
 1

CS 5500 Homework 3: Design Patterns
(Assigned: March 21, Due: April 4 23:59pm)

Frank Tip and Mike Weintraub

Homework 3 consists of several programming tasks that involve the application of design

patterns. Unless explicitly stated otherwise, your solutions may not rely on classes from the Java

standard collections.

1. Abstract Factory (25 points)

The UML Class Diagram shown in the above figure shows a hierarchy of classes that model

HTML documents (only a very small subset of HTML is modeled). The classes in this hierarchy

are sufficient to model the following HTML page:

<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <div id="first" class="foo">a</div>
 <div id="second" class="bar">b</div>
 <div id="third" class="foo">c</div>
 </body>
</html>

Each class in the hierarchy overrides the abstract method Node.textualRepresentation()

so that calling textualRepresentation() on a node computes a string that reflects the entire

subtree rooted at that node.

(a) Implement the class hierarchy and create a test suite for it. You should use the type
java.util.Map<String,String> to store attributes associated with nodes. The following

JUnit test should be included in your test suite, and it should pass.

 @Test
 public void test1(){
 Map<String,String> divAtts = new HashMap<String,String>();
 divAtts.put("id", "second");
 divAtts.put("class", "bar");

 2

 Div div = new Div(divAtts, "b");
 Map<String,String> noAttributes = new HashMap<String,String>();
 B b = new B(noAttributes, div);
 assertEquals(b.textualRepresentation(), "<div class=bar id=second>b</div>");
 }

Please add some additional tests to your test suite, including one that checks that the correct

textual representation is computed for the HTML page shown above. Please ensure that all your

code is properly documented. Place your code in a package "html" and your test suite in a class
"HTMLTests" in a package “tests”.

(a) Now create a new version of the previous application in which all nodes are created using

an instance of the "Abstract Factory" design pattern. We suggest that you use the names

AbstractHTMLNodeFactory and StandardHTMLNodeFactory for the classes

involved in the pattern. Place your code in a package "html_factory" and your tests in

a class "HTMLFactoryTests" in package “tests”.

(b) Now define a class LoggingHTMLFactory that defines another concrete factory that

prints the textual representation of each node as it is being created. Please create another

version of the previous test suite that uses this factory. Place this test suite in a class
LoggingHTMLFactoryTests in package “tests”.

(c) How much work was it to modify your tests to use a LoggingHTMLFactory instead of a

StandardHTMLNodeFactory? Describe the benefits of the Abstract Factory design

pattern in your solution (in 5 sentences or less).

2. Iterators (25 points)

A set of natural numbers can be represented compactly using an array of int values. The basic

idea is to use the ith bit to indicate whether the number i is in the set. In Java, an int is represented

using 32 bits, so in this representation the set { 0, 1, 4, 7, 31 } is represented by the binary

number 10000000000000000000000010010011. For sets containing larger numbers, an array of

ints can be used, where the first element represents bits 0-31, the second represents bits 32-63,

and so on. Below, an outline is given for a class BitVector and an interface Iterator to
which it refers.

public interface Iterator<T> {
 boolean hasAnotherElement();
 T nextElement();
}

public class BitVector {
 public boolean get(int i){ ... } // Determine if the bit at position i is set.
 public void set(int i){ ... } // Set the bit at position i.
 public void clear(int i){ ... } // Clear the bit at position i.
 public void addAll(BitVector b){ ... } // Set the bits in the argument BitVector b.
 public Iterator<Integer> iterator(){ throw new Error("unimplemented"); }
 public int size(){ ... }

 private int[] words;
}

 3

(a) Complete the implementation of BitVector by adding bodies to all methods declared
above except the iterator() method. Please ensure that all code is properly

documented, and provide a JUnit test suite BitVectorTests that thoroughly tests your
BitVector class.

(b) Now implement the iterator() method. You may add additional private classes,

methods and fields if needed. Extend your test suite to test your iterator.

(c) Describe the benefits of applying the “Iterator” design pattern in this solution (in 5

sentences or less).

3. Adapter (25 points)

Below, an interface Set is defined, and a partial outline is given for a class StringSet that

represents a set of String values.

interface Set<T> {
 void add(T t); // add an element to the set
 void addAll(Set<T> s); // add all elements in the argument set
 void remove(T t); // remove an element from the set
 int size(); // return the number of arguments in the set
 Iterator<T> iterator(); // return an iterator over the set
}

public class StringSet implements Set<String> {
 public void add(String s){ ... }
 public void addAll(Set<String> s){ ... }
 public void remove(String s){ ... }
 public int size(){ ... }
 public Iterator<String> iterator(){ ... }
 private BitVector adaptee = new BitVector();
}

a) Implement StringSet using the "Adapter" design pattern, where your previously

developed BitVector plays the role of Adaptee. You must complete the

implementations of all of the above methods, ensure that all code is properly

documented, and provide a JUnit test suite StringSetTests that thoroughly tests your
StringSet class. A few hints:

 You will need to maintain an index that associates an integer value with each String

that is stored in a StringSet. To maintain such mappings, you may use the class
java.util.HashMap.

 Your implementation does not need to concern itself with "garbage-collection" in

situations where strings that are referenced in the index do not occur in any StringSet.

b) Describe the benefits of using the Adapter design pattern in your solution (in 5 sentences

or less).

 4

4. Visitors (25 points)

For this task, we will continue working with your solution to question 1(c).

public interface NodeVisitor {
 void visitHTML(HTML h);
 void visitHead(Head h);
 void visitBody(Body b);
 void visitTitle(Title t);
 void visitDiv(Div d);
 void visitB(B b);
}

a) Using the "Visitor" design pattern and the NodeVisitor interface defined above, define

a class NodeCountVisitor that counts the number of times each type of node occurs in

a document. Create a test suite HTMLVisitorTests that tests your
NodeCountVisitor.

b) Using the "Visitor" design pattern and the NodeVisitor interface defined above, define

a class AttributeSearchVisitor that finds node(s) that have an attribute with a

specified name and value. Using your answer to question 3, the solution should be

computed as a StringSet where the elements of the set are the textual representations

of the nodes that meet the search criterion. Add tests to your HTMLVisitorTests suite

to test this visitor as well.

c) Describe the benefits of using the "Visitor" design pattern in your solution (in 5 sentences

or less).

