market conditions

Satisfy any regulators (if any)

2 Be seen by users as a net plus rather than net negative

3 Be able to have whoever runs the system be able to do

so

Be extensible or repairable

?? Be defined, constructed, and deployed in a reasonable

timeframe within an acceptable budget

4, ?? Be able to be run cost-effectively

Does this put us ahead, even, or closer to the

competition?

How much revenue depends on this?

Dilbert is used with permission from Universal Uclick

Business

EFFECTIVE PROJECTS INVOLVE MULTIPLE

PLAYERS

Clients

Tech Teams

Operations

Users

Competitors

Bosses

Product/Marketing Finance

Lawyers

Executives

Sponsors

MEASURING SUCCESS

Survey by PC week, 1995: 365 information systems

professionals on success of software development

projects

ROADMAP TO THE COURSE

We will explore each constituent with respect to people, processes and technology

We will get our hands dirty with a group project

You will come away with an understanding of what is needed for professional software

development

√ Gain an understanding of the different pieces that all have to come together to

deliver successful software

√ Learn what programming within a team involves

√ Get an exposure to some tools

√ Continue to enhance your programming skills and/or broader experience base

COURSE PROJECT

 Designed so that you can experience the Software Engineering Lifecycle:

Requirements Gathering & Use Cases

OO Design using UML

 Implementation

Testing

Extension and Refactoring (in response to changed requirements)

 Organized in 4 Phases

 Phase 1: Requirements (individual)

 Phase 2: Design (team)

 Phase 3: Implementation (team)

 Phase 4: Modified Design & Implementation (team)

COURSE PROJECT

 The course project will be a collaborative effort

Teams of 4 people

Sub-teams for different components of the system

 Intended to reflect realistic development practice:

 Requirements intentionally somewhat vague

You don’t get to pick your team-mates

 Implementation language will be Java

Must use prescribed tools for version control, issue tracking, ...

 To make it “more interesting”:

At several points in the project, team composition will be changed

…meaning that you will have extend/adapt/test code written by others

…so write your code with that in mind!

HOMEWORKS

 HW1: UML

 HW2: requirements

 HW3: design patterns

 HW4: to be announced…

COURSE STRUCTURE

 schedule (roughly) organized to go through the phases of software development, from

requirements to implementation to refactoring/adaptation to deployment

 schedule of project deliverables (roughly) aligned with lecture content

 homework topics also (roughly) aligned with lecture content

 after a few initial lectures, we’ll alternate between “lecture sessions” on Tuesdays and

“project sessions” on Fridays

 project sessions used for Q&A about project, code reviews, etc.

 final presentations about the project

 plan is to do this in a single 5pm-10pm session for both sections of the course (food will

be supplied by the instructors)

 attendance for this session is mandatory

 no final exam!

COURSE SCHEDULE (PART 1)

lecture topics homeworks project

week 1 Tue January 10 overview

Fri January 13 SE Life Cycle

week 2 Tue January 17 UML HW1 assigned

Fri January 20 UML Phase 1 start

week 3 Tue January 24 requirements HW1 due

Fri January 27 project

week 4 Tue January 31 unit testing, JUnit HW2 assigned Phase 1 due

Fri February 3 project HW2 due Phase 2 assigned

week 5 Tue February 7 system testing

Fri February 10 project

week 6 Tue February 14 user experience (UX)

Fri February 17 project

week 7 Tue February 21 architecture Phase 2 due

Fri February 24 project Phase 3 assigned

week 8 Tue February 28 design principles

Fri March 3 project

COURSE SCHEDULE (PART 2)

lecture topics homeworks project

week 9 Tue March 7 SPRING BREAK

Fri March 10 SPRING BREAK

week 10 Tue March 14 design patterns HW3 assigned

Fri March 17 project

week 11 Tue March 21 design patterns

Fri March 24 project Phase 3 due

week 12 Tue March 28 refactoring HW3 due Phase 4 assigned

Fri March 31 project

week 13 Tue April 4 acceptance/release HW4 assigned

Fri April 7 project

week 14 Tue April 11 research topics:

static analysis

Fri April 14 project HW4 due

week 15 Tue April 18 final presentations Phase 4 due

Fri April 21 final presentations

GRADING

Project: 60%

 Four project phases - each phase counts equally.

 In each phase, separate grades will be determined for the entire project, and for

each of the system’s sub-components.

 In each phase, each student’s grade is computed as: 0.5 * the grade for the entire

project + 0.5 * the grade for the sub-component that the student worked on

Homeworks: 20%

 Four homeworks - each counts equally.

Final Presentation: 20%

 Top five rated presentations across both sections will be given a bonus.

 Presentations for both sections will happen on the same night.

GRADING

 A 100 point scale will be in effect. There will be no rounding of scores. A curve may be
introduced at the professor’s discretion.

score letter grade

100 A+

>93 A

90-93 A-

>87 B+

>83-87 B

80-83 B-

>77 C+

>73-77 C

70-73 C-

>67 D+

>63-67 D

60-63 D-

<60 F

LOGISTICS

 Create CCIS id if you don’t already have one

 Course Web Site: http://www.ccs.neu.edu/course/cs5500sp17/index.html

 Please enroll in the piazza board for this course at

http://piazza.com/northeastern/spring2017/cs5500?token=4iplpp8j6O8

 On the course schedule, there are pointers to videos and documents on jira and git. If

you want more to do, please take a look at those.

 Questions?

http://piazza.com/northeastern/spring2017/cs5500?token=4iplpp8j6O8

